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Abstract: Three means are investigated for further increasing the accuracy of the characterization
of a thin film on a substrate, from the transmittance spectrum T(λ) of the specimen, based on the
envelope method. Firstly, it is demonstrated that the accuracy of characterization, of the average film
thickness d and the thickness non-uniformity ∆d over the illuminated area, increases, employing a
simple dual transformation utilizing the product T(λ)xs(λ), where Tsm(λ) is the smoothed spectrum
of T(λ) and xs(λ) is the substrate absorbance. Secondly, an approach is proposed for selecting an
interval of wavelengths, so that using envelope points only from this interval provides the most
accurate characterization of d and ∆d, as this approach is applicable no matter whether the substrate
is transparent or non-transparent. Thirdly, the refractive index n(λ) and the extinction coefficient k(λ)
are computed, employing curve fitting by polynomials of the optimized degree of 1/λ, instead of
by previously used either polynomial of the optimized degree of λ or a two-term exponential of λ.
An algorithm is developed, applying these three means, and implemented, to characterize a-Si and
As98Te2 thin films. Record high accuracy within 0.1% is achieved in the computation of d and n(λ) of
these films.

Keywords: increased characterization accuracy; thin film; envelope method; dielectric film; semicon-
ductor film; transmittance spectrum

1. Introduction

Optical dielectric and semiconductor thin films have numerous applications in re-
search and development, in applied sciences and engineering [1–3]. For example, such
films, with thicknesses of at least 300 nm, are used in solar cells [4,5], thin-film transis-
tors [6,7], photonic circuits [8,9], holography [10,11], and thin-film batteries [12,13]. Since
the optical properties of these kinds of films depend on their composition and technology
of preparation, there is a quest for increasing the accuracy of the optical characterization of
the films [14,15].

The main approach for the optical characterization of a thin dielectric or semiconductor
film is founded on the analysis of the transmittance spectrum T(λ) of a sample consisting
of the film on a substrate, at normal light incidence to the film [16–18]. T(λ) is usually
obtained by a spectrophotometer or a spectroscopic ellipsometer, operating, e.g., in the
UV/VIS/NIR spectral region, as the illuminated area on the free surface of the film has
a typical size between 0.5 mm and 10 mm [19–21]. The primary goal of such analysis
of T(λ) is to determine the spectral dependencies of the refractive index n(λ) and the
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extinction coefficient k(λ), as well as the average thickness d of the film over the illuminated
area [22,23]. In many cases, the film thickness is not constant along the surface, whereas
T(λ) depends significantly on such variation in the film thickness [24,25]. This can be
accounted for by including thickness non-uniformity ∆d = [max(d) – min(d)]/2 ≥ 0 in the
formula for T(λ), where d is the film thickness at a particular point within the illuminated
area [26,27]. It should be pointed out that the thickness non-uniformity ∆d of the film
differs from its root mean square surface roughness Rq [28]. A sketch of light transmittance
T(λ) through a thin film on a substrate, including the main optical characteristics of the
film and the substrate, is shown in Figure 1. Notably, all the substrate characteristics are
denoted by the subscript “s” throughout this paper.
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Figure 1. Sketch of transmittance T(λ) of light through a sample consisting of a thin film on a
substrate. The thin film and its main optical characteristics are represented in red. ∆d is half of the
difference between the maximum value and the minimum value of the film thickness d over the
illuminated area on the free surface of the film.

Besides, T(λ) in the UV/VIS/NIR region of a sample, consisting of a thin dielectric
or semiconductor film on a light transmitting substrate, usually contains interference
patterns, due to the thin-film interference [29,30]. Furthermore, the above discussed film
characteristics in the VIS/NIR spectral region can be computed based on the envelope
method (EM), employing the upper envelope T+(λ) and the lower envelope T−(λ) of the
smoothed spectrum Tsm(λ) of T(λ) with interference pattern. Such Tsm(λ) is tangent to
and touches either of its envelopes T+(λ) or T−(λ) in several points, whose respective
wavelengths λt are named tangency wavelengths. Importantly, EM does not use any
dispersion model of n(λ) and/or k(λ), unlike the ellipsometric methods [31,32]; keeping in
mind that such dispersion models are usually inaccurate for doped films [33,34], organic
films [35,36], and mechanically stressed films [37].

With respect to the above, the founding paper about the EM for T(λ) of Swanepoel [38]
is the most cited publication regarding the optical characterization of thin films, with
over 4670 citations, according to Google Scholar [39,40]. Nevertheless, the EM for T(λ)
of Swanepoel, from [38], does not consider the thickness non-uniformity ∆d of the film,
neither the light absorption in the substrate. Improvements in the EM for T(λ) have
accounted for ∆d [41] and for the light absorption in commonly used glass substrates [42].
However, in the EM for T(λ), from [41,42], three subjectively chosen parameters have been
used, and the envelopes have not been corrected for the substrate absorption.

An EM for T(λ), providing and using optimized values of these three parameters,
was presented in [43]. Moreover, a comparative study [44] showed that the EM for T(λ),
from [43], furnishes the most accurate characterization of two a-Si films (with very different
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average thicknesses (d) amongst four methods, selected as most likely to render accurate
characterization of such films. Furthermore, corrections of the envelopes of Tsm(λ) obtained
as in the case of the transparent substrate, only at λt corresponding to notable substrate
absorption, resulted in increasing the accuracy of the characterization of these films [45].

The formula for Tsm(λ) at normal light incidence, in the most important case of
n(λ) > ns(λ), is as follows [43,45]:

Tsm(λ) =
1

ϕ2 − ϕ1

ϕ2∫
ϕ1

dTu(ϕ) =
(τa,fτf,sτs,a)

2xs

ϕ2 − ϕ1

ϕ2∫
ϕ1

xdϕ

a1 − b1cos(ϕ) + c1sin(ϕ)
, (1)

where

ϕ = 4πnd/λ, ϕ1 = 4πn(d− ∆d)/λ, ϕ2 = 4πn(d + ∆d)/λ, x = exp(−4πkd/λ),

xs = exp(−4πksds/λ), a1 = 1− (ρa,fρs,axxs)
2 + ρf,s

2(ρa,f
2x2 − ρs,a

2xs
2),

b1 = 2ρa,fρf,sρs,ax[ρs,axs
2cos∆2 − ρs,a

−1cos∆1], c1 = 2ρa,fρf,sρs,ax[ρs,axs
2sin∆2 − ρs,a

−1sin∆1],

τa,fτf,sτs,a =
8√

(n + 1)2 + k2

√
n2 + k2

(n + ns)
2 + (k + ks)

2

√
ns2 + ks2

(ns + 1)2 + ks2
,

ρa,f =

√√√√ (n− 1)2 + k2

(n + 1)2 + k2
, ρf,s =

√√√√ (n− ns)
2 + (k− ks)

2

(n + ns)
2 + (k + ks)

2 , ρs,a =

√√√√ (ns − 1)2 + ks2

(ns + 1)2 + ks2
,

∆1 = tan−1
(

2k
n2+k2−1

)
+ π + tan−1

[
2(kns−ksn)

n2−ns2+k2−ks2

]
,

∆2 = tan−1
(

2k
n2+k2−1

)
+ π − tan−1

[
2(kns−ksn)

n2−ns2+k2−ks2

]
,

where Tu(λ) represents the transmittance of a film of the same material with uniform
thickness d = d, on the same substrate, and x(λ) is the absorbance of the film. It is assumed
in Equation (1) that the film thickness d has a continuous uniform distribution in the
interval [d − ∆d, d + ∆d] over the illuminated area, as the light passing through the
film is considered to be coherent. The light passing through the substrate is regarded as
non-coherent, thus quenching the light interference there, due to the significant thickness
of the substrates used in practice [38,46].

The following accurate expressions for the upper envelope T+(λ) and lower envelope
T−(λ) of Tsm(λ), from Equation (1), have been presented in [47]:

T±(λ) =
1

ϕ2± − ϕ1±

ϕ2±∫
ϕ1±

Tu(ϕ±)dϕ± =
(τa,fτf,sτs,a)

2xs

ϕ2± − ϕ1±

ϕ2±∫
ϕ1±

xdϕ±
a1 − b1cos(ϕ±) + c1sin(ϕ±)

, (2)

where
ϕ+ = 4πn(d− d)/λ, ϕ1+ = −4πn∆d/λ, ϕ2+ = 4πn∆d/λ,
ϕ− = ϕ+ + π, ϕ1− = ϕ1+ + π, ϕ2− = ϕ2+ + π,

as “+” from the “±” signs refers to T+(λ), and “−” to T−(λ).
It is observed, from Equations (1) and (2), that T(λ), T+(λ), and T−(λ) are propor-

tional to the first degree of the substrate absorbance xs(λ), whereas the dependencies of
xs(λ) on a1, b1, and c1 can be neglected, since the interference in Tsm(λ) indicates that
ns(λ) >> ks(λ). Based on this, a dual transformation, consisting of forward and reverse
transformations, was proposed in [47], for computing the envelopes T+(λ) and T−(λ) of
Tsm(λ), for a sample with a non-transparent substrate. The forward transformation in-
cludes the calculation of T(λ)′ = T(λ)/xs(λ) and its smoothing providing Tsm(λ)′, which
represents an approximation of the transmittance of the specimen whose substrate is re-
placed by a transparent one. The envelopes T+(λ)′ and T−(λ)′ of Tsm(λ)′ are computed
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by substituting xs(λ)′ = xs(λ)/xs(λ) = 1 and using “boundary points”, “additional points”,
“supplementary points”, and iterations, as in [35]. The tangency wavelengths λt

′ of Tsm(λ)’,
and its envelopes T+(λ)′ and T−(λ)’, are determined next. In the reverse transformation,
Tsm(λ) = Tsm(λ)’xs(λ), and its envelopes T+(λ) = T+(λ)’xs(λ) and T−(λ) = T−(λ)’xs(λ) are
calculated. Importantly, the tangency wavelengths λt of Tsm(λ) are identical with the
known λt’, because Tsm, T+, and T− are derived by multiplying their respective Tsm’,
T+
′ ≥ Tsm

′ and T−′ ≤ Tsm
′ by the same xs > 0, for every λ.

The advantage of the above procedure for the computation of the envelopes of T(λ), is
that it is based on using the envelopes of Tsm(λ)′ (for a sample with transparent substrate,
i.e., with xs(λ)′ = 1), which is not distorted by commonly observed kinks in xs(λ). This
should increase the accuracy of T+(λ), T−(λ), and λt; compared with correcting T+(λ) and
T−(λ), obtained as for the transparent substrate, only at λt from the region with distinct
xs(λ) < 1, as in [45].

Also, in any EM for T(λ), for the characterization of a thin film with n(λ) > ns(λ), at
normal light incidence, the following interference condition is used:

2n(λt)d = m`(λt)λt(`)
{

m` ≥ 1 − integer for all tangency wavelengths λt(`)from the envelope T+(λ)
m` ≥ 1/2 − half− integer for all tangency wavelengths λt(`) from the envelope T−(λ),

(3)

where ` = 1, 2, . . . ` M is the number of the tangency wavelength λt, counted from the
longer wavelengths end of T(λ), and m` (λt) is the interference order.

Furthermore, all versions of the envelope method for thin-film characterization are
executed in two stages, as in the first stage, d, ∆d (if employed), and the lowest interference
order m1[max(λt)] are computed; and in the second stage, n(λ) and k(λ) are computed.
Taking into account that such EM characterizations have been commonly performed
using consecutive tangency wavelengths λt(` ), including the longest λt(` =1), the follow-
ing error metric was proposed in [47], for estimating the accuracy of the first stage of
the characterization:

δd/d(1) =
(

1/d1

)
√√√√√√

`0

∑
`=1

{
d1 − dc[λt(`)]

}2

`0
≥ 0, (4)

where dc[λt(`)] is the average film thickness calculated from Equation (3), for the tangency
wavelength λt(`), `0 is the number of all the tangency wavelengths participating in the
first stage of the characterization, and d1 is the mean value of dc[λt(`)]. Since the smaller
variation of dc[λt(`)] over ` = [1, 2, . . . ` 0] points to more accurate computation of d
and ∆d of the film [38,43], the most accurate first-stage EM characterization of the film
corresponds to the smallest δd/d in Equation (4). In this regard, EM characterization of
thin a-AsxTe100−x films, using the dual transformation for computing T+(λ) and T−(λ),
resulted in much smaller δd/d compared with the EM characterization of thin a-Si films
using envelopes that are corrected only at λt from the region with distinct xs < 1.

The second stage of EM characterization starts with the calculation of approximations
n0(λt) of the refractive index of the film, from Equation (3), followed by computation of the
refractive index n(λ) of the film by curve fitting to n0(λt). The extinction coefficient k(λ) of
the film is computed last, by solving one equation for every λ; usually from T+(λ) [38,41,42],
or from the following [47]:

Ti(λ) =
√

T+(λ)T−(λ) (5)

In [43], the extinction coefficient of the film was computed from Tsm(λ), as
k(λ) = k0(λ) + ∆k(λ), where k0(λ) is determined by curve fitting to the approximations
ka(λt) that were obtained by solving Equation (1), and the correction ∆k(λ) is a half-sum of
the two envelopes of the difference ka(λ) − k0(λ). Notably, the curve-fitting functions that
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were employed in [45], for the computation of n(λ) and k0(λ), were either polynomial of
the optimized degree of λ or a two-term exponential of λ.

The accuracy of a given thin-film characterization can be assessed based on the
computation of a reconstructed transmittance spectrum Tr(λ), by replacing d, ∆d, n(λ), and
k(λ) in the right side of Equation (1), and comparison of Tr(λ) with T(λ). A measure of the
closeness of Tr(λ) to T(λ) is the figure of merit [45], as follows:

FOM =

√√√√√√
Nj

∑
j=1
{T[λ(j)] − Tr[λ(j)]}2

Nj
≥ 0 (6)

with summation over all λ⊂[min(λt), λt(` =1)], whereas a smaller FOM corresponds to
more accurate film characterization.

From the above comments three issues are identified, regarding further increasing the
accuracy of the characterization of a thin dielectric or semiconductor film on a substrate,
based on the EM for T(λ). These issues are presented below, in the order of their appearance
in the algorithm of the EM for T(λ). The first issue is to study which envelopes, T+(λ)
and T−(λ), should be chosen for the non-transparent substrate; those computed as for a
transparent substrate and corrected only at λt, with distinct xs(λt) < 1, or those obtained
by a dual transformation for all λ. The second issue is to establish whether an interval
` = [` 1, ` 2] (representing only the used λt), over which the first stage of the characterization
is performed most accurately, can be selected, compared with the commonly used interval
l = [1, ` 0]. The third issue is to explore the concept of using a regression of n(λ) and k0(λ),
by a polynomial of an optimized degree of 1/λ (consistent with the Cauchy’s dispersion
formula [48,49]), instead of by either the polynomial of an optimized degree of λ or a
two-term exponential of λ [45,47].

In this paper, the above three issues are investigated by performing characterizations
of relatively thick a-Si and a-As98Te2 thin films that are deposited on non-transparent glass
substrates, based on the EM for T(λ). An algorithm is proposed for further increasing the
accuracy of the characterization of thin dielectric or semiconductor film on a substrate,
employing such EM for T(λ), and the characterization accuracy of the studied films is
increased by using this algorithm.

2. Materials and Methods
2.1. Preparation of the Specimens and Measuring the Transmittance Spectra T(λ)

The a-Si film has been deposited on 3.28-mm-thick Borofloat33 glass substrate by
RF magnetron sputtering using RF power of 525 W, Ar gas with pressure of 0.13 Pa, and
target-to-substrate distance of 6.1 cm, as described in [45]. The transmittance spectrum
T(λ) of this specimen has been measured using a Perkin-Elmer Lambda 1050 UV/VIS/NIR
spectrophotometer, with slit-width set at 2 nm, data collection interval of 1 nm, normal
light incidence to the film, and illuminated area of 10 mm × 3 mm [50].

The As98Te2 film has been prepared by plasma-enhanced chemical vapor deposition
for fifteen minutes on 1-mm-thick standard microscope slide glass substrate of Levenhuk, as
described in [51]. T(λ) of this specimen has been measured using a Cary 5000 double-beam
spectrophotometer of Agilent, with slit-width of 3.44 nm, data collection interval of 1 nm,
normal light incidence to the film, and a circular illuminated area with 1 mm diameter [52].

2.2. Details Regarding the Performed Accurate Thin Film Characterizations by EM for T(λ)

For both studied specimens, the refractive index of the substrate ns(λ) and its extinction
coefficient ks(λ) are calculated by solving the system of two well-known equations for
the transmittance Ts(λ) and the reflectance Rs(λ) of the bare substrate, which have also
been measured [43,47].

It is pointed out that the thin-film characterizations reported in this study are founded
on the EM for T(λ) from [43,45], as the dual transformation for computing T+(λ) and T−(λ)
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is adopted from [47]. Regarding the proposed selection of an interval ` = [` 1, ` 2], over
which the first stage of the characterization is performed most accurately, it is realized
by including a program cycle increasing the integer ` 1e (representing ` 1), starting from
` 1e = 1. Moreover, one of the three optimized parameters determined by the EM for T(λ)
from [43] is the number of the tangency wavelengths λt(`), participating in the first stage of
the characterization, denoted as ` 0 in Equation (4). Based on the above and Equation (4),
the error metric employed for computing d, ∆d and m1[max(λt)] at the end of the first stage
of the characterization is as follows:

δd/d(`1e) =
(

1/de

)
√√√√√√

`2e

∑
`=`1e

{
de − dce[λt(`)]

}2

`2e − `1e + 1
≥ 0 (7)

where ` 2e is automatically computed by the EM for T(λ) from [33]. Correspondingly,
` 1 = ` 1e for which δd/d(` 1e) has a minimum value and ` 2 is its respective ` 2e, which
completes the selection of the interval ` = [` 1,` 2].

Besides the accurate computation of n(λ) and k(λ) in the second stage of the charac-
terization, their approximations can also be computed there by solving the system of two
equations for T+(λ) and T−(λ), the computed result being denoted as (n, k) = f(T+, T−).

2.3. Algorithm for Accurate Thin-Film Characterization by EM for T(λ) Accounting for the Three
Investigated Issues

An algorithm for accurate thin-film characterization accounting for the three investi-
gated issues is developed, shown in Figure 2, and used in this study.

The above algorithm is founded on the algorithm of EM for T(λ) presented in [45],
as the dual transformation for computing T+(λ) and T−(λ) is adopted from [47], and the
second and third investigated issues represent novelties. In principle, the algorithm from
Figure 2 optimizes and utilizes the three parameters `1, `2 and ∆d, which provide best fit
of the spectrum Tsm(λ) (calculated from Equation (1)) to the experimental spectrum T(λ)
in the interval [λt(` 1), λt(` 2)] from the spectral region of quasi-transparency and weak
absorption of the film. To avoid using a local minimum of the error metric δd/d at step A6
of the algorithm (instead of the needed global minimum), the optimization of the above
three parameters is achieved by a ‘direct search′ [53] employing all plausible values of
these parameters. Notably, Tsm(λ)′, featured at step A1, is obtained by external smoothing,
similar to [45,47], which is beneficial for comparison of computed results from this paper
with similar results from [45,47].

Furthermore, the estimated value de(` 1e) of the average film thickness (over the
illuminated area) is calculated at step A5 by averaging the film thicknesses estimated for
consecutive tangency wavelengths λt, as described in [43]. Correspondingly, δd (formu-
lated by Equation (7)), obtained at step A6, represents the absolute error in the computation
of the average film thickness d. Respectively, the global minimum of δd/d(` 1e) (defined
by Equation (7)), also computed at step A6, represents the relative error in the computation
of the average film thickness d. Moreover, since the refractive index n(λ) of the film is
computed based on Equation (3), its left side being the product 2n(λt)d and its right side
being fixed for a given λt, the global minimum of δd/d(` 1e) also represents the relative
error in the computation of n(λ).

With respect to the above paragraph, characterization of four types of model thin film
on glass substrate samples was performed in [54], by the EM for T(λ) from [33] using the
error metric δd/d(` 1e = 1). These four types of model films represent the four possible
combinations of quasi-uniform or non-uniform dielectric or semiconductor film with or
without a wide spectral region of quasi-transparency. The results from [54] have shown that
this kind of characterization of such films should provide relative error |d−dM|/ dM < 0.1%
in the computation of the average film thickness (where dM is the known average film
thickness of the model film), as well as δd/dM ≈ δd/d < 0.1%. However, this kind of
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characterization of the films studied here has led to minimum values of δd/d = 0.245%
for the a-Si film, and δd/d = 0.133% for the a-As98Te2 film, as reported in [47], thus
missing the above target of δd/d < 0.1%. Nevertheless, the above discussed data from [54]
indicate that δd/d (computed by the algorithm from Figure 2) represents the relative
error |d−dtrue|/ dtrue (where dtrue is the true value of the average film thickness over the
illuminated area) in the computation of the average film thickness, independent from the
optical characteristics of the film.
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2.4. Determination of Model Based Thin-Film Parameters Using Data from EM Characterization

A study of various amorphous semiconductors and glasses has shown that the dis-
persion of the refractive index n(λ) can be described by the Wemple-DiDomenico single-
effective-oscillator model represented by the dependence, as follows:

n(E) '
√

1 +
E0Ed

[E02 − E2(λ)]
(8)

where E(eV) = 1239.8/λ (nm) is the photon energy, E0 > E is the oscillator energy and
Ed is the oscillator strength [55]. On the other hand, a-Si and a-As are amorphous semi-
conductors, and in many cases binary arsenic chalcogenide films are also amorphous
semiconductors [56,57]. Taking into account the above, in this paper is used Wemple-
DiDomenico plot of {n(E(λt))2 − 1}−1 versus E(λt)2, which should be represented by a
straight line corresponding to Equation (8), for the studied a-Si and a-As98Te2 thin films.
Since the accuracy of Equation (8) might decrease with increasing k(λ), the parameters E0
and Ed are determined by a low-energy linear regression to the Wemple-DiDomenico plot,
and the static refractive index of the film is expressed from Equation (8) as follows:

n0 = n(E = 0) = n(0) =
√

1 + Ed/E0 . (9)

Optical characteristics of other magnetron-sputtered a-Si thin films were studied
in [50], depending on the pressure of the Ar gas, as the other technological parameters
were identical to those for the a-Si thin film studied in this paper. The following empirical
formula was obtained there:

Eg ≈ (8.3− n0)/3.8(eV) (10)

where Eg is the band gap of magnetron-sputtered a-Si thin film. Equation (10) can be used
for estimation of the band gap of the studied a-Si thin film.

It is also known that for amorphous semiconductors the following Tauc equation is
usually valid:

(αE)1/2 ' BT(E − Eg) (11)

for α(E) > 104 cm−1, where α(λ) = 4πk(λ)/λ is the absorption coefficient of the film, and BT is
the Tauc slope [58]. Correspondingly, the band gap Eg can also be approximated employing
Tauc plot of (αE)1/2 versus E and its high-energy linear regression with α(E) > 104 cm−1, as
Eg represents the photon energy at which the regression line crosses the horizontal axis [58].
In order to use Tauc plot, n(E) is usually calculated from Equation (8), by substituting E0
and Ed determined from the Wemple-DiDomenico plot (assuming validity of the single-
effective-oscillator model), followed by computation of α(λ) from Equation (1).

Besides, disorder in the local structure of material leads to presence of localized
electronic states in its band gap, as it is generally accepted that α(E) of amorphous materials
tails off exponentially, in the following:

α(E) = α0exp(E/EU) (12)

in the interval α(E) ⊂ [103, 104] cm−1, where EU is the Urbach energy and α0 is a pre-
exponential factor [59,60]. Therefore, both EU and α0 can be derived using Urbach energy
plot of log10[α(cm−1)] versus E and its linear regression in the interval log10[α(cm−1)] ⊂ [3, 4].
Moreover, the photon energy corresponding to α(E) = 103 cm−1 is denoted by E03, and the
photon energy corresponding to α(E) = 104 cm−1 is denoted by E04.

Furthermore, voids can occur in a-Si [61], and the voids volume fraction (compared to
the entire volume of the material) has been approximated as follows:
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fvoid '
[
1 + 2n2(0)

][
n2

dense(0)− n2(0)
]

3n2(0)
[
n2

dense(0)− 1
] (13)

where ndense(0) is the static refractive index of a-Si without voids [50,62]. Besides,
E0 = 2.873 eV and Ed = 36.404 eV have been reported for pure a-Si [63], and replacing
these data in Equation (9) provides ndense(0) = 3.70. This result and Equation (13) permit
calculation of the voids volume fraction for the studied a-Si thin film.

3. Results
3.1. Characterization of the a-Si Film

Illustrations about the first stage from the characterization of the a-Si film, by the
algorithm from Figure 2, are presented in Figure 3.
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The variation in the interval ` e = [` 1e, ` 2e] and its respective error metric δd/d(` 1e)
for the successively increasing ` 1e (in the process of selecting the interval ` = [` 1, ` 2],
providing most accurate first step characterization), are shown in Table 1 for the a-Si film.

Table 1. The interval ` e = [` 1e, ` 2e] and δd/d(` 1e), for successively increasing ` 1e, from the
first-stage characterization of the a-Si film. The data about δd/d(` 1e=1) (%) from this study are in
blue color, and in green—from [45]; whereas the minimum value of δd/d(` 1e) (%) is in red.

a-Si, First-Stage Characterization from Ref. [45]

` e = [` 1e, ` 2e] [1,18] [2,18] [3,26] [4,26] [5,14] [6,26] [1,16]
δd(` 1e) (%) 0.143 0.146 0.165 0.168 0.0901 0.170 0.245

computed film
characteristics for ` = [5,14]: = 3949.2 nm, ∆d = 53.0 nm, m1 = 12

d = 3929.9 nm,
∆d = 53.5 nm,

m1 = 12

Pictures concerning the rest of the characterization of the a-Si film, based on the
algorithm from Figure 2, are displayed in Figure 4.

FOM, computed from Equation (6) at step A11 from the algorithm, is presented in
Table 2, for several choices of the extinction coefficient k(λ) of the a-Si film.
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Table 2. The figure of merit FOM for different options about the extinction coefficient k(λ) of the a-Si film. The minimum of
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a-Si, Second-Stage Characterizations

FOM for k = k0 for k = k0 + ∆k for k(T+) for k(Ti) for [k0 + ∆k + k(Ti)]/2
From ref. [45] 7.36 × 10−3 5.71 × 10−3 7.78 × 10−3 - -

this study 6.65 × 10−3 5.19 × 10−3 7.41 × 10−3 6.91 × 10−3 5.80 × 10−3

3.2. Characterization of the a-As98Te2 Film

Illustrations about the first stage from the characterization of the a-As98Te2 film, by
the algorithm from Figure 2, are presented in Figure 5.

The variation in the interval ` e = [` 1e, ` 2e] and its respective error metric
δd/d(` 1e), for the successively increasing ` 1e (in the process of selecting the interval
` = [` 1, ` 2], providing most accurate first step characterization), are shown in Table 3 for
the a-As98Te2 film.

Pictures representing the rest of the characterization of the a-As98Te2 film, based on
the algorithm from Figure 2, are displayed in Figure 6. FOM, computed from Equation (6)
at step A11 from the algorithm, is presented in Table 4, for several choices of the extinction
coefficient k(λ) of the a-As98Te2 film.
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(e) Tauc plot using n(E) calculated by a linear approximation of the higher-energy region from the Wemple-DiDomenico
plot; (f) Urbach energy plot.
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Table 3. The interval ` e = [` 1e, ` 2e] and δd/d(` 1e), for successively increasing ` 1e, from the
first-stage characterization of the a-As98Te2 film. The minimum of δd/d(` 1e) (%) from this study is
in red color, and the minimum of δd/d(` 1e) (%) from [47] is in green.

a-As98Te2, First-Stage Characterization From Ref. [47]

` e = [` 1e, ` 2e] [1,19] [2,9] [3,9] [4,9] [5,9] [6,9] [2,12]
δd(` 1e) (%) 0.308 0.0857 0.0426 0.0455 0.0491 0.0497 0.133

computed film
characteristics for ` = [3,9]: d = 1983.2 nm, ∆d = 23.9 nm, m1 = 4.5

d = 1983.8 nm,
∆d = 22.7 nm,

m1 = 4.5

Table 4. The figure of merit FOM for different options about the extinction coefficient k(λ) of the a-As98Te2 film. The
minimum of FOM achieved in this study is in red color, and the minimum of FOM from [47] is in green.

a-As98Te2, Second-Stage Characterizations

FOM for k = k0 for k = k0 + ∆k for k(T+) for k(Ti) for [k0 + k(Ti)]/2
from [47] 4.36 × 10−3 4.26 × 10−3 3.96 × 10−3 3.74 × 10−3 -
this study 3.89 × 10−3 3.89 × 10−3 4.38 × 10−3 3.87 × 10−3 3.64 × 10−3

SEM images of cross-sections of both studied films are shown in Figure 7.
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4. Discussion

With respect to the presented dual transformation, it is observed from Figure 3b,c and
Figure 5b,c that the forward transformation provides T+(λ)′ and T−(λ)′ without any kinks,
unlike the envelopes T+(λ) and T−(λ) reproducing the kinks in xs(λ). This indicates that
such dual transformation should furnish more accurate points T+(λt) and T−(λt) (needed
for the first-stage characterization of the film), than using envelopes as the transparent
substrate and correcting them only at λt with distinct xs(λt) < 1, as in [45]. Indeed, according
to the data from Table 1 about the a-Si film, the error metric δd/d(` 1e = 1) = 0.143% obtained
in this study is significantly smaller than δd/d(` 1e = 1) = 0.245% from [45], which confirms
the above presumption. Moreover, employing the dual transformation is significantly
simpler than using envelopes as the transparent substrate and correcting them only at λt
with distinct xs(λt) < 1.

Regarding the selection of the interval ` = [` 1, ` 2], over which the first-stage character-
ization is most accurate (i.e., the interval corresponding to the smallest δd/d(` 1e), ` = [5,14]
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for the a-Si film and ` = [3,9] for the As98Te2 film, as observed from Tables 1 and 3. Besides,
a review of Figure 3a,b and Figure 5a,b shows that the selected interval spreads out over a
spectral region with xs(λ) ' 1, i.e., over a region where the substrate is quasi-transparent,
for either of the studied films. This can be attributed to light scattering in the substrate,
associated with the light absorption in the substrate, for wavelengths corresponding to
xs(λ) < 1 [64]. Indeed, since light scattering in the substrate is not accounted for in the EM
formulae, Equations (1) and (2) can predict somewhat larger values of the transmittance
spectrum than the experimentally measured T(λ) in the region of distinct xs(λ) < 1. To
mitigate this effect, the EM for T(λ) computes a visibly smaller extinction coefficient k(λ) of
the film in the region of the smallest xs(λ) < 1; notably, such result is observed in the longest
wavelength parts of Figure 4c, and especially of Figure 6c (since xs(λ)� 1 for λ > 2700 nm).
The above arguments indicate that the selection and employment of an interval ` = [` 1, `
2], over which the first-stage characterization is most accurate, is especially beneficial for
the characterization of a film on a non-transparent substrate. However, since the envelopes
T+(λ) and T−(λ) are less accurate in the long wavelength part of T(λ), e.g., due to luck of
their precise boundary points there, use of such interval ` = [` 1,` 2] is expected to also be
favorable for the characterization of a thin film on a transparent substrate.

Based on the above, the employment of both the dual transformation (for non-
transparent substrate) and the selected interval ` = [` 1, ` 2], corresponding to the smallest
δd/d(` 1e), should provide the most accurate thickness characteristics d and ∆d of the film.

However, the refractive index from (n,k) = f(T+, T−), computed by solving the equa-
tions for T+(λ) and T−(λ), is apparently inaccurate (compared to n(λ), obtained based on
the interference condition), as observed from Figures 4a and 6a. This is mainly due to
the imperfection of the envelopes of T(λ), and indicates that n(λ) and k(λ) should not be
computed only from Equation (2).

The concept of using a regression of n(λ) and k0(λ), by a polynomial of the optimized
degree of 1/λ, has two advantages. First, it is consistent with the fact that the vast majority
of dielectrics and semiconductors exhibit normal dispersion in the employed UV/VIS/NIR
spectral region [19,21], as well as with its representation by the Cauchy’s dispersion
formula [48,49]. Second, it eliminates the inconvenience of choosing a regression between
a polynomial of the optimized degree of λ and a two-term exponential of λ, as in [45].

The Wemple-DiDomenico plot from Figure 4b illustrates that the dispersion of the
refractive index n(λ) of the a-Si film is represented well by the single-effective-oscillator
model and Equation (8). Besides, the static refractive index n0 = 3.639 of the a-Si film
(sputtered using Ar gas with a pressure of 0.13 Pa), calculated from Equation (9), matches
n0 ≈ 3.60 for similar films from [50]; inasmuch as n0 = 3.639 is quite close to ndense(0) = 3.70
for pure a-Si [63]. Moreover, replacing these values of n0 and ndense(0) in Equation (13)
provides a voids volume fraction fvoid ' 0. The above facts indicate that the a-Si film
studied here is quite dense and almost without voids.

The band gap Eg of the a-Si film is estimated by substituting n0 = 3.639 in Equation (10),
which leads to Eg ≈ 1.20 eV, and Eg ≈ 1.22 eV is obtained by the Tauc plot from Figure 4e;
whereas these data match Eg ≈ 1.23 eV for similar films from [50]. Furthermore, the Urbach
energy EU ≈ 247 meV, derived based on the Urbach energy plot from Figure 4f, is similar
to EU ≈ 266 meV for the respective films from [50]. Notably, it is observed from Table 2
that the minimum FOM achieved in this study is smaller than its respective value (for the
same film and k = k0 + ∆k) from [45], which implies that the characterization of the a-Si film
presented here is more accurate than that from [45].

Concerning the second stage from the characterization of the a-As98Te2 film, the
Wemple-DiDomenico plot from Figure 6b shows that the single-effective-oscillator model
does not represent n(λ) well over all the tangency wavelengths λt of T(λ). Correspondingly,
in the Tauc plot from Figure 6e, n(E) is used, calculated by a linear approximation of the
higher photon energy region from the Wemple-DiDomenico plot. Regarding Table 4, since
relatively smaller FOM are obtained in this study, for k = k0 and k(Ti), as well as that these
two quantities are derived independently, the FOM is also computed for k = [k0 + k(Ti)]/2.
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Besides, it is observed from Table 4 that the minimum FOM achieved in this study is
smaller than its respective value (for the same film) from [50], which indicates that the
characterization of the a-Si film presented here is more accurate than that from [50].

Besides, the data in red color from Tables 1 and 3, and the comments from the last
two paragraphs of Section 2.3, indicate that δd/d < 0.1% for either of the studied films.
Furthermore, a comparison of the average film thickness from the SEM images with
the computed d (shown in Figures 3b and 5b), confirms that the relative error in the
computation of the average film thickness does not exceed 0.1%, for both films. Moreover,
these results represent achieving a relative error of 0.1% in the computation of both the
average film thickness and the refractive index n(λ) of the film, as predicted in [54] and
discussed in the last two paragraphs of Section 2.3.

On the other hand, it is observed from Equation (1) that Tsm(λ) ~ τa,fτf,sτf,ax ~ (n2 + k2)x,
as usually x≈ 1 for λ > min(λt) (this can be calculated from the formula for x, e.g., by replac-
ing the already known d and k(λ) for the films studied here). Respectively, T(λ) ~ n2 + k2

for λ > min(λt), where n(λ) >> k(λ) for λ > min(λt) (it can be observed by comparing
the data for T(λ), n(λ), and k(λ), e.g., from Figures 3–6). These two relationships indicate
that the increased accuracy achieved in this paper, in the computation of n(λ), results in
a significantly larger increase in the computation accuracy of the extinction coefficient
k(λ) in the region λ > min(λt), for each of the studied films. This fact contributes to the
obtained decreased values of FOM, respectively, by 10% for the a-Si film compared to the
data from [45] (as observed from Table 2), and by 2.8% for the a-As98Te2 film compared to
the data from [47] (see Table 4).

5. Conclusions

Three issues are investigated for further increasing the accuracy of the characterization
of a thin dielectric or semiconductor film on a substrate from T(λ) of the specimen, based
on the EM.

1. Firstly, it is demonstrated that the dual transformation, based on the product T(λ)xs(λ),
increases the accuracy of the envelopes T+(λ) and T−(λ) that are used in the computa-
tion of the average film thickness d and the film thickness non-uniformity ∆d, when
the substrate is non-transparent. In practice, this approach resolves the problem of
computing accurate envelopes of the interference spectrum T(λ) of a thin film on a
non-transparent substrate.

2. Secondly, how to select an interval ` = [` 1, ` 2] (representing the used λt) over which
the first stage of the characterization is performed most accurately, is shown. The
increased accuracy of the computation of d and ∆d of the studied a-Si and a-As98Te2
films indicates that employing this novel concept can increase the accuracy of the
characterization of every thin dielectric or semiconductor film on a substrate, based
on the EM for T(λ).

3. Thirdly, the regression of n(λ) and k0(λ), by a polynomial of the optimized degree of
1/λ, is consistent with the Cauchy’s dispersion formula for materials with normal
dispersion. Moreover, using only such regression eliminates the inconvenience of
attempting another regression function.

The above three issues can be considered as useful supplementation to optimizing our
envelope method for T(λ) (OEM for T(λ)), for thin-film characterization from [43]. In this
sense, the EM implemented here, based on the algorithm from Figure 2, represents OEM
for T(λ), providing and using optimized values of the characterization parameters ∆d, ` 1
and ` 2.

The comments from the last two paragraphs of Section 4, and our literature surveys
from [43–45,47], indicate that the OEM characterizations presented here, corresponding
to the data in red from Tables 1–4, are undoubtedly the most accurate published optical
thin-film characterizations of relatively thick films, only from T(λ).

Precise computation of both envelopes of T(λ) is needed for accurate film characteri-
zation, based on the algorithm from Figure 2, which requires the presence of at least five
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discernible interference extrema in T(λ). On the other hand, the number of interference
extrema in T(λ) decreases with decreasing the average film thickness d (in accordance with
Equation (3)). Moreover, the extinction coefficient k(λ) of dielectric or semiconductor film
usually rises significantly with decreasing λ in the UV spectral region, which commonly
leads to x(λ)→ 0, T(λ)→ 0 (according to Equation (1)) and the absence of interference
extrema of T(λ) in the UV spectral region, for such films. The last two factors limit the
applicability of the discussed OEM for T(λ), employing the algorithm from Figure 2, to
dielectric or semiconductor films with average film thickness of usually at least 300 nm.

However, the reflectance spectrum R(λ) of a thin dielectric or semiconductor film, on
a light-transmitting substrate, usually contains several discernible interference extrema in
the UV spectral region (where there are no such extrema in the respective T(λ) of the same
specimen). Correspondingly, it is expected that the OEM for R(λ) should be applicable to
dielectric and semiconductor films that are significantly thinner than 300 nm. Notably, our
group is in the advanced stage of development of such OEM for R(λ).
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