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Abstract: Laser-induced breakdown spectroscopy (LIBS) is a technique which enables the analysis of
material components with precision and spatial resolution. Furthermore, the investigation method
is comparatively fast which enables illustrating the distribution of elements within the examined
material. This opens new possibilities for the investigation of very heterogeneous materials, such
as concrete. Concrete consists of cement, water, and aggregates. As most of the transport processes
take place exclusively in the hardened cement paste, relevant limit values linked to harmful element
contents are specified in relation to the cement mass. When a concrete sample from an existing
structure is examined, information on the concrete composition is usually not available. Therefore,
assumptions have to be made to convert the element content analyzed in the sample based on
the cement content in the sample. This inevitably leads to inaccuracies. Therefore, a method for
distinction between cement paste and aggregates is required. Cement and aggregate components
are chemically very close to each other and therefore, complex for classification. This is why the
consideration of a single distinguishing feature is not sufficient. In this paper, a machine learning
method is described and has been used to automate the distinction of the cement paste and aggregates
of the LIBS data to receive reliable information of this technique. The presented approach could
potentially be employed for many heterogeneous materials with the same complexity to quantify the
arbitrary substances.

Keywords: LIBS; element distribution; machine learning; classification; concrete; heterogeneous
materials

1. Introduction

Laser-induced breakdown spectroscopy (LIBS), also sometimes called laser-induced
plasma spectroscopy (LIPS), is an analytical atomic spectrometry technique which identifies
elemental compositions of a material from its plasma emission. The plasma is formed with
a high-power laser beam focused on the surface of the sample. The high thermal energy in
the focal point brings the atoms to an excited state through evaporating and atomizing the
sample and generate the plasma. When the atom relaxes to ground state, photons reveal the
atoms’ unique identity [1,2]. At this state, the spectrometers disperse the emitted radiation
of the laser-induced plasma to capture a spectrum in terms of intensity as a function
of the wavelength [2]. LIBS developed rapidly in the past two decades as an analytical
technique in order to identify and quantify elements and substances in materials [2]. It has
a vast field of operation including planetary exploration-lander missions, industrial quality
assurance, archaeology, environmental monitoring, and biological identification [1,3–6].
In civil engineering, LIBS has been used for the determination of chloride distribution
within the concrete cover.

The determination of chloride content in reinforced concrete structures is a very
important component in the field of maintenance and vulnerability analysis of existing
reinforced concrete buildings. Chlorides can reach a building component, if exposed to
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deicing salt or sea water. Then they are able to penetrate into the concrete and over time
may reach the reinforcement. If a critical chloride content is exceeded at the reinforcement
bar, it may start to corrode. This has led to extensive damages and repair in the past. A
reference value for this critical chloride content is defined as 0.5 wt.%/cement [7]. Therefore,
a precise determination of the chloride distribution within the concrete cover of existing
buildings may have a huge impact on the proposal of retrofit solutions or the residual
service life calculated on the basis of these test results. To determine the chloride content,
usually concrete powder is extracted from the structure by drilling. These powder samples
are then further examined in the laboratory. Common approaches to measure chloride
content are potentiometric titration, direct potentiometry, and photometry, which are all
advised by the European Standards [8–11]. However, with these analytic methods no
additional differentiation between cement and aggregate is possible. Hence, the results
are related to the whole sample mass being concrete, but as explained before the chloride
concentration needs to be related to cement. Therefore the analysis values have to be
converted from wt.-%/concrete into wt.-%/cement, which requires the knowledge of the
concrete composition in the analyzed concrete powder samples. Since this information is
rarely available, assumptions for a conversation factor have to be made. This applies to the
majority of cases where concrete samples are taken from existing structures. Due to this
procedure the result in the decisive unit may be inaccurate although the analysis method
itself is very precise. By excluding the aggregate within the examinations process, more
reliable values for the chloride content in cement would be achievable. This would lead to
optimized repair scopes and to more accurate estimates of the remaining service life, since
the estimated remaining service life is based on the distribution of chlorides within the
concrete cover.

The problem in identifying the aggregate and further distinguishing it from the
hardened cement paste is due to the fact that the aggregate itself is very heterogeneous. In
general the contained minerals and thus the chemical elements of the aggregates depend
on the geology of the surrounding landscape where the concrete factory is located. Table 1
illustrates oxides in different types of aggregates and Portland cement (CEM I). On the
basis of the element distribution in different minerals of which aggregates may consist in
comparison to CEM I, it may not be possible to distinguish aggregates from cement with
regard to the presence of a single element (see Table 2).

Table 1. Chemical oxides in aggregates and cement type I composition [12–15].

Chemicals Basalt Limestone Sandstones Granite CEM I

SiO2 X X X X X
Al2O3 X X X X X
Fe2O3 X X X X X
FeO X X X
MgO X X X X

MgCO3 X
CaO X X X X

Na2O X X X X X
K2O X X X X X

CaCO3 X
TiO3 X X
P2O5 X X X X
MnO X X X

Therefore, a fast measuring method is required for simultaneous multi-element de-
tection. With LIBS it is possible to scan a surface and provide an element distribution of
the scanned surface. This is one of the fundamental advantages of LIBS over conventional
methods. Despite the capabilities of the LIBS method, further processing is needed to iden-
tify aggregate in concrete. The data acquired by LIBS is usually large and the higher spatial
resolution of the measurement leads to a higher amount of data and longer processing
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time to translate it to information. To speed up the processing and increase the accuracy in
aggregate classification, an application of machine learning (ML) has been used to identify
the aggregates.

Table 2. Element distribution weight percentage (wt.%) of major minerals that compose aggregates and cement type I
(empty spaces mean no or a negligible content).

Element Plagioclase Quartz Hematite Magnetite Amphibole Pyroxene Olivine Mica Calcit CEM I CEM I
Min Max Min Max Min Max Min Max Min Max Min Max Min Max Min Max Clinker Hydrated

Ca 14 11 35 10 40 47 34
O 46 49 53 70 28 28 37 58 36 48 31 45 28 50 48 35 50
Si 20 32 47 22 34 21 28 14 20 7 29 9 7
Fe 30 72 72 39 42 55 41 5 3
Mg 22 24 35 18
Al 10 19 13 28 4 3
K 14 14 6 10
F 10

Na 9 10 11 6
H 1 3
Li 7 4
Ti 7
S 8
C 12

2. Materials and Methods
2.1. LIBS Setup

LIBS’ main experimental instruments include lasers, spectrometers, detectors, and
computers, as shown in Figure 1. The LIBS experimental setup used in this study consist of
a diode-pumped Nd:YAG Laser with a wave length of 1064 nm, a pulse rate of 100 Hz, and
an energy of 3 mJ (supplier Secopta FiberLIBSlab). This test setup is structurally comparable
to other studies with a similar focus [16]. The laser setup leads to a power density of about
I ≈ 39 GW/cm2 to form the plasma. The laser beam is focused to a spot size of about
dspot ≈ 80 µm with confocal mirrors with a focal length of f ≈75 mm. The whole optical
arrangement is mounted on a measurement head which has a typical working distance
to the specimen of about 35 mm. A single optic has been used for laser and capturing the
emission of the plasma radiation (see Figure 1). For detecting the emission signals a set of
two Czerny-turner spectrometers in the ranges of near infrared (NIR) and visible (VIS) have
been used. These spectrometers have the specification of 1200 lines/mm grating and 25µm
entrance slit (AvaSpec-ULS2048CL, Avantes, Apeldoorn, The Netherlands). The cover
range of the VIS and NIR spectrometers are respectively 525–750 nm and 745–940 nm. The
spectral resolution of the spectrometers are about δλ ≈ 0.1 nm. The scanning intervals have
been set to 0.1 mm × 0.1 mm steps for x and y dimension with an alternating movement on
the z axis which is required for auto focusing of the laser spot. With this setup the element
distribution on a sample can be determined two-dimensional. The measurement spot is
purged with helium to eliminate the spectral lines of the gases, which are included in the
air (mainly argon). Furthermore, helium intensifies the atomic line of chlorine @837.6 nm.

1 
 

 

Figure 1. Schematic of LIBS general components.



Materials 2021, 14, 4624 4 of 15

2.2. Samples

For investigation three sample types have been prepared with different mixtures
leading to a set of 15 samples in total (see Figure 2). The sample types in connection with
their investigation targets are given as follows:

Type 1 Aggregate specimen, comprised of aggregates and epoxy resin to exclusively
characterize the aggregate and its variation by selected element distributions.
Aggregates from various types with grain size in a range of 8–16 mm were filled
in a paper cup and epoxy-resin was added to cover the gravels. Epoxy is a
homogeneous polymer which similar to concrete contributes to the stabilization
of the aggregates in the mixture. The homogeneity and the chemical composition
of the epoxy resin allows an easy differentiation of the analyzed data in terms
of epoxy or aggregate. This provides the basis for an adjusted data set. Due
to this approach it was possible to investigate the different types of aggregate
simultaneously, which facilitated the analysis. The used aggregates are classi-
fied as pyrogenic rock, migmatite, and gneiss with the main minerals feldspar
(plagioclase), quartz, and mica.

Type 2 Cement specimen with Portland cement (CEM I 42.5 R) prepared with deionized
water and a water-cement ratio of 0.50 to characterize solely the hardened cement
paste by its element distributions.

Type 3 Concrete specimen with cement and water-cement ratio as described for the
sample type (2) together with the aggregate measured within specimen type to
verify the trained algorithm.

The sample types (1) and (2) have been used to characterize a virtual concrete whereas
sample type (3) was used to verify the trained model in real application.

In order to show what results can be obtained with the method presented here, a drill
core taken from an existing structure was also examined (in situ sample). The concrete
core had been taken from a part of a structure, which had been exposed to deicing salt that
contains chlorine. Before the measurement of this sample the core was split parallel to its
axis to examine how far and to what extent chlorides have penetrated into the concrete.
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3. Concrete2. Cement

1. Aggregates

Figure 2. The three sample types used for experiments.

2.3. Measurements

After curing, all test specimens were cut into slices and the cut surfaces were analyzed
via LIBS. The slices with aggregate and epoxy resin (sample type (1)) were scanned over
an extended area of 60 × 40 mm2 to obtain a higher number of data points to detect the
potentially large scatter due to the various aggregate types. The slices of the specimen
belonging to samples types (2) and (3) have been measured in an area of 35 × 35 mm2.

The measurement was performed in while motion mode. That means that the mea-
surement head continuously moves with a specific speed over the surface of specimen. The
speed of the measurement head is adjusted internally in the measurement system so that
with a repetition rate of 100 Hz the mentioned grid size is met.

Major minerals that form the aggregates of concrete are: plagioclase, quartz, hematite,
magnetite, amphibole, pyroxene, olivine, mica, and calcite. The element distribution in
these minerals among each other, as well as compared to cement, have a lot similarities.
With data taken from [17] the mass quantities for particular elements were calculated for
those minerals (see Table 2). Because most minerals occur in several variations, the mass
distribution of the bound elements is not fixed. Therefore, for each element a range (min
and max) of the quantity is given. For the distinction between aggregates and cement,
particular elements must be selected, which differ substantially in their amount when
comparing these two materials. A useful element for this purpose is calcium. As can be
seen in Table 2 almost all minerals are lacking calcium or have significantly lower amounts
compared to cement, except limestone and pyroxene. As limestone is a very common
mineral, calcium cannot be used as a single indicator. Chemically bound hydrogen could
not be found in the majority of minerals and only in small quantities in amphibole, which
are negligible. Differently, hardened cement paste binds large quantities of hydrogen, due
to the hydration process taking place while hardening. However, hydrogen can also be
present in form of physical water within the cement matrix as well as in porous aggregates
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such as limestone. Thus, information of the quantity of another element is needed. Beside
calcium and oxygen, limestone consists of carbon, hence it has also been selected for the
distinction. However, it is worthwhile to mention that the even though the Portland cement
does not contain carbon in a substantial amount, during time the carbon content could rise
due to the process of carbonization, which is a chemical reaction of ambient air with the
concrete. In addition, there are further cement types available with varying ingredients, so
that carbon alone isn’t a reliable indicator for distinction.

The spectral lines for the selected elements H, Ca, C, and O (for normalization,
see Section 3.1) are taken from the National Institute of Standards and Technology (NIST)
atomic spectra database [18]. The selected wavelengths with regard to available spectral
ranges and experimental setup are given in Table 3.

Table 3. Selected emission lines.

Element Wavelength (nm)

Hydrogen (H) 656.2
Carbon (C) 833.5
Oxygen (O) 844.6

Calcium (Ca) 849.8

The emission lines were selected in a way that self-absorption, over-saturation, and
overlapping with other elements lines can be excluded. These criteria helped to select these
wavelengths for further processing. For some elements like oxygen or calcium there is also
the possibility to use some other lines. Some elements like silicon, iron, and titanium could
be detected at shorter wavelengths in range of near ultra violet (NUV) and ultra violet (UV)
but due to limitation of the control box of the experimental setup, it was not possible to
cover this entire spectral range at the same time.

2.4. Machine Learning

In classical programming a rule is being defined and data is provided as input. With
this information processing takes place under defined rules leading to the answer, which
is the output. In machine learning (ML) there is a shift in this paradigm. An answer
replaces the rule in order to have a rule as an output [19]. The different theories and
forms of ML are explained in [19–21]. The data type, whether it is labeled or not and
whether it is continuous or discrete, is decisive for a decent ML approach. Within this study
the applicability of five well know algorithms have been examined, which are: Logistic
Regression (LR), Decision Tree Classification (DTC), Ridge Classifier (RDG), Random Forest
Classifier (RFC), and k-Nearest Neighbor (kNN). For all five algorithms, data from the
model training procedure were evaluated and compared (see Section 3.2). It turned out that
in the considered case the kNN algorithm showed the best performance, whereas it was
chosen to solve the described task. The k-Nearest Neighbor (kNN) algorithm is a robust
and versatile classifier and often used as a benchmark in more complex classifications such
as artificial neural networks (ANN) and support vector machines (SVM) [22]. Despite its
simplicity, kNN can compete with other classifiers and is applicable in a variety of analysis
such as economic forecasting, data compression, and genetics. In terms of accuracy, the
kNN algorithm competes with the most accurate models and it produces highly accurate
predictions. Therefore, the kNN algorithm can be used in applications that require a high
accuracy but not human-readable models [23]. Similarity or distance measures are the main
components in distance-based clustering whereas the quality of the predictions relies on
the distance measure. Thus, the KNN algorithm is suitable for applications where sufficient
domain knowledge is available [23]. The kNN algorithm is a lazy learner, which means
that no model is explicitly being learned. Rather, training instances are registered, which
are then subsequently used as "knowledge" in the prediction phase. In practice, this means
that it makes only a query from the database about the inquired label [22]. Although this
approach increases computational costs in comparison to other algorithms, kNN is still the
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better choice for applications where accuracy is in higher priority and predictions are not
requested frequently [23].

kNN is a non-parametric classifier, which means that the model has a fixed number
of parameters [23]. This algorithm simply finds the K nearest points, to the input x, in
the training set with the Euclidian distance. Then the members of each class within this
set are counted and a vote is raised based on empirical fraction to estimate and predict.
More formally,

kNN : p(y = c|x, D, K) =
1
K ∑

i∈NK(x,D)

I(y(i) = c) (1)

where NK(x, D) are the (indices of the) K nearest points to x in D and I(e) is the indicator
function defined as follows:

I(e) =
{

1 if e is true
0 if e is true

(2)

3. Results
3.1. Data Evaluation

The spectrometers disperse the emitted radiation of the laser-induced plasma to
capture a spectrum in terms of intensity as a function of the wavelength [2]. In this study,
line intensities have been used for signal evaluation. The signal intensities measured by
LIBS show deviation over time due to various environmental conditions such as room
temperature, spectrometer temperature, etc. Furthermore, in continuous use a decay
of signal intensity occurs due to sand blast effect on laser protection lens. Therefore,
an internal normalization is required to grantee the comparability of the measurements
with each other. Hence, a ratio of the other elements with oxygen is used. Oxygen is
suitable because this element is present in cement as well as in all types of aggregates (see
Figure 3) and also has the lowest standard deviation compared to hydrogen (see Table 4).
Therefore, oxygen is selected as the denominator and the other elements as numerators.
Thus, three new sets of data have been created for each specimen considering the respective
element ratio linked to oxygen. This procedure leads to the following data sets: H/O, C/O,
and Ca/O.

Hydrogen (H) Carbon (C) Oxygen (O) Calcium (Ca)

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Intensity (arb. unit)

Figure 3. Heatmap from epoxy specimen in spectral range 525–940 nm.
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Table 4. Standard deviation of selected elements in aggregates.

Element C H Ca O

Std 1.2 0.58 0.47 0.38

Figure 4 illustrates different elements in pairwise plots in which the diagonal plots are
representing the distribution of data with kernel density estimation (KDE) function. The
elements of the hydrated cement are homogeneously distributed and as a result the derived
element ratio appear concentrated within the given plots. On the contrary, aggregates
have a wide distribution of elements and their content and therefore the evaluated element
ratios scatter in different degrees (see Figure 4).

Aggragate and Cement (sample type 3)

Aggragate (sample type 1) Cement (sample type 2)

Figure 4. Pairwise plot of scaled virtual concrete in VIS-NIR range.

Since cement consists essentially of burnt stone, such as limestone, clay, and dolomite,
aggregates and cement show a large overlap in the element distributions. The comparison
of density distributions derived from the measurement results show this. A comparison of
these functions in relation to cement and aggregate illustrates the difficulties of differentia-
tion. It is easy to discern between cement and aggregates in the areas, where the intensity
of aggregates is lower or higher than minimum or maximum intensity of cement. The
material allocation of the measuring points, where the intensity lies in this overlapping area,
requires special attention in order to be able to determine whether the material measured is
cement or aggregates. Due to overlapping of the common elements, it may not be sufficient
to use a single distinguishing element and therefore several elements should be considered
simultaneously. These findings are in good agreement with the literature study of element
distribution in minerals discussed in the previous section.

3.2. Model Training and Verification

To train the algorithm a virtual concrete consisting of the two data-sets of sample
type (1) and (2) have been measured and labeled. The first data set represents aggregates
and the second one hydrated cement paste. From the sample type (1), the epoxy resin has
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been removed with thresholding the intensity for each element (H, C, O, Ca) as is shown
in Figure 5.

Hydrogen (H) Carbon (C) Oxygen (O) Calcium (Ca)

0 10,000 20,000 30,000 40,000 50,000 60,000 NaN

Intensity (arb. unit)

Figure 5. Gravel heatmap after epoxy removal from sample type (1) in spectral range 525–940 nm.

In order to avoid losing data points after data removal linked to epoxy, the empty
points within the aggregates have been filled up with the value of zero, by masking the
oxygen layer to them (see Figure 6). By this procedure, the aggregates without hydrogen,
carbon or calcium will also be detected. To avoid biasing in training, these data-sets have
been leveled equally to the size of 74,000 samples in each set by random selection. These
two sets were merged and shuffled together.

Hydrogen (H) Carbon (C) Oxygen (O) Calcium (Ca)

0 10,000 20,000 30,000 40,000 50,000 60,000 NaN

Intensity (arb. unit)

Figure 6. Masking oxygen heatmap regarding the empty points within the aggregates after epoxy
removal from sample type (1) in spectral range 525–940 nm.

In this study, the prepared data for learning is labeled as cement/aggregate and
therefore, supervised learning with classification algorithms has been used. An advantage
of supervised learning is the possibility of measuring the accuracy of the trained model
with the test data set. The virtual concrete is not only used for training purpose but it has
also been used for tracking the predictions and determine the accuracy of the model.

The virtual concrete has been divided randomly into two sets for training and for
testing with the size of 118,400 and 29,600, respectively.

A cross-validation for the evaluation the performance of the model has been performed
and compared with different algorithms. The kNN algorithm showed an outstanding
performance among Logistic Regression, Decision Tree, Ridge, and Random Forest. Mean
absolute error (MAE), mean squared error (MSE), and the coefficient of determination (R2)
scoring metrics have been evaluated to check the effect of the outliers on performance (see
Figure 7). The kNN algorithm has shown the highest value in all metrics compared to the
other algorithms.
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LR DTC RDG KNN RFC
0.0000

0.0002

0.0004

0.0006

0.0008
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AE

LR DTC RDG KNN RFC
0.0000

0.0002

0.0004

0.0006

0.0008

M
SE

LR DTC RDG KNN RFC
Classification Models

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

R2

Figure 7. An algorithm comparison with cross-validation method with 10 folds. The mean absolute
error (MAE), mean squared error (MSE), and the coefficient of determination (R2) of different
algorithms are shown.

A testing of the trained model was performed with different test data sets from type 1
samples, consisting of aggregate and resin. The evaluation of these data showed a high
accuracy with a recall value above 99% as the predicted and true class values are illustrated
in the confusion matrix (see Figure 8).

0 1
True Class

0
1

Pr
ed

ic
ti

on
s

14706 0

4 14890

0

5000

10000

Figure 8. The confusion matrix of the test sets.

Since the developed model should be applicable for in situ concrete, it was very
important to verify the predictions also for concrete. In a second step the model was
verified with concrete samples (sample type (3)). The quality of the material differentiation
was then checked visually, which was possible without much effort due to the grain size
of the aggregate being between 8 and 16 mm. It is expected that the entire area between
the aggregates will be detected as cement, as no sand was added to the concrete mixture.
To train the model, different variations of elements have been tried in an iterative process
until the segregation has been completed visually. Here, as before, it became apparent
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that no satisfactory result could be achieved by considering only the information from
one element. Since in sample type (3), there were only aggregates size from 8 to 16 mm,
it is expected that the algorithm shows a complete hollow space among aggregates. As
Figure 9 shows five iterations with constant kNN parameters (k = 3) and modification
in data frame, employing single elements such as carbon, calcium, or hydrogen, it is not
possible to distinct completely the aggregates from cement paste. And there are always
some remaining particles misclassified as aggregates in cement. This is very crucial to be
sure that no cement has been misclassified, because normally, concrete also contains sand
with a particle-size distribution between 4 and 0.063 mm and also fine particles smaller than
0.063 mm. According to [24], it is not possible to truly measure the particles smaller than
the focal spot of the laser or partially ablated cement and aggregate, which in our case is
80 µm. However, it is important that no particle larger than the focal spot is misclassified.
Since the kNN algorithm functions with distance metrics, usually based on euclidean
geometry, the intensity of each element is a vector in this function. As it is illustrated
in Figure 4, there are always measured points, where the intensity of aggregates are in
between the range of minimum and maximum intensity of cement. By adding dimension
to the vector with employing different elements, this minimizes the chance to have a point
inside the multidimensional intensity matrix where cement and aggregate are close to
each other.

C H Ca C-Ca H-C-Ca

Figure 9. Training iterations to find the optimized setting for training the model and the quality of segregation in practice.

This is illustrated in Figure 9, where the inclusion of several elements in the mul-
tidimensional vectors leads to a higher accuracy of the aggregate detection. Thus the
quality of the aggregate exclusion could be improved significantly. Firstly, the model
has been trained exclusively with carbon data. As it has found to be the element with
the highest deviation in quantity over aggregates and cement. Furthermore, it is present
in considerable quantities. It was expected that with hydrogen it would be possible to
distinguish between aggregate and cement. The reason is that no hydrogen atom has been
found in the minerals that form the aggregates and hydrogen is chemically bound only in
hydrated cement. The developed model shows with involving element combination an
improvement of the quality in distinction. This effect cannot only be observed statistically
but also visually. The complete model in this study includes the combination of all calcium,
carbon, hydrogen, and oxygen elements.

3.3. In Situ Sample

In Figure 10 the measuring surface of the drilled concrete core is shown. To quantify
the chloride content within the hardened cement paste of that sample, it is required that
the surface gets scanned with the LIBS method and the chlorine emission line is evaluated.
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Figure 10. A specimen from an existing structure exposed to chloride, side of impact for the undam-
aged surface from the left-hand side and in addition through the depth of the concrete cover. The
white rectangular shows the area that scanned by LIBS. The black rectangle marks the area for the
determination of the chloride profile.

In the determined chlorine heatmap of the specimen (see Figure 11 Left), there is a
saturated dark area at the surface (high concentration), which fades away with ongoing
depths. This dark area represents the chloride content. To evaluate the chloride content in
cement paste, Aggex ran over the LIBS data set of the specimen to detect the aggregates
and map it to the chlorine channel (black areas). Although the training data had a different
origin, Aggex identified the aggregates of this sample satisfactorily.

Figure 11. (Left) Heatmap from the chlorine channel of the scanned area (see Figure 10). (Right)
Detected aggregates with Aggex.

4. Discussion

The application of the developed algorithm is demonstrated on a concrete core drilled
from an existing reinforced concrete structure. Before applying this method, the trained
aggregate extractor (Aggex) model was serialized and deployed in the software. This gives
an unprecedented advantage over clustering algorithms such as k-mean as studied by
[16]. To distinguish aggregates, no further processing on newly measured specimen is
required. Unsupervised evaluation does not rely on external information, and therefore,
a new process on each measured specimen is required which is time consuming and the
misclassifications are not countable.

With the outlined approach the mean chloride content within a certain depth can be
calculated in wt.-% based on the cement enabling the output of so-called chloride profiles
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(see Figure 12). This profile is generated by averaging all measurement spots of a specific
depth of the specimen. The width of the area of interest for the calculation of the profile
could be adjusted dynamically. So susceptible areas can be investigated in post-processing.
That is an advantage compared to the conventional methods. LIBS makes it possible to
dynamically observe the element content at different positions, widths, and depths of the
specimen. With this data it is possible to determine more reliable chloride profiles for
further evaluations.

0 5 10 15 20 25
Depth (mm)

0.00
0.25
0.50
0.75
1.00

Co
nc

en
tra

tio
n 

(w
t%

)

Cement Paste
Concrete

Figure 12. Comparison of depth dependent chloride content (chloride profile) of an in situ specimen
with and without consideration of aggregates.

One can see that the curve becomes smoother with gravel exclusion and that there
is a shift to higher concentrations. With this data, more reliable information linked to the
prediction of service life can be achieved compared to conventional methods. This enables
more optimized maintenance and repair actions over service life as well as improving the
sustainable use of structures. Furthermore, by also providing very localized information, a
better understanding of chloride distribution in cracks can be achieved. This is important
for future investigations as the cracks directly exposed to chlorides are very severe, causing
extensive repair costs. As an example, the decks of parking garage should be mentioned.

5. Conclusions

Concrete is a heterogeneous material that is broadly used in construction. Chlorides
from deicing salt or seawater may heavily influence the durability of reinforced concrete
structures as it may cause corrosion and subsequently affect the service life. As relevant
limit values linked to harmful substances such as chloride are specified in relation to the
cement mass uncertainties may occur due to the lack of knowledge of the concrete compo-
sitions within the sample examined. By using the laser-induced breakdown spectroscopy
technique element distributions of the scanned surface can be given. The acquired data
from this technique needs further processing to quantify relevant element contents in mate-
rials that are examined. Furthermore, the data can be used for segregating the aggregates
from the cement. A machine learning algorithm with LIBS data has been accomplished
for this purpose. The model designed in this paper is based on a kNN algorithm with an
accuracy close to 100%. To train the aggregate extractor four elements have been selected
for stabilizing the accuracy, which are calcium, carbon, hydrogen, and oxygen. Oxygen
has been used for internal normalization and the other elements mentioned for automated
distinction. Cement and aggregate components can be very close to each other within its
element distribution, which leads to huge overlapping in element intensities measured
with LIBS. Despite high overlap in some elements such as calcium in cement and aggregate,
with multivariate analysis it is possible to differentiate between aggregate and cement.
As LIBS also provides a dynamic continuous observation over the scanned area of the
specimen this enables achieving detailed information within a fast measuring process. The
possibility to obtain locally very detailed information as well as rather global information
(e.g. mean penetration depth) is important to design suitable maintenance and repair
strategies for reinforced concrete structures. This enables more optimized actions linked
to maintenance and repair over service life and therewith improving the sustainable use
of structures.
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