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Abstract: Graphene, a two-dimensional nanosheet, is composed of carbon species (sp2 hybridized
carbon atoms) and is the center of attention for researchers due to its extraordinary physicochemical
(e.g., optical transparency, electrical, thermal conductivity, and mechanical) properties. Graphene
can be synthesized using top-down or bottom-up approaches and is used in the electronics and
medical (e.g., drug delivery, tissue engineering, biosensors) fields as well as in photovoltaic systems.
However, the mass production of graphene and the means of transferring monolayer graphene
for commercial purposes are still under investigation. When graphene layers are stacked as flakes,
they have substantial impacts on the properties of graphene-based materials, and the layering of
graphene obtained using different approaches varies. The determination of number of graphene
layers is very important since the properties exhibited by monolayer graphene decrease as the
number of graphene layer per flake increases to 5 as few-layer graphene, 10 as multilayer graphene,
and more than 10 layers, when it behaves like bulk graphite. Thus, this review summarizes graphene
developments and production. In addition, the efficacies of determining the number of graphene
layers using various characterization methods (e.g., transmission electron microscopy (TEM), atomic
force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman
spectra and mapping, and spin hall effect-based methods) are compared. Among these methods,
TEM and Raman spectra were found to be most promising to determine number of graphene layers
and their stacking order.

Keywords: graphene; properties; sp2 hybridized carbon atoms; synthesis; applications

1. Introduction

The 6th element of the periodic table is truly fascinating [1]. From the perspective
of graphene chemistry, carbon has several allotropes and, when combined with various
organic and inorganic molecules, can form an almost infinite number of hybrids. For
example, it can be used to produce a soft lubricating material, such as graphite, and at
the other end of the scale it can form diamond, the hardest material known. The most
famous allotropes of carbon are 0-dimensional (0D) fullerenes [2], 1D carbon nanotubes [3],
and 2D graphene [4]. Graphene is perhaps the most interesting carbon allotrope from
the viewpoint of research and potential applications due to its fascinating properties [4,5].
Graphene can be categorized based on the number of graphene layers (L), stacked as
monolayer graphene (1 L), few-layer graphene (<5 L), multilayer graphene (<10 L), or
graphene nanoplatelets (>10 L) [6].

Around 70 years ago, scientists debated whether two-dimensional (2D) materials
existed due to their thermodynamical instability [7,8]. Graphene (or “2D graphite”) was
considered for 60 years [9–11] and was used to describe the properties of various carbon-
based materials. Forty years later, it was understood that graphene provides a good
condensed-matter analog of (2 + 1)-dimensional quantum electrodynamics [12–14], and, in
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2004, it was synthesized by exfoliation of HOPG using adhesive tape. This innovation has
since fueled a great number of investigations aimed at understanding the unique electronic
structure of graphene. Ganguly et al. described that colloidal graphene is a key component
for the molecular dispersion of graphene sheets [15].

Graphite has a 3D structure with large particle sizes and a small surface area, whereas
graphene is monoatomic in thickness and has small particle sizes and an extremely high
surface area; these characteristics have remarkable effects on its properties [4,5]. Accord-
ingly, extensive research has been conducted to produce graphene in bulk for various
applications, especially for electronics and batteries. Several studies have been performed
to produce graphene flakes with different numbers of layers. Today graphene can be synthe-
sized using top-down [5,16–21] or bottom-up approaches [15,22–26]. Top-down approaches
include scotch tape exfoliation [5], liquid-phase exfoliation in different solvents [18], or
chemical synthesis using redox reactions [19–21], whereas bottom-up approaches include
chemical vapor deposition (CVD) [22–24] and molecular beam epitaxy [25,26].

Regardless of the method used, the number of graphene layers per flake, importantly,
determines the properties of the produced materials. Before we describe earlier work
on graphene, one needs to understand what a 2D crystal is. Atoms arranged regularly
in a single plane form a 2D crystal, and 100 layers of such planes would be considered
a thin 3D film, which prompts the question of “how many layers are needed to make
a 3D structure?” It has been shown that electronic structures rapidly evolve with the
number of layers and graphite approaches the 3D limit at 10 layers [27]. In this review, we
focus on the techniques that are commonly used to determine the number of graphene
layers. Obraztsova et al. provided a statistical analysis of AFM and Raman spectra for
the determination of the number of graphene layers in graphene flake [28]. Ganguly
et al. further characterized nanoparticles decorated with reduced graphene oxide and
TEM investigations showed that the distinct nanoparticles were in range of 12–35 nm
over reduced graphene oxide [29]. Plachá et al. reviewed graphene-based materials for
various applications, such as biomedical applications [30]. Kamedulski et al. described
an effective method for obtaining N-doped graphene using gamma radiation [31]. Yu
et al. demonstrate the role of oxygen containing functional groups in performing water
purification for graphene-oxide-based membranes [32].

2. Production of Graphene

Monolayer graphene can be produced in various ways, but is usually produced
by micromechanical cleavage or liquid phase exfoliation (top-down methods), or using
chemical vapor deposition (bottom-up method):

(a) Micromechanical cleavage (MMC): MMC has been used for decades to synthe-
size graphene (Figure 1). Geim et al. demonstrated that scotch tape could be used to
micromechanically exfoliate graphite to produce graphene [5] and, in 2004, Novoselov
et al. reported the isolation of monolayer graphene by mechanical exfoliation HOPG using
adhesive tape [5]. MMC is now a standard method for producing defect-free monolayer
graphene at a small-scale [17]. The extent of exfoliation achieved can be determined
using different techniques, such as AFM or Raman spectra, as described in Section 4. Al-
though this method is unsuitable for large-scale synthesis of graphene, it is widely used in
small-scale studies.
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Figure 1. Graphene production methods (reproduced with permission from ref. [33], Copyright 2012 Elsevier). 

(b) Liquid-phase exfoliation (LPE): High-quality graphene can be obtained by 
exfoliating bulk graphite by mechanical shear in a liquid (Figure 1). LPE of graphite into 
graphene has been used to produce graphene for many years. The technique was 
pioneered by Coleman et al. who demonstrated that sonication of graphite in a solvent 
produces dispersed graphene flakes [17]. LPE relies on energetically favorable 
interactions between a solvent and graphene sheets [34], and, thus, solvent–graphene 
interactions must be equivalent to the exfoliation energy of graphene [35,36]. LPE is 
performed in three steps: (a) dispersion of graphite in solvent; (b) sonication of the 
suspended graphite to cause exfoliation; and (c) centrifugation and further purification of 
the produced suspended graphene flakes. A number of dispersing solvents are used in 
this process and N-methyl pyrrolidone (NMP) and dimethyl formamide (DMF) are 
among the most commonly used [37]. Ultrasonication creates mechanical waves in a 
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graphene is hydrophobic, it cannot be dispersed in water without additives. These 
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be subsequently removed by processes such as annealing. LPE provides a simple means 
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operations. The various techniques used to characterize exfoliated graphenes obtained by 
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manufacture large quantities of graphene (Figure 1). Several research groups are currently 
working on the use of CVD to synthesize single-layer graphene and have demonstrated 
that CVD offers a promising route for the production of defect-free graphene [22–24]. 
Several CVD techniques, including thermal and plasma-enhanced techniques, can be used 
to make graphene [23,24]. Process costs are an essential aspect of CVD processes, and 
plasma-enhanced CVD is the most cost-effective process to date [24]. 
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(b) Liquid-phase exfoliation (LPE): High-quality graphene can be obtained by exfoliat-
ing bulk graphite by mechanical shear in a liquid (Figure 1). LPE of graphite into graphene
has been used to produce graphene for many years. The technique was pioneered by Cole-
man et al. who demonstrated that sonication of graphite in a solvent produces dispersed
graphene flakes [17]. LPE relies on energetically favorable interactions between a solvent
and graphene sheets [34], and, thus, solvent–graphene interactions must be equivalent to
the exfoliation energy of graphene [35,36]. LPE is performed in three steps: (a) dispersion
of graphite in solvent; (b) sonication of the suspended graphite to cause exfoliation; and (c)
centrifugation and further purification of the produced suspended graphene flakes. A num-
ber of dispersing solvents are used in this process and N-methyl pyrrolidone (NMP) and
dimethyl formamide (DMF) are among the most commonly used [37]. Ultrasonication cre-
ates mechanical waves in a liquid medium, and cavitation during rarefaction cycles creates
negative acoustic pressures and transient microbubbles (cavities) that separate graphene
layers. Because graphene is hydrophobic, it cannot be dispersed in water without additives.
These additives facilitate exfoliation and influence the restacking process. However, they
must be subsequently removed by processes such as annealing. LPE provides a simple
means of producing single graphene layers but yields are far too low for industrial-scale
operations. The various techniques used to characterize exfoliated graphenes obtained by
LPE are detailed in Section 4.

(c) Chemical vapor deposition (CVD): CVD involves the deposition of thin films from
solid, liquid, or gaseous precursors. Upon heating, carbon-based compounds decompose
and the carbon diffuses through and saturates metal lattices. Upon cooling, the carbon
is expressed from the metal surface and forms graphene. This process can be used to
manufacture large quantities of graphene (Figure 1). Several research groups are currently
working on the use of CVD to synthesize single-layer graphene and have demonstrated
that CVD offers a promising route for the production of defect-free graphene [22–24].
Several CVD techniques, including thermal and plasma-enhanced techniques, can be used
to make graphene [23,24]. Process costs are an essential aspect of CVD processes, and
plasma-enhanced CVD is the most cost-effective process to date [24].

(d) Molecular beam epitaxy (MBE): MBE is used widely for growing graphene layers
of high carbon purity (Figure 1) on many substrates at high temperatures [25]. At lower
temperatures, defects are produced in graphene synthesized using MBE [26]. MBE can
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be used to produce single-layer graphene of equivalent quality to MMC and the other
methods discussed above.

(e) Chemical synthesis of graphene: Chemical methods have been widely used to
synthesize graphene in high yields and throughputs (Figure 1). Exfoliation can be promoted
by chemically transforming graphite. The techniques usually used involve chemical
oxidation and exfoliation of graphite using Hummer’s method [38]. Chemical graphene
synthesis is usually used to produce graphene in bulk, which involves the oxidation of
graphite and its subsequent reduction using ascorbic acid [19], hydrazine [20], or other
reducing agents. The oxidation of graphite can be achieved using different methods, which
have been compared in a previous study [21]. Chemical synthesis provides a promising
means of producing high purity, low-defect graphene at industrial levels.

3. Significance of the Number of Graphene Layers
3.1. Properties vs. Numbers of Graphene Layers

Monolayer graphene has exceptional mechanical, electrical, and thermal properties [5]
and it has been well established that these properties decrease as number of graphene
layers increases. Thus, it is important that the number of graphene layers be optimized for
different applications.

3.1.1. Mechanical Properties and Number of Layers

Mechanical properties are well known to be strongly influenced by graphene layer
numbers. For example, Zhang et al. studied the effects of the number of layers on me-
chanical properties [39]. The results obtained showed that tensile strength and elongation
at break decreased with increasing graphene layer numbers of graphene flakes. Multi-
layer and monolayer graphene differ in terms of stacking order; however, this interaction
between adjacent layers is not strong, and thus, it does not markedly increase fracture
stress or strain. Young’s modulus, however, increases with the increasing layer number
in graphene flake, which means that interlayer interactions have a positive effect on the
Young’s modulus of multilayer graphene [39].

Figure 2a shows force versus deflection plots for a graphene oxide (GO) monolayer
and for four other few or multi-layered GO flakes, as determined by AFM [40]. The plots
show that membrane deflection increases with the number of graphene layers. Similarly,
Figure 2b shows that fracture forces were higher for few and multilayer, homogenously
thick graphene layers than for graphene layers with variable thicknesses [40]. Homogenous
and mono-bilayer graphene flake had the highest fracture force of all samples studied and
this gradually reduced with layer number [39,40].
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3.1.2. Effects of Layer Number on Thermal Properties

Coefficients of thermal expansion (CTE) were found to depend on temperature and
layer number. Figure 3a shows the effects of temperature and the number of graphene
layers on CTE. Figure 3a shows that, as temperature increases from 20 to 140 ◦C, the CTE
increases linearly. Furthermore, monolayer graphene had the highest CTE vs. temperature
slope [42]. The CTE vs. temperature plot of 10-layer graphene showed greater scatter
than the less layered graphenes. However, the temperature dependencies of 10-layer and
less layered graphenes were similar and CTEs were studied at 25 ◦C and as a function
of graphene layer number, (Figure 3b) it was found that they increased from monolayer
graphene up to 10 layers [42].
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3.1.3. Optical Properties and Number of Layers

Optical transmittance was found to depend on layer number (Figure 4). A graphene
membrane’s optical transmittance is defined as the ratio of transferred to inputted laser
strength (Figure 4) [40]. It was found that optical transmission decreases with increasing
layer numbers, from 1 to 7, regardless of the laser wavelength [40].

3.2. Restacking and Intercalation for Different Layer Numbers

Restacking involves the auto assembly of graphene layers and reduces the properties
of graphene in various industrial applications, such as barrier properties in batteries. One
approach involves increasing the interlayer spacing using intercalants and then removing
them by rapid evaporation. For example, when graphite is soaked in a strong acid (the
intercalating agent), the acid penetrates the layers and increases the interlayer spacing.
Promptly increasing the temperature can cause intercalant removal, and leave behind
exfoliated sheets of graphene [43]. Furthermore, the yields of these methods can be
increased by ultrasonication [44].
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4. Techniques Used to Determine Numbers of Graphene Layers
4.1. Transmission Electron Microscopy

TEM involves the transmission of a beam of electrons through an ultra-thin (<100 nm
thick) specimen. TEM can provide high-resolution images down to the atomic level, and is
frequently used to determine the number of graphene layers per flake. Nakamura et al.
used TEM to study evenly stacked graphite-like thin sheets (GLSs) prepared by the laser
ablation of graphite in argon [45]. The produced GLSs were neat, untouched, and free-
standing. The authors discovered that even layer numbers (2, 4, 6, and 8) were preferentially
formed [45]. Figure 5 shows the use of TEM to determine graphene layer numbers [45]. An-
other interesting observation was that interlayer distances decreased from 0.385 to 0.335 nm
with increasing layer numbers [45]. Navik et al. studied the ultrasonication-induced exfoli-
ation of graphite to graphene in solvent containing curcumin via TEM [46]. They found that
this process produced large areas of thin, transparent graphene sheets, 1–5 graphene layers
thick [46]. Cui et al. studied the effects of stacking and lattice orientation on the mechanical
properties of few-layer GO [40]. They found graphene flakes were 1 to 5 layers thick and
they studied the effects of the graphene layer number on the mechanical properties and
found that the mechanical properties were affected by increasing layer numbers, from
1 to 5 [40]. Stobinski et al. studied graphene oxide and reduced graphene oxide using
XRD, TEM, and other electron spectroscopic methods [47] and found that a reduction of
graphene oxide reduced graphene interlayer spacing [47].

Al-Hagri used CVD to synthesize monolayer graphene, which was then studied using
TEM [48]. The produced vertically aligned graphene nanosheets exhibited high surface
areas, good mechanical strengths, excellent electric properties, and high chemical stability,
which made them useful candidates for various industrial applications, such as superca-
pacitors and batteries [48]. Ding et al. produced high sulfonic acid edge functionalized
graphene from graphite in one step [49] and used HR-TEM to determine layer numbers.
The authors found mono bilayer graphene might be useful for various applications, includ-
ing capacitator fabrication [49]. In addition, electron diffraction pattern spot intensities
were used to confirm HR-TEM determined numbers of functionalized graphene layers [49].
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4.2. Scanning Electron Microscopy (SEM)

Scanning electron microscopes provide images by scanning sample surfaces with a
focused beam of electrons. These electrons interact with atoms and produce signals that
contain information about surface morphologies. SEM is frequently used to determine
the number of layers in graphene flakes. Ying et al. synthesized bi-layer and multi-layer
graphenes on Cu foil in one step [50]. Figure 6 shows SEM images of mono- (Figure 6a,d), bi-
(Figure 6b), and tri-layered graphenes (Figure 6c) [50]. Huet et al. used CVD to synthesize
graphene flakes with few defects and controllable numbers of layers and thicknesses, and
demonstrated the relationship between thermal conditions and graphene growth [51]. In
addition, they used SEM to characterize single-layer graphene, MLRs (multi-layer regions),
and branch-like MLRs [51]. Lin et al. also used SEM to estimate the number of graphene
layers [52] and reported graphene layers stacked 6 to 20 layers thick, and that ball milling
for 8 h instead of 2 reduced the layer numbers from 20 to 6 [52]. Yoshihara et al. produced
SLG (single-layer graphene) by chemically etching copper foils grown using CVD and
characterized them by SEM, and showed that etching conditions strongly influenced
graphene domain size [53]. Mohanty et al. studied FLG (few-layer graphene), prepared at
two different temperatures, using SEM microscopy [54]. The benefits of a high surface-to-
volume ratio 2D NP geometry are supported by mathematical calculations [54]. In another
study, SLG was grown on Ge (100) by CVD and characterized by SEM [55]. Measurements
showed that large areas of good quality, homogeneous monolayer graphene can be directly
produced on Ge substrates.
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4.3. Atomic Force Microscopy

AFM is a high-resolution type of microscopy with a resolution at the atomic level.
AFM can be used to produce images of 3D topological features and thickness histograms of
specimens. AFM is also used to determine the number of graphene layers in nano graphitic
flakes; however, due to the surface roughness of graphene and variations introduced by
AFM, graphene thicknesses are difficult to determine accurately. Kim et al. examined an
SLG wrapped Li4Ti5O12 anode in the context of achieving a high Li ion storage capacity [56].
Figure 7a,b show the topological features and a corresponding histogram of graphene
oxide [56]. The graphene oxide characterized by AFM was of lateral dimension <5 µm and
had a thickness of 1 nm. The thickness indicated by Figure 7b showed that the specimen
was monolayer graphene [56].

Prakash et al. studied epitaxial FLG grown at different temperatures using CVD
with AFM microscopy [57]. AFM revealed a mesh-like network of atomically flat, tile-like
FLG facets. A histogram of FLG thickness revealed thicknesses of 0.7 to 1.2 nm and the
average FLG thickness was found to depend on temperature during the growth phase. As
temperatures increased from 1350 to 1550 ◦C, average FLG thickness increased from 0.7
to 3.7 nm [57]. Temiryazev et al. studied graphene and graphite surface contamination at
the atomic level using AFM [58] and showed that samples produced under ambient lab
conditions had well-ordered layers (lateral dimension > 100 µm2 and thickness 4–5 nm)
of mostly hydrocarbon species on graphene flake surfaces. Singh et al. also studied the
thicknesses of multilayer graphene using AFM [59] and found that multilayer graphene
was 1.75 nm thick, which, assuming an interlayer distance of 0.33 nm between adjacent
graphene layers, indicated the presence of 6 graphene layers [59].
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Elsevier).

Yao et al. demonstrated the use of histograms and found that the flake thicknesses
of 1, 2, and 4-layer graphene were 1.5, 1.9, and 2.73 nm, respectively, by AFM [60].
Margaryan et al. synthesized large-scale fractal graphene sheets using liquid phase ex-
foliation [61]. The thicknesses and surface properties of these flakes were determined
using AFM imaging, and a flake thickness of 0.35 nm showed that monolayer graphene
was produced [61]. Bartlam functionalized graphene and determined the thicknesses of
flakes produced by AFM [62]. They found that the thickness of unfunctionalized reduced
graphene oxide (U-rGO) was 1.5 nm, that of 4-(4,5a1-dihydropyren-1-yl)butane-1-sulfonate
(PBS) functionalized -rGO was 2 nm, and that of sodium 4-(7-cyano-4,5a1-dihydropyren-1-
yl)butane-1-sulfonate (PCNBS) functionalized -rGO was 2 nm. Assuming an interlayer spac-
ing of 0.33 nm between adjacent graphene layers, all three produced exfoliated graphene
oxide (eGO) flakes were found to be 5 layers thick (U-rGO) and PBS-rGO flakes and
PCNBS-rGO were found to be 7 layers thick [62].

4.4. Optical Microscopy

Optical microscopy which is also known as light microscopy is often used to study
morphologies at low magnifications. This type of microscope uses visible light and a
system of lenses to generate magnified images of small samples, but it can also be used
to estimate layer numbers per flake. Figure 8a shows single-layer, bilayer and, 5-, 6-, and
7-layer graphenes. Corresponding Raman spectra are shown in Figure 8b [33]. Luo et al.
studied single-layer graphene oxide flakes using optical microscopy [63] as an alternative
to AFM or SEM, which are considerably more expensive [63]. The used method allows
graphene oxide to be imaged over a much larger area (>200 nanosheets per image) than
possible with AFM or SEM [63]. The authors concluded that optical imaging could be used
as a low-cost, efficient means of determining layer numbers [63]. Campanelli et al. further
extended the use of optical microscopy to estimate mono- and bi-layer graphene sheets
produced on Q5 and Q20 substrates by micromechanical cleavage [64].
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4.5. Plasmon Exciton Coupling Spectroscopy

A plasmon is a quantum of plasma oscillation and can be considered as a quasiparticle
arising from the quantization of plasma oscillations. Figure 9a describes an experimental
setup used to estimate graphene layer numbers of flakes [65]. In the proposed setup, the
Kretschmann configuration (total internal reflection configuration) was used. The setup
had three main functional components, namely, a source of incident light, a total internal
reflection component, and reflected light detector. Functional details have been previously
described [65]. Figure 9b shows the reflection spectra of FLG flakes with different layer
numbers [65]. Reflection spectra showed a dip indicating red shift at an angle of incidence
of 53◦. These experimental results were consistent with the numerical results [65].
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4.6. X-ray Diffraction

XRD is based on the differential diffractions of an incident X-ray beam caused by
sample crystal structures. Using the intensities and angles of diffractions, 3D images of
electron densities within crystals are generated. XRD was recently used to determine
layer numbers in graphene flakes [66]. Mauro et al. used XRD to study six graphitic
materials with different graphene layer numbers [66]. The authors used the full width half
maximum (FWHM) of the 002 peak in Scherrer’s equation to determine graphene flake
thicknesses [66], which were then divided by interlayer distances (0.34 nm) to obtain layer
numbers of around 60, 40, and 30 for samples A, B, and C. Galimberti et al. studied XRD
for determining the number of graphene layers stacked in nanographite flakes [67]. The
authors demonstrate that using FWHM of the (002) peak, which is the characteristic peak
for carbon-based materials, the number of layers can be determined. The use of Scherrer’s
equation to determine nanographite flake thickness found it to be 9.8 nm. Considering
an interlayer spacing of 0.339 nm, a total of 29 layers were estimated [67]. Galimberti et al.
gained further insight through the use of XRD to estimate shape anisotropy. For that,
the lateral dimension of nanographite flake FWHM was determined though (100) and
(110) reflections and a lateral length of 30.2 nm was estimated. The shape anisotropy was
then calculated by dividing the lateral length with flake thickness and a value of 3.1 was
determined [67]. Kumar et al. studied the used XRD to determine the number of graphene
layers stacked in graphene flakes and total numbers of 45–48 layers were estimated [68].

4.7. Raman Spectroscopy

Raman spectroscopy provides information on the vibrational modes of molecules,
and is frequently used to obtain the structural fingerprints of molecules, but it has also
been used to determine graphene layer numbers in flakes. The most prominent spectral
feature of carbon-based materials is the appearance of a D-band, G-band and a 2D band [69]
(Figure 10a). Furthermore, the shape of the 2D band changes as the graphene layers increase
from a monolayer up to 7 layers [40]. Moreover, the intensity ratio of 2D vs. G bands
decreases from 3.3 for single layer graphene to nearly 0.5 for 7-layer graphene [40]. The
number of graphene layers can be easily determined from the position and shape of the
2D band. For example, the 2D-band peak position shifted to higher numbers, i.e., from
2702 cm−1 for 3-layer graphene to 2720 cm−1 for 10-layer graphene and 2725 cm−1 for a
graphite of thickness 40 nm [41]. Figure 10b shows that the ID and I2D/G band depend on
layer number. For example, the intensity of the D-band increases with layer number, and
the intensity ratio of the 2D/G–band decreases with layer number [40]. Güler et al. studied
the exfoliation process of graphite under mild sonication in different solvents [70] and
optimized the sonication time and power to produce highly exfoliated graphene sheets.
The extent of exfoliation was determined by Raman spectroscopy [70]. The Raman spectra
confirmed the formation of graphene based on the shape, location, and intensity of the 2D
peak, which are dependent on layer number.

Niavol et al. studied a single layer graphene-based sensor for monitoring toxic
gases [71] and confirmed the presence of single-layer graphene, before and after deposition
of a NiO layer, using Raman spectroscopy based on 2D-band peak intensity [71]. Schiliro
et al. studied the nucleation of aluminum oxide deposited on epitaxial graphene on silicon
carbide, and determined the layer numbers using various techniques including Raman
spectroscopy [72]. Unlike other types of graphene, nucleation sites of uniform density were
observed for silicon carbide with 98% coverage of monolayer graphene and 2% coverage
with bi-tri layer graphene. Gong et al. studied the friction of FLG (mono-, bi-, and tri-layer)
on silica and silica oxide substrates using Raman spectroscopy [73].
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Haehnlein et al. investigated epitaxial graphene of different types, such as defective/
single-layer graphene to multilayer graphene with small defect densities by Raman spec-
troscopy and determined graphene layer numbers using strain types [74]. A novel corre-
lation was observed between the 2D mode line width and the inverse ID/IG ratio, which
allowed the determination of strain type and layer number [74]. Kolomiytsev et al. employ
Raman spectroscopy to investigate the layer numbers of multilayer graphene, and found
that there were 10 layers per multilayer graphene flake [75]. Yitzhak et al. studied fluctu-
ations in Raman spectra for FLG and single-layer graphene and analyzed the positions
and intensities of the Raman peaks for different layer numbers [76]. The average positions
of Raman spectra lines were shifted in opposite directions, which made it possible to
differentiate bilayer and monolayer films, despite similar Raman spectra [76].

Silva et al. used Raman spectra to analyze graphene layer numbers of mass-produced
flakes using 2D- and G-bands. The 2D-band provided information about exfoliation in
graphene flake whereas the intensity of the G band provided information about layer
numbers [77]. Li et al. prepared high concentrations of two types of graphene slurries and
studied their rheological studies, e.g., viscosity, graphene loading, surfactant content and
different solvents, and temporal effects. Raman spectroscopy was also used to determine
layer numbers of graphene flakes and showed graphene grade 1 had ≥1 to ≤5 layers and
that grade 2 graphene had a 5-layer graphitic structure [78].

Papanai et al. examined graphene layer numbers of mechanically exfoliated graphene
flakes using Raman spectroscopy [79]. The authors used intensity ratios (I2D/IG) and
peak widths of the 2D-band to determine layer numbers. The 2D peak of single-layer
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graphene (SLG) consisted of a single Lorentzian peak with a width of 24 cm−1, but this
was split into four, six, and five components for 2-, 3-, and 5-layer graphenes, respec-
tively [79]. Niilisk et al. used Raman spectroscopy to investigate the multilayer stacking
of graphene grown on Ni [80]. Raman spectra showed several combinations of in-plane
and out-of-plane Raman modes, indicating the formation of many multilayer graphene do-
mains where graphene layers were found stacked or in an exfoliated form in the flake [80].
Maruyama et al. demonstrated liquid phase growth of FLG on sapphire at different tem-
peratures using SiC micro powder as a source material. Raman spectroscopy was used
to determine the qualities, defect, and numbers of stacked graphene layers [81]. Results
showed layer numbers ranging from 1 to 3 and it was confirmed that the synthesized flakes
were of FLG [81].

4.8. Raman Mapping

Raman mapping is a laser-based microscopic technique used to obtain performing
Raman spectra. Recently, Raman mapping was used to determine graphene layer numbers
and homogeneities of graphene flakes. Barbosa et al. prepared single-layer graphene using
oxygen-free N-octane as a precursor [82]. Graphene heterogeneity was higher at 850 ◦C
than at 950 ◦C (Figure 11a,b, respectively), which revealed the presence of 2-layer graphene
or FLG containing a predominance of single-layer graphene. However, the Raman map in
Figure 11c obtained at 1050 ◦C, showed that the sample was the most homogenous [82].
Figure 11d shows the FWHM values of the 2D-bands of different graphene samples pre-
pared at different temperatures. Kim et al. highlighted the direct formation of graphene by
ion implementation on Cu, Ni and Cu/Ni alloy [83] and achieved better graphene coverage
and quality for the alloy, which was attributed to the greater carbon diffusivity and lower
carbon solubility of the alloy than for Ni, and a lower activation energy than Cu [83].

Raman mapping was used to determine the thicknesses and graphene layer numbers
of synthesized flakes. Raman maps of CuNi alloy after annealing at 900 ◦C for 30 min
showed clear G and 2D modes. Coverage was approximately 63% of 10-10 µ2 area [83].
Bayram studied 3D graphene films synthesized on glass/FTO by Raman mapping and
showed Raman mapping of D, G and 2D peaks showed that there exist homogeneously on
all surfaces. In addition, mapping also revealed homogenous morphology and significant
graphene film peaks [84]. Shen et al. studied the synthesis of bilayer graphene on Cu
substrate using a hot filament CVD technique [85] and reported the synthesis of homoge-
nous bilayer graphene of superior lubricity and higher wear resistance of potential use
for various industrial applications [85]. The Raman mapping was involved in the ID/IG
and the I2D/IG ratio to study the homogeneity of the synthesized bilayer graphene and
demonstrated the high uniformity of bilayer graphene over deposited areas [85]. Wang
et al. studied graphene properties using Raman maps under different strains to investi-
gate their suitability for a wide range of applications, such as in flexible electronics [86].
Raman maps showed that strains of 0.39% and 0.8% produced no evidence of wrinkling or
inhomogeneity inside domains when applied in different directions. It further highlights
the strain uniformity >85% for domains further demonstrate a good adhesion between
graphene and the substrates [86]. The studies further provided insight that certain strains
show no domain boundary effect or strain localization was observed [86].
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with permission from ref. [82], Copyright 2018, Elsevier).

Woo et al. prepared graphene using CVD and used Raman maps on channels of
graphene to study the uniformities in the graphene layers. Raman maps of individual
graphene flakes showed that, in addition to the FWHM of 2D peak, the G peak position
showed a lighter color at the edges compared with inside the graphene channels [87]. Liu
et al. studied the thermal stability of graphene at temperatures of 600, 800, and 1000 ◦C in an
inert atmosphere. Raman maps showed a continuous and uniform distribution of graphene
on Si wafers and different brightnesses of graphene layers; bright areas had a graphite-
like structures while dark areas corresponded to single-layer graphene. Furthermore,
they reported that most areas in Raman maps corresponded to single-layer graphene,
though a few defects in single-layer graphene were also observed [88]. Amato et al. grew
mechanically stable graphene using CVD on Co and successfully transferred graphene
from the substrate without using a polymeric support. However, strain in graphene sheets
was observed after transfer. These sheets were analyzed for homogeneity by Raman
mapping [89], and the obtained results showed that 50% of the areas investigated were
covered with bi-layer graphene. The origin of strain in synthesized graphene was further
investigated by Raman mapping on Co. The presence of two holes was observed in the
Co film beneath the graphene layer. Oh et al. studied single and bilayer graphene and
their uniformities using Raman maps of 2D peaks and observed defects of transferred
mono-bi-graphene sheets, such as holes and wrinkles [90].
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4.9. Spin Hall Effect

The spin Hall Effect is a transport phenomenon, which manifests as spin accumula-
tion on the lateral surfaces of electric-current-carrying specimens and opposing surface
boundaries with spins of opposite signs. Figure 12a shows an experimental setup used to
determine the number of graphene layers in flakes using the spin Hall Effect. A theoretical
relation has been established between transverse shift and layer numbers and confirmed
experimentally [91]. Figure 12b shows that layer numbers can be determined using the
spin Hall Effect. Transverse displacements were studied at different angles of incidence
and were found to be related to layer numbers from 1 to 5 [91]. Layer numbers determined
using this method were confirmed by Raman spectra [91].
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4.10. Scanning Tunnelling Microscopy

STM provides high-resolution images of surfaces at the atomic level. The technique
involves sensing the surface of a specimen with a sharp conducting tip. Resulting images
can capture features smaller than 0.1 nm and have a depth resolution of 0.01 nm. Figure 13a
shows a STM image of a well-ordered graphene layer with a small carbide phase [92]. The
image reveals a defect-free, well-defined structure. The high quality of graphene/Ni(111)
was confirmed using LEED images (inset of Figure 13a). Figure 13b shows a STM image
of graphene defects (missing carbon atoms), which are presumed to have been caused by
oxygen intercalation [92].
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4.11. Scanning Electrochemical Microscopy

SCEM is used to measure local electrochemical behavior at different interfaces. Inter-
pretation of SCEM technique is based on the concept of a diffusion-limited current. Wain
et al. presented topological features, as observed by AFM-SECM [93]. In graphene regions,
Wain et al. showed examples of FL, ML, and SL. The authors also demonstrated the use
of a SECM-AFM cantilever probe for high-resolution topological-electrochemical probe
microscopy. The probing provided excellent topological-electrochemical mapping and
enables the determination of graphene layer numbers per flake, such as for FL, ML and SL.
This study, demonstrated that the AFM-SECM technique provides insights of the interfacial
behavior of exfoliated graphene flakes [93]. The summary of the type of graphene, method
of synthesis, method of investigation and references are described below in Table 1.
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Table 1. Summary of type of graphene, method of synthesis, method of investigation and the reference.

S. No. Type of Graphene Method of Synthesis Method of Investigation Reference

1. Monolayer to few-layer to
multilayer graphene - Optical microscopy,

Raman spectra [37]

2. Monolayer to few-layer to
multilayer graphene - Optical microscopy,

Raman spectra [40]

3. Graphite-like thin sheets - TEM [45]

4. 1–5-layer thick graphene layers

Ultrasonication-
induced exfoliation of

graphite to graphene in
solvent

TEM [46]

5. Reduced graphene oxide Chemical synthesis XRD, TEM, and other electron
spectroscopic methods [47]

6. Monolayer graphene CVD TEM [48]

7. Mono-bilayer graphene
High sulfonic acid edge

functionalized
graphene from graphite

HR-TEM [49]

8. Mono-few-layer graphene CVD SEM, Optical, Raman spectra,
Raman mapping [50]

9. Single or multilayer Graphene
flakes CVD SEM, Optical, Raman spectra,

Raman mapping, and AFM [51]

10. Graphene layers stacked 6 to
20 layers thick Ball milling SEM, Raman spectra, HRTEM [52]

11. Monolayer graphene CVD
SEM, Optical, microscopy,

Raman spectra, Raman mapping,
and AFM

[53]

12. Few-layer graphene -
SEM, Optical microscopy,
HRTEM, Raman mapping,

and AFM
[54]

13. Monolayer graphene CVD SEM, Raman spectra, Raman
mapping, and AFM. [55]

14. Monolayer graphene Chemical synthesis AFM [56]

15. Few-layer graphene CVD AFM [57]

16. Graphene flake with thickness in
4–5 nm - AFM [58]

17. Multilayer graphene - AFM [59]

18. Monolayer to few-layer
graphene - AFM [60]

19. Monolayer graphene sheet Liquid phase
exfoliation AFM [61]

20. Functionalized reduced
graphene Chemical synthesis AFM [62]

21. Monolayer graphene oxide Chemical synthesis Optical microscopy, AFM, SEM [63]

22. Mono-bilayer graphene Chemical synthesis Optical microcopy [64]

23. Mono-few-layer graphene - Plasmon exciton coupling
spectroscopy [65]

24. Graphene flake with 60, 40 and
30 layers thick - X-ray diffraction [66]

25. Exfoliated graphene sheets Graphite sonication in
solvents Raman spectra [70]
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Table 1. Cont.

S. No. Type of Graphene Method of Synthesis Method of Investigation Reference

26. Monolayer graphene CVD Raman spectra [71]

27. Epitaxial graphene CVD Raman spectra [72]

28. Few-layer graphene CVD Raman spectra [73]

29. Monolayer to multi-layer
graphene - Raman spectra [74]

30. Multilayer graphene - Raman spectra [75]

31. Monolayer to few-layer
graphene - Raman spectra [76]

32. Exfoliation in graphene flake - Raman spectra [77]

33. Monolayer to few-layer
graphene Raman spectra [78]

34. Monolayer to few-layer
graphene Raman spectra [79]

35. Multilayer graphene CVD Raman spectra [80]

36. Mono to few-layer graphene Liquid phase
exfoliation Raman spectra [81]

37. Monolayer graphene CVD Raman mapping [82]

38. Graphene flake CVD Raman mapping [83]

39. 3D graphene films CVD Raman mapping [84]

40. Bilayer graphene CVD Raman mapping [85]

41. Graphene flake - Raman mapping [86]

42. Graphene flake CVD Raman mapping [87]

43. Monolayer graphene - Raman mapping [88]

44. Mono-bilayer graphene CVD Raman mapping [89]

45. Mono-bilayer graphene - Raman mapping [90]

46. Mono-few-layer graphene - Spin hall effect, Raman spectra [91]

47. Mono-bilayer graphene - Scanning tunneling microscopy [92]

48. Mono-few–multilayer graphene - Scanning electrochemical
microscopy and AFM [93]

5. Conclusions

Graphene flakes have remarkable effects on the physicochemical properties of graphene-
based nanocomposites. Graphene layer numbers can be characterized microscopically,
spectroscopically, or using plasmon exciton coupling spectroscopy, or the spin hall ef-
fect. Graphene can be synthesized using several bottom-up or top-down approaches,
and because of its superior properties it has many applications, especially in the flexible
electronics field. The stacking of monolayer graphene to form few-layer or multilayer
graphenes significantly influences the properties of graphene. This review summarizes
various techniques used to determine the layer numbers of graphene flakes. Greater layer
numbers from monolayer graphene to few-layer graphene and multilayer graphene were
found to significantly diminish the properties of graphene. This review summarizes the
use of graphene with different layer numbers for various applications (flexible electronics,
tissue engineering, biosensors, energy harvesting, actuation and strain sensors) and pro-
vides guidance regarding the effects of graphene flake thickness on the physicochemical
properties of graphene.
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