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Abstract: A new method of solvent-free acrylic pressure-sensitive adhesives (PSAs) based on UV-
induced cotelomerization products was presented. The key acrylic monomers (i.e., n-butyl acrylate
and acrylic acid) with copolymerizable photoinitiator 4-acrylooxybenzophenone in the presence of
a selected chain transfer agent (tetrabromomethane, TBM) were used in the UV-cotelomerization
process. Moreover, two kinds of UV-photoinitiators (α-hydroxyalkylphenones, HPs and acylphos-
phine oxides, APOs) were tested. Photo-DSC, viscosity, thermogravimetric, and GPC measurements
for cotelomers were performed. The kinetics study revealed that the systems with APOs, especially
Omnirad 819 and Omnirad TPO, were characterized by a much higher reaction rate and greater
initiation efficiency than HPs systems were. Additionally, the APO-based syrups exhibited a higher
solid content (ca. 60–96 wt%), a higher dynamic viscosity (5–185 Pa·s), but slightly lower molecular
weights (Mn and Mw) compared to HP syrups. However, better self-adhesive features (i.e., adhesion
and tack) were observed for PSAs based on cotelomers syrups obtained using APOs with lower
solid contents (55–80 wt%). It was found that as the solids content (i.e., monomers conversion)
increased the adhesion, the tack and glass transition temperature decreased and the type and amount
of photoinitiator had no effect on polydispersity. Most of the obtained PSAs were characterized by
excellent cohesion, both at 20 ◦C and 70 ◦C.

Keywords: pressure-sensitive adhesives; radical photoinitiators; telomerization; bulk photopolymer-
ization; acrylic syrups; adhesion

1. Introduction

Finding new techniques of materials joining (including the creation of thin-walled
structures) is an important task for scientists and industry in order to ensure high func-
tionality of the structure while respecting the principles of environmental protection [1].
This global trend also includes new, fast, and environmentally friendly methods of adhe-
sives preparation, such as pressure-sensitive adhesives (PSAs). PSAs are a special class
of adhesive materials used in many industrial assembly operations and most consumer
applications [2,3]. PSAs do not harden but remain permanently sticky. They create a strong
bond with the surface with only finger pressure and do not require activation by heat or
water [4,5]. The most widely used are acrylic PSAs [6]. They are obtained predominantly
by organic solvent radical polymerization or emulsion polymerization [7–9]. In both cases,
the solvent (organic or water) must be removed in order to obtain a self-adhesive film.
Increasingly, in the last decade, publications on ecological methods of PSAs preparation
have been made, of which the most important are photopolymerization processes. Back
et al. reported on a new pro-ecological method of obtaining solvent-free PSAs via visible-
light-driven photocatalytic radical polymerization [10] and photoredox-mediated radical
polymerization [11]. Instead, Beak at al. showed the free radical bulk photopolymeriza-
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tion process as a method of obtaining acrylic syrups to prepared PSAs [12–17]. However,
the resulting reaction products (prepolymers/syrups) had a high content of unreacted
monomers, so the PSA film was UV-cured in the presence of volatile compounds and
must be covered with a transparent release film to avoid oxygen inhibition. Moreover, the
above-mentioned publications did not show the influence of various factors on the course
of the bulk photopolymerization process.

Generally, the role of the photoinitiator (PI) in radical photopolymerization processes
is crucial next to the source and dose of UV-radiation, exposure time, or the influence
of oxygen. However, the effect of PIs on the course of the free radical bulk photopoly-
merization process has not been revealed so far. Gziut at al. revealed the influence of
the type and amount of PIs on the free radical bulk photopolymerization processes of
butyl acrylate, glycidyl methacrylate, and 2-hydroxyethyl acrylate. The received acrylate
syrups were used to obtain structural adhesive tapes [18]. In principle, photoinitiators
for radical polymerization are classified as cleavage (type I) and H-abstraction-type (type
II) initiators [19]. Type I photoinitiators are mostly aromatic carbonyl compounds, e.g.,
benzoin and derivatives, benzile ketales, acetophenones, α-hydroxyalkylphenones (HPs),
and acylphospine oxides (APOs). The choice of a particular PI largely depends on the re-
quirements of a specific application, taking into account the advantages and disadvantages
of the selected PI. For example, APOs have been used in high pigmented formulations,
where irradiation at longer wavelength is desired. The absorption of APOs (350-380 nm)
match the emission spectrum of the main commercial light sources [20]. Furthermore,
APOs are attractive to use because of their thermal stability and high reactivity of formed
phosphonyl radicals. On the other hand, HPs have a strong absorption in the short-wave
UV (230–270 nm) and weak absorption at longer wavelengths (up to 360 nm) and can lead
to deep curing using a medium-pressure lamp. Therefore, the HPs are very versatile and
efficient photoinitiators [21]. A lot of work has recently been dedicated to a new system
of free radical photopolymerization initiations. New type I and type II photoinitiators
based on 2,2-dimethoxy-2-phenylacetophenone, benzophenone, and thioxanthone were
proposed for the free radical polymerization of acrylates [22], carbazole derivatives for
LED polymerization [23], carbazole phosphine oxides [24,25], and novel-water soluble
polymeric photoinitiators for acrylate polymerization [26]. However, to the best of the
authors’ knowledge, there is no information in the literature about the most effective
photoinitiators for the UV-initiated telomerization process.

This article is a continuation of the recent research presented on a new solvent-free
method of PSA preparation for various applications [27], i.e., UV-induced cotelomerization
process. Telomerization is a reaction of a polymerizable compound (M) in the presence of a
chain transfer agent (YZ), which is provided to macromolecules Y (M)nZ, where n is less
than 100 but is not 1 [28]. Previously, we proved that the UV-induced cotelomerization
process is an environmentally friendly and fast method of obtaining pressure-sensitive ad-
hesives (PSAs) and the effect of a functional monomer (i.e., acrylic acid) was checked. Based
on these studies, the optimal composition of the monomer mixture (n-butyl acrylate, acrylic
acid, and 4-acrylooxybenzophenone) for UV-cotelomerization was selected. Our previous
and unpublished research showed that the key parameter influencing the self-adhesive
properties of acrylic PSAs based on cotelomerization products (acrylic syrups, i.e., mixture
of linear cotelomers and unreacted monomers) is the solid content (SC), which corresponds
to the monomer’s conversion. One of the factors affecting the SC values is the type and
amount of PI used for initiation of the UV-cotelomerization process. This study presented
the influence of commercially available type I photoinitiators (α-hydroxyketones- HPs and
acylphospine oxides—APOs) on the course of the UV-cotelomerization process, properties
of reaction products (cotelomer syrups), and selected self-adhesive features of solvent-free
PSAs. The new method of receiving solvent-free PSAs presented here is noteworthy as it
allows one to obtain adhesive binders with a low content of unreacted monomers in a short
time (30 min or even less), which was incorporated into the polyacrylate structure during
the UV crosslinking stage (in the presence of crosslinking monomer and without special
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screens to protect against the negative effects of oxygen). The resulting PSAs can be used
for the production of masking tapes, self-adhesive labels, or other self-adhesive materials.

2. Materials and Methods
2.1. Materials

The following components were used for the preparation of BA/AA/ABP cotelomers:
n-butyl acrylate (BA), acrylic acid (AA) (BASF, Ludwigshafen, Germany) as monomers;
4-acryloylooxybenzophenone (ABP, Chemitec, Scandiccy, Italy) as copolymerizable pho-
toinitiator; tetrabromomethane (TBM; Merck, Warsaw, Poland) as telogen; and different
type I radical photoinitiators:

(1) α-Hydroxyalkylphenones (HPs): 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)be-
nzyl)phenyl)-2-methylpropan-1-one (Omnirad 127; IGM Resin, Waalwijk, The Nether-
lands) and 1-hydroxycyclohexylphenyl ketone (Omnirad 184, IGM Resins, Waalwijk,
The Netherlands);

(2) Acylphosphine oxides (APOs): bis(2,4,6-trimethylbenzoyl)-phenylphosphineoxide
(Omnirad 819; IGM Resins, Waalwijk, The Netherlands); 2,4,6-trimethylbenzoyl-
diphenyl phosphine oxide (Omnirad TPO; IGM Resins, Waalwijk, The Netherlands)
and 2,4,6-trimethylbenzoyldi-phenylphosphinate (Omnirad TPOL; IGM Resins, Waal-
wijk, The Netherlands);

(3) Mixture of acylphosphine oxides (APOs blend): ethyl phenyl(2,4,6- trimethylben-
zoyl)phosphinate (ca. 95 wt%) and phenyl bis(2,4,6-trimethylbenzoyl)-phosphine
oxide (ca. 5 wt%) (Omnirad 2100; IGM Resins, Waalwijk, The Netherlands).

The structures of photoinitiators are shown in Table 1.The components were applied
without purification. A hydroxyl-terminated polybutadiene resin Hypro 1200X90 HTB
(CVC Thermoset Specialties, Emerald Kalama Chemical, Kalama, WA, USA) as a multi-
functional monomer of the UV-crosslinking process was used, as previously reported [27].

Table 1. Structures of tested photoinitiators.

PI Type PI Names and Chemical Structure

HPs

Omnirad 127 Omnirad 184
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2.2. Synthesis and Characterization of BA/AA/ABP Cotelomers

The cotelomerization processes of BA, AA, and ABP were initiated using different
radical photoinitiators (15, 30, or 45 mmol per 50 g of monomers mixture) and tetrabro-
momethane (2.5 phr) as telogen was used. The reaction mechanism is presented in Figure 1.
Mixtures of monomers and sample symbols are shown in Table 2.
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Table 2. Compositions of monomers, telogen, and photoinitiators for UV-induced cotelomerization
process.

Cotelomer Acronym
Monomers (wt%) PI

BA AA APB Symbol mmol *

BAA-127-15

91.5 7.5 1

O127
15

BAA-127-30 30
BAA-127-45 45
BAA-184-15

O184
15

BAA-184-30 30
BAA-184-45 45
BAA-819-15

O819
15

BAA-819-30 30
BAA-819-45 45

BAA-TPO-15
OTPO

15
BAA-TPO-30 30
BAA-TPO-45 45
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Table 2. Cont.

Cotelomer Acronym
Monomers (wt%) PI

BA AA APB Symbol mmol *

BAA-TPOL-15
OTPOL

15
BAA-TPOL-30 30
BAA-TPOL-45 45
BAA-2100-15

O2100
15

BAA-2100-30 30
BAA-2100-45 45

* per 50 g of monomer mixture.

The cotelomerization processes were carried out at 20 ◦C for 30 min in a glass reactor
(250 mL), equipped with a mechanical stirrer and thermocouple, in the presence of argon
as inert gas. A mixture of monomers (50 g) was introduced into the reactor and purged
with argon for 20 min. A high-intensity UV lamp (UVAHAND 250, Dr. Hönle AG UV
Technology, Gräfelting, Germany) as a UV radiation source was used and was placed
perpendicularly to the side wall of the reactor. The UV irradiation inside the reactor
(15 mW/cm2) was controlled with UV-radiometer SL2W (UV-Design, Brachttal, Germany).
The reactor was water-cooled (using room-temperature water).

At the beginning, the kinetics studies of the UV-induced cotelomerization process
of BA, AA, and ABP (compositions in Table 2) were tested using a differential scanning
calorimeter with a UV attachment (photo-DSC, DSC Q100, TA Instruments, New Cas-
tle, DE, USA; UV-light emitter Omnicure S2000; Excelitas Technologies, USA) at room
temperature (isothermal measurement). Samples (5 mg) were irradiated with UV in the
range 320–390 nm with an intensity of 15 mW/cm2 in an argon atmosphere. All DSC
photopolymerization experiments were conducted in triplicate. The polymerization rate
(Rp, %/s) was calculated according to Equation (1), and the conversion of double bonds (p,
%)—according to Equation (2) and photoinitiation index (Ip)—was calculated according to
Equation (3) [29].

Rp =
∆Ht/dt

H0
(1)

p =
∆Ht

H0
× 100% (2)

Ip =
Rmax

p

tmax
(3)

where: dH/dt—heat flow in the polymerization reaction; H0—theoretical heat for the
complete degree of conversion (for acrylates: ∆H = 78.0 kJ/mol); ∆Ht—the reaction heat
evolved at time t.

Then, the physicochemical properties of the BAA syrups and BAA cotelomers obtained
after the bulk UV-induced cotelomerization process were examined.

Dynamic viscosity of the BAA syrups (BAA cotelomers with unreacted monomers)
was measured at 25 ◦C by means of a DV-II Pro Extra viscometer (spindle #6, 50 rpm;
Brookfield, New York, NY, USA). The solid content (SC) of the prepared syrups was
determined using a Moisture Analyzer MA 50/1.X2.IC.A (Radwag, Radom, Poland).
Samples (ca. 2 mg) were heated in aluminum scale pans at a temperature 105 ◦C for 4 h.
The SC parameter was calculated according to Equation (4):

SC =
m2

m1
·100 (wt%) (4)

where: m1—initial weight of a sample; m2—residual weight after an evaporation process.
Gel permeation chromatography (GPC) was used to determine the molecular masses

(Mw, Mn) and polydispersity (PDI) of the BAA cotelomers (post-reaction mixtures were
dried at 140 ◦C for 4 h before the test to remove unreacted monomers); the GPC apparatus
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contained the refractive index detector (Merck Lachrom RI L-7490, Abingdon, UK), pump
(Merck Hitachi Liquid Chromatography L-7100, Abingdon, UK) and interface (Merck
Hitachi Liquid Chromatography D-7000, Abingdon, UK), and the Shodex Ohpak SB-806
MQ column with Shodex Ohpak SB-G pre-column (Merck Hitachi Liquid Chromatography
L-7100, Abingdon, UK). The GPC tests were performed using polystyrene standards (Fluka
and Polymer Standards Service GmbH, Mainz, Germany) in tetrahydrofurane.

2.3. Preparation and Characterization of Obtained Pressure-Sensitive Adhesives (PSAs)

The adhesive compositions for the preparation of PSAs were compounded using BAA
syrups (90 wt%), HTB crosslinking agent (7.5 wt%), and TPOL photoinitiator (2.5 wt%).
The PSA components were mixed using a high-speed mechanical mixer (T10 Basic Ultra-
Turrax, IKA, Königswinter, Germany). The compositions were applied onto a polyester
foil (50 µm) and UV-irradiated using a medium-pressure mercury lamp (UV-ABC; Hönle
UV-Technology, Gräfelfing, Germany). The UV doses were 4 J/cm2. The UV exposition was
controlled with a radiometer (Dynachem 500; Dynachem Corp., Westville, IL, USA). The
basis weight of samples was 60 g/m2. Preparation steps of PSAs are graphically presented
in Figure 2.
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Figure 2. Preparation steps of the pressure-sensitive adhesives from BAA cotelomers.

Self-adhesive tests (adhesion to a steel, tack, and cohesion at 20 ◦C and 70 ◦C) were
performed at 23 ± 2 ◦C and 50 ± 5% relative humidity. Adhesion is defined as the
force value required to remove pressure-sensitive material from a stainless-steel plate;
the removal proceeded at an angle of 180◦ with a speed of 300 mm/min. Adhesion to
a steel substrate was tested according to AFERA standards (Association des Fabricants
Europe’ens de Rubans Auto-Adhe’sifs), i.e., AFERA 5001. Tack is characterized by a
force value required to separate the stainless-steel plate and adhesive tape applied under
low pressure for 0.5 s. The tack measurements were performed according to AFERA
5015. The mentioned tests were carried out with the strength machine Zwick Rolell Z010
(Zwick/Roell, Ulm, Germany). Cohesion (i.e., static shear adhesion) describes the time
needed to shear off the adhesive tape sample (under load of 1 kg) from the defined steel
surface. The cohesion tests were performed according to FINAT FTM 8. These parameters
were evaluated using three samples of each adhesive film.

Differential scanning calorimetry (DSC Q100, TA Instr., New Castle, DE, USA) was
used to determine the glass transition temperature (Tg) values of the UV-crosslinked PSAs.
Hermetic aluminum DSC pans were used and samples (ca. 10 mg) were analyzed from
−80 ◦C to 250 ◦C (heating rate of 10 ◦C/min).
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3. Results
3.1. Kinetics Study of Photo-Cotelomerization Process

Among the described photopolymerization processes, two general types can be dis-
tinguished, namely processes taking place in thin or thick layers. Relatively few publi-
cations have dealt with bulk photopolymerization processes with mechanically mixed
monomers [18,30]. To the best of the authors’ knowledge, this publication is the first to
describe the effect of the type (and amount) of radical photoinitiator on the bulk photo-
cotelomerization process of acrylic monomers. So far, there is a general agreement on the
division into two main groups of type I photoinitiators (HPs and APOs), namely, HPs are
dedicated to thin films (surface photocrosslinking), and APOs are more suitable for the
photopolymerization of thick layers [21]. However, the influence of photoinitiators on
UV-induced cotelomerization processes of acrylic monomers has not been investigated.
A characteristic property of the process is the presence of radicals from the photolysis of
telogen in the system (apart from the radicals derived from the photoinitiator photolysis
and the resulting monomer radicals and macroradicals). Additionally, there are more of
these radicals in the system compared to those coming from the photoinitiator. Some of the
radical reactions are outlined in Figure 1. The results of the kinetics studies are presented
in Figure 3 (photo-cotelomerization rate, Rp and monomers conversion, p).

The UV-induced cotelomerization reaction without photoinitiator (brown line) ran
at a very slow rate (ca. 0.1%/s) and slowed down after about 400 s of UV-irradiation. As
can be seen, as the photoinitiator content increased, the reaction rate (Rp) values increased.
Interestingly, three characteristic areas could be marked on the graphs showing the reaction
rate. The first area related to the Rp in systems with O819 and OTPO photoinitiators, where
the Rp values were highest and increased from ca. 1 to 1.6%/s with the PI dose. The second
area was for systems with OTPOL and O2100 photoinitiators, where Rp values ranged
from 0.3 to 0.5 %/s at the lowest PI dose and only slightly increased to about 0.6%/s at the
highest PI dose. As is known, the photoinitiator O2100 contains mainly OTPOL (95 wt%);
therefore, the differences between the two systems were not large, and they were revealed
only at the lowest dose of PI (15 mmol). The reaction rate was also very similar at higher
PI concentrations (30 or 45 mmol). The third region relates to the photo-cotelomerization
rate in HP systems, for which the reaction rate was two or three times higher than in the
system without any photoinitiator (i.e., 0.2 or 0.3%/s), and it increased indefinitely with the
concentration of the photoinitiator. However, the reaction rates were very low compared to
systems with O819 or OTPO.
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Moreover, some delay in the initiation of reactions in HP systems can be observed, 
especially at their low concentration. The maximum rate of reaction was achieved after 
about 150 s of exposure to UV for doses of 15 or 30 mmol of HPs, while for the system 
with APOs—after just a few seconds. In general, the monomer conversion exceeded 70% 
despite the slow reaction rates in some systems. The monomer conversion in the reference 
sample (without PI) was 72% after 1200 s of UV-irradiation during the photo-DSC test 
(without mixing of monomers mixture). High monomer conversions were obtained in the 
O819 and OTPO systems (90–93%), corresponding to the highest values of reaction rates, 
and high conversion values (over 80%) were received after 200 s of irradiation. OTPOL 
was second in terms of the speed of achieving the highest possible monomer conversion 
(80–94%), and HP was third (although, at 30 mmol PI, the final monomer conversion value 
was higher than for the OTPOL-based samples). The relatively high monomer conversion 
in the HP-based samples, despite the slow reaction rate, resulted from keeping the reac-
tion rate relatively constant and high (0.2–0.3%/s) for a long period of exposure to light 
(even above 400 s). On the other hand, in samples with APOs, the reaction was rapidly 
inhibited (after 100 s in the case of O819 and OTPO and 200–300 s in the case of OTPOL-
based samples) as a consequence of the viscosity increase in the polymerizing system. It 
has been confirmed by the obtained results, as well as by the calculation of initiation effi-
ciency (Ip), that the efficiency of APOs in the photo-cotelomerization process was higher 
than that of HPs. The results are presented in Figure 4. 
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Moreover, some delay in the initiation of reactions in HP systems can be observed,
especially at their low concentration. The maximum rate of reaction was achieved after
about 150 s of exposure to UV for doses of 15 or 30 mmol of HPs, while for the system with
APOs—after just a few seconds. In general, the monomer conversion exceeded 70% despite
the slow reaction rates in some systems. The monomer conversion in the reference sample
(without PI) was 72% after 1200 s of UV-irradiation during the photo-DSC test (without
mixing of monomers mixture). High monomer conversions were obtained in the O819 and
OTPO systems (90–93%), corresponding to the highest values of reaction rates, and high
conversion values (over 80%) were received after 200 s of irradiation. OTPOL was second
in terms of the speed of achieving the highest possible monomer conversion (80–94%),
and HP was third (although, at 30 mmol PI, the final monomer conversion value was
higher than for the OTPOL-based samples). The relatively high monomer conversion in the
HP-based samples, despite the slow reaction rate, resulted from keeping the reaction rate
relatively constant and high (0.2–0.3%/s) for a long period of exposure to light (even above
400 s). On the other hand, in samples with APOs, the reaction was rapidly inhibited (after
100 s in the case of O819 and OTPO and 200–300 s in the case of OTPOL-based samples) as
a consequence of the viscosity increase in the polymerizing system. It has been confirmed
by the obtained results, as well as by the calculation of initiation efficiency (Ip), that the
efficiency of APOs in the photo-cotelomerization process was higher than that of HPs. The
results are presented in Figure 4.
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As can been seen, the viscosity and SC values increased with the amount of photoin-
itiator used in the reaction. However, HP-based syrups exhibited significantly lower vis-
cosity values (from 0.2 to 6.1 Pa·s) than APO-based products (from 5 to 185 Pa·s). The 
syrups with a viscosity below 3 Pa·s (BAA-127-15, BAA-127-30, and BAA-184-15) are not 

Figure 4. Initiation efficiency (Ip) of the radical photoinitiators used for photo-cotelomerization
processes of BA, AA, and ABP with TBM.

The initiation efficiency (Ip) of the radical PIs increased with their concentration in
the system, and extremely high values of Ip were obtained at 45 mmol of O819 and OTPO.
The order of PI efficiency was as follows: O819 > OTPO > OTPOL > O2100 > O127 >
O184. Surprisingly, the mixture of OTPOL with the most effective photoinitiator O819 (i.e.,
O2100) was characterized by worse properties than pure OTPOL. It might be caused by
the effect of too many radicals and different types of radicals in the system, which leads to
their recombination or extinction of excited states in the presence of tribromomethane and
bromine radicals (resulting from TBM).

3.2. Properties of BAA Syrups and Cotelomers

The results of dynamic viscosity and solid content (SC) tests for the obtained BAA
cotelomers solutions (BAA syrups) with different kinds and contents of type I radical
photoinitiators are presented in Figure 5.
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As can been seen, the viscosity and SC values increased with the amount of photoinitia-
tor used in the reaction. However, HP-based syrups exhibited significantly lower viscosity
values (from 0.2 to 6.1 Pa·s) than APO-based products (from 5 to 185 Pa·s). The syrups
with a viscosity below 3 Pa·s (BAA-127-15, BAA-127-30, and BAA-184-15) are not suitable
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for coating and forming thin adhesive films (PSAs) from a practical point of view. The
SC values were also relatively low for the mentioned samples, especially for BAA-127-15
and BAA-184-15 (49.9 wt% and 19.9 wt%, respectively); this confirms the lowest initiation
efficiency by these photoinitiators in the tested monomers system. An additional amount
of increase in HP-type photoinitiators (up to 45 mmol) only slightly increased the viscosity
(ca. 6 Pa·s) and the SC values (72 and 76 wt%, respectively). In contrast with APO-type
PI samples, increasing the content of PI (up to 45 mmol) caused a significant increase in
viscosity of syrups (viscosity above 100 Pa·s; the samples were not suitable for coating at
room temperature but—as with typical hot melt adhesives—had to be coated after heating).
An extremely high viscosity value (185 Pa·s) was achieved for the sample BAA-2100-45
(with 45 mmol of Omnirad 2100). More radicals were formed in this system and the SC
value reached 96 wt%. BAA syrups with APO-type PI, even with a low amount of PI
(15 mmol), showed high SC values (75–81 wt%) and suitable coating viscosities (5–12 Pa·s).
The BAA-TPO-15 sample (20 wt% of SC) is an exception confirming our previous research
(for systems without telogen) [18]. It was noted that the highest SC values were obtained
for BAA-819-45 (96 wt%). As we previously reported, the type and amount of PIs have a
significant influence on the free radical bulk photopolymerization process (without telogen)
of selected (meth)acrylate monomers. It has been proven that the acrylic syrups prepared
using APO photoinitiators exhibited a higher viscosity and SC than samples with HPs did,
as well as average molecular weights [18]. In the case of the UV-induced cotelomerization
process, it turns out that samples with APOs showed lower molecular weights (Mn and Mw)
than samples with HPs did. The molecular weights and polydispersity of BAA-cotelomers
are presented in Table 3. Higher molecular weights (Mn and Mw values) were exhibited for
samples with HPs (Mn = 19,790–21,530 g/mol and Mw = 30,570–34,400 g/mol) than with
APOs (Mn = 17,250–19,390 g/mol and Mw = 26,320–31,120 g/mol). Generally, the average
molecular weights decreased with the amount of photoinitiator (high concentration of PI
gives a high radical count and leads to the production of multiple chain polymerization
reactions).

Table 3. Molecular weights and polydispersity of BAA-cotelomers.

Cotelomer Symbol Mn (g/mol) Mw (g/mol) PDI

BAA-127-15 21,530 33,770 1.57
BAA-127-30 20,520 32,930 1.61
BAA-127-45 20,100 30,570 1.52
BAA-184-15 21,010 34,400 1.64
BAA-184-30 21,060 32,540 1.54
BAA-184-45 19,790 30,670 1.55
BAA-819-15 18,150 28,440 1.57
BAA-819-30 17,650 27,090 1.53
BAA-819-45 17,460 26,930 1.54

BAA-TPO-15 19,390 31,120 1.60
BAA-TPO-30 18,210 27,190 1.49
BAA-TPO-45 17,460 26,430 1.51

BAA-TPOL-15 17,500 28,670 1.64
BAA-TPOL-30 18,260 27,450 1.50
BAA-TPOL-45 17,250 26,320 1.53
BAA-2100-15 19,100 28,990 1.52
BAA-2100-30 18,940 28,620 1.51
BAA-2100-45 17,970 27,450 1.53

In contrast, the PDI values were very similar for all samples (1.5–1.6 a.u.). The low
polydispersity index (as in polymers obtained by the ATRP method) demonstrated a near-
unimodal molecular weight distribution. Additionally, it was due to the presence of the
chain transfer agent (tetrabromomethane, TBM) and its interaction with photoinitiators.
The several types of radicals were formed (from TBM and PIs) during UV-irradiation. The
possible paths of UV-induced cotelomerization reaction are shown in Figure 1. The content
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of linear polymers in the system (adhesive composition contains linear BAA cotelomers,
unreacted monomers, and HTB) and the average molecular weights of BAA cotelomers
should influence the adhesive properties (adhesion to steel and tack) and the cohesion of
the prepared PSAs. Generally, there were more linear polymers (higher SC values) with
lower molecular weights in APO systems, and, conversely, fewer linear polymers but with
higher molecular weights were in HP systems. The dependence of the adhesion to steel on
the solids content (SC may be the same as monomer conversion [18]) is shown in Figure 6.
The graph demonstrates the results only for samples BAA-819 (prepared using PI with
the highest Ip values, Figure 4) and BAA-TPOL (PI with average Ip values). The adhesion
values were higher for PSAs based on BAA-TPOL than BAA-819 and they decreased
with the PI concentration (from 9.5 to 5.5 N/25 mm). The SC values were slightly lower
for BAA-TPOL samples (80–94 wt%) than for the PI samples with the highest initiation
efficiency (75–96 wt%). The SC values increased (higher content of linear polymers) as
the adhesion values decreased (for both considered systems). Both systems (BAA-819 and
BAA-TPOL) were characterized by very similar values of Mn (ca. 17,000 g/mol) and Mw
(27,000 g/mol; Table 3).

Materials 2021, 14, x FOR PEER REVIEW 11 of 15 
 

 

The several types of radicals were formed (from TBM and PIs) during UV-irradiation. The 
possible paths of UV-induced cotelomerization reaction are shown in Figure 1. The con-
tent of linear polymers in the system (adhesive composition contains linear BAA cote-
lomers, unreacted monomers, and HTB) and the average molecular weights of BAA cote-
lomers should influence the adhesive properties (adhesion to steel and tack) and the co-
hesion of the prepared PSAs. Generally, there were more linear polymers (higher SC val-
ues) with lower molecular weights in APO systems, and, conversely, fewer linear poly-
mers but with higher molecular weights were in HP systems. The dependence of the ad-
hesion to steel on the solids content (SC may be the same as monomer conversion [18]) is 
shown in Figure 6. The graph demonstrates the results only for samples BAA-819 (pre-
pared using PI with the highest Ip values, Figure 4) and BAA-TPOL (PI with average Ip 

values). The adhesion values were higher for PSAs based on BAA-TPOL than BAA-819 
and they decreased with the PI concentration (from 9.5 to 5.5 N/25mm). The SC values 
were slightly lower for BAA-TPOL samples (80–94 wt%) than for the PI samples with the 
highest initiation efficiency (75–96 wt%). The SC values increased (higher content of linear 
polymers) as the adhesion values decreased (for both considered systems). Both systems 
(BAA-819 and BAA-TPOL) were characterized by very similar values of Mn (ca. 17,000 
g/mol) and Mw (27,000 g/mol; Table 3). 

15 30 45
4

5

6

7

8

9

10

 OTPOL
 O819
 OTPOL
 O819

PI concetration (mmol)

Ad
he

si
on

 (N
/2

5m
m

)

70

75

80

85

90

95

100

 S
C

 (w
t %

)

 
Figure 6. Dependence of adhesion to steel and solid content on photoinitiator concentration. 

However, systems with a higher SC value (higher content of linear cotelomers with 
very similar molecular weights) include more Br-terminated chains (according to the te-
lomerization mechanism, the ends of the formed telomer contain fragments of telogen 
[28]). This likely results in less adhesion to the substrate (nonpolar cotelomer chain ends). 
The influence of various types and concentrations of PIs on the adhesion is shown in Fig-
ure 7). 

Figure 6. Dependence of adhesion to steel and solid content on photoinitiator concentration.

However, systems with a higher SC value (higher content of linear cotelomers with
very similar molecular weights) include more Br-terminated chains (according to the telom-
erization mechanism, the ends of the formed telomer contain fragments of telogen [28]).
This likely results in less adhesion to the substrate (nonpolar cotelomer chain ends). The
influence of various types and concentrations of PIs on the adhesion is shown in Figure 7).
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Figure 7. Adhesion to steel of PSA based on BAA cotelomers prepared using different types and
concentrations of PIs.



Materials 2021, 14, 4563 12 of 15

Regardless of the PI type, with the increase in PI concentration (increase in the SC
value), the adhesion of prepared PSAs decreased. The highest values of adhesion to steel
were obtained for PSAs based on BAA cotelomers with the lowest dose of photoinitiator
(15 mmol). The best result of adhesion was received for the PSA from BAA-TPOL-15 syrup
(9.7 N/25 mm). A high result of adhesion (9.4 N/25 mm) was also noted for PSA with
photoinitiator O2100. Interestingly, high adhesion values (9.2 N/25mm; PI concentration
30 mmol) were obtained for PSA prepared with the least effective photoinitiator O184
(HPs-type). However, the SC value of the BAA-184-30 syrup was 70%. It can be concluded
that the SC value in the obtained syrups had a key influence on the adhesion to steel.
The tack values also decreased with the concentration of photoinitiator. The results of
tack measurements are shown in Table 4. The tack values were generally lower than the
adhesion values (typical for PSA).

Table 4. Cohesion and tack values of PSAs based on BAA cotelomers.

PSA Symbol
Cohesion [h]

Tack (N)
20 ◦C 70 ◦C

BAA-127-15 nd nd nd
BAA-127-30 nd nd nd
BAA-127-45 100 ± 3 72 ± 2 2.1 ± 0.2
BAA-184-15 nd nd nd
BAA-184-30 100 ± 4 72 ± 1 3.0± 0.3
BAA-184-45 100 ± 5 72 ± 2 2.5 ± 0.1
BAA-819-15 100 ± 3 72 ± 2 6.5 ± 0.3
BAA-819-30 14 ± 0.5 3 ± 0.2 5.2 ± 0.3
BAA-819-45 5 ± 0.5 0.1 ± 0.02 2.4 ± 0.2

BAA-TPO-15 nd nd nd
BAA-TPO-30 100 ± 5 72 ± 3 7.1 ± 0.4
BAA-TPO-45 11 ± 0.3 2 ± 0.2 5.3 ± 0.2

BAA-TPOL-15 100 ± 6 72 ± 3 3.2 ± 0.1
BAA-TPOL-30 100 ± 4 72 ± 4 3.1 ± 0.2
BAA-TPOL-45 1 ± 0.2 0.3 ± 0.2 2.5 ± 0.2
BAA-2100-15 100 ± 2 72 ± 3 5.1 ± 0.4
BAA-2100-30 100 ± 5 72 ± 3 5.0 ± 0.3
BAA-2100-45 2 ± 0.2 0.6 ± 0.2 2.5 ± 0.1

nd—no data.

The highest tack values were recorded for samples based on BAA-TPO-30 and BAA-
819-15 (7.1 N and 6.5 N, respectively). Interestingly, almost all prepared PSAs were
characterized by excellent cohesion at 20 ◦C (100 h) and 70 ◦C (72 h). Only samples with
low tack values (usually ca. 5 N or less, with APO-type PI concentration—45 mmol) did
not wet the steel surface sufficiently during the cohesion test. Additionally, these samples
obtained a low cohesion result. Interestingly, samples from HP-type PIs (O127 and O184),
even at a low tack value (2 or 3 N), were characterized by very high cohesion due to the
presence of cotelomers with higher molecular weights compared to the PSA with APOs
(Table 2). Molecular weight values and Tg values are critical for the use of a polymer as a
PSA. The Tg values for selected PSAs (with 45 mmol of PI) are shown in Figure 8.

As can be seen, PSAs possessed the Tg range from ca. −33 ◦C (PSAs with HPs) to ca.
−37 ◦C (PSAs with APOs). It is known that PSAs should have a Tg of about −15 to −5 ◦C
or less, and acrylic PSA possesses a Tg range from −40 ◦C to −60 ◦C. The Tg is a function
of molecular weight (Mn), as well as other chemical and macromolecular characteristic,
e.g., chemical composition and crosslink density [31]. It should be noted that the BAA
cotelomers with HPs (45 mmol) exhibited higher Mn values (ca. 20,000 g/mol; Table 3) than
the BAA with APOs (ca. 17,000 g/mol). Thus, the PSAs based on the BAA-HPs exhibited
higher Tg values (less chains mobility) than samples with APOs. Additionally, the research
shows that PSA with HPs was characterized by a higher crosslinking density (lower SC
value, ca. 70 wt%) than samples with APOs (ca. 90 wt%); therefore, PSA-HPs possessed a
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higher Tg. It is known that crosslinking reduces chain mobility and, thus, increases the Tg.
However, it can be concluded that the differences in Tg values were not significantly large.
This is because the obtained PSAs, although they differed in crosslink density, chemically
contained the same amount of polar monomer (AA) and were crosslinked in the same
way (using the same amount of HTB and the same UV dose). These factors would have a
greater influence on the difference in Tg values.
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4. Conclusions

In this paper, a new preparation method (i.e., UV-induced cotelomerization process)
of solvent-free acrylic pressure-sensitive adhesives was presented and the influence of
type I radical photoinitiators (HPs and APOs) on the kinetic parameters of the process
was investigated. Moreover, the physico-chemical properties of cotelomer syrups and
self-adhesive features of prepared PSAs were tested. It was revealed that APOs were
significantly more efficient in the cotelomerization process than HPs were. The order of
PI efficiency has been proven: O819 > OTPO > OTPOL > O2100 > O127 > O184. A high
monomer conversion (the solid content) was obtained even at the lowest PI concentration
(15 mmol) in systems with O819 (81 wt%) and OTPO (75 wt%). It was also found that
cotelomer syrups based on APOs were characterized by considerable higher viscosity
values than HP-based syrups. Moreover, the APO-based syrups contained more linear
polymers (high SC values) with lower molecular weights than systems with HPs. These
have been found to be key factors in the self-adhesive properties of PSAs. Higher adhesion
and tack values were observed at low SC (55–80 wt%) and low-molecular-weight cotelomers
(i.e., with APOs). A significant reduction in adhesion and tack was observed with increasing
SC values (>80 wt%). It can be concluded that the vast majority of PSAs showed excellent
cohesion (>72 h), regardless of the SC value or the molecular weights of the cotelomers.
However, the high cohesion is most likely due to the method of crosslinking itself and
the selection of the monomer and the UV dose. The methods of adhesive composition
modification (with hydroxyl-terminated polybutadiene) itself and by UV-crosslinking were
correct and noteworthy. The SC values and molecular weight had a great impact on Tg
values of prepared PSAs as well. The cotelomers with higher SC values and lower Mn gave
PSAs with lower Tg values.
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