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Abstract: The paper presents the response of a three-layered annular plate with different damaged
laminate facings to the action of the static or dynamic temperature field model. Various damages
of laminate, composite facings change the plate structure reaction under the temperature fields.
Obtained results indicate practical meaning of analyses in failure diagnostic process. The thermal
sensitivity of two kinds of plate structures, undamaged and damaged, offers both new practical
and scientific possibilities in evaluation of the plate behavior. The relations between macro-damage,
i.e., the buckling of the plate structure and micro-damages of plate layers subjected to temperature
gradient, are shown. The numerical solution is proposed as the most effective in examinations of
the various transversally symmetrical and asymmetrical plate structures with a different rate of
damages. The graphical distribution of changes in values of static and dynamic critical loads illustrate
the process of structural damaging during its exploitation. They have practical importance in the
evaluation of the structure capacity. The knowledge of the effect of laminate degradation process on
plate buckling phenomenon located in thermal environment complements previous investigations
and designates complex, multi-parameter problems as having scientifically new elements.

Keywords: composite laminate annular plate; thermal loading; stability; damages; finite difference
method; finite element method

1. Introduction

The range of possible applications of the annular plates is extensive, for example, in
the aerospace industry, mechanical and nuclear engineering, civil engineering, or miniature
mechanical systems. Plates can be subjected to the various and complex properties of the
surrounding environment. These include the temperature field parameters. The action
of the temperature gradient in the plate radial direction can be the reason for the loss of
plate stability. Then, stress-strain plate parameters are expressed by critical ones. Buckling
phenomenon can be used to evaluate the state of the composite structure and the degree of
existing defects. During the exploitation process, it is not easy to predict cracks of fibers and
matrix in the laminate material. Cracks of fibers or matrices are a form of failure of fibrous
composite. Furthermore, the loss of the plate stability is a form of global failure. However,
the detailed observations of the composite plate buckling behavior can help to evaluate
the changes which occur in structure. The process of propagation of damages, such as
fiber or matrix cracks in laminas, changes the geometry of the structure from transversally
symmetric to asymmetric and alerts its rigidity parameters. The original plate problem
becomes a new thermo-mechanical one and formulates a new task requiring the solution.

The main novelty of the presented problem is the evaluation of the fiber-reinforced
composite plate behavior depending on the static and dynamic temperature field action. A
numerically three-layered annular plate with foam core and laminated facings was exam-
ined. Models with various combinations of facings damages were built to analyze different
degrees of plate structure degradation. Transversally symmetrically and asymmetrically
located cracks of fibers and/or matrix of facings laminas have formed the plate structure
and analyzed plate models. The problem was solved numerically using the finite element
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method and analytically and numerically with the use of approximation methods, such
as the finite difference one, in order to compare results of quasi-isotropic plate models.
Values of critical temperature differences, which characterize the plate critical thermal state
are analyzed in detail. Results are presented graphically to show the nature of changes of
both the degree of structure degradation and corresponding values of critical temperature
differences. The nature of the changes is sequential and orderly. Hence, the presented
approach to the problem and the presentation of results is of practical importance in the
failure diagnostic process performed to evaluate the state of the structure.

According to the author’s knowledge, the formulated problem and idea to observe
the plate buckling geometry and to analyze critical values of temperature differences
between plate edges in the evaluation process as the effect of lamina cracks on the plate
response have not been sufficiently considered. The main aim of this contribution is to
evaluate the stability response of composite layered plates subjected to thermal loading,
whose laminate facings can be variously defected. The second aim of the investigations
is to present proposal analytical and numerical procedures of problem analysis, which
is based on the mathematical calculations of structure rigidity and the application of the
finite element (FEM) plate model in buckling static or dynamic calculations connected
with thermal loads. Furthermore, the third aim of analyses presented in the paper can be
formulated. The analytical and numerical solution, which uses the finite difference method
(FDM) for a selected group of three-layered plates with laminate undamaged and damaged
facings treated as quasi-isotropic are presented as well as the results comparison between
FEM and FDM quasi-isotropic plate models.

The review of literature connected with the undertaken problem can be described
within three subject areas: stability problem, structure degradation process, and tempera-
ture loads. Exemplary dynamic stability analyses of sandwich annular plates are presented
in [1,2]. The problem of axisymmetric buckling of laminated composite circular and an-
nular plates is presented in [3,4]. Author’s papers which focus on the dynamic stability
problem of the mechanically loaded three-layered annular plate are referred to below [5,6].
The presented solution to this problem under analysis, based on the orthogonalization and
finite difference approximation methods, is used in this paper. Stability analysis of the
three-layered plate with laminate facings is considered in this paper [7].

The structure degradation process, an effect of micro cracks or failure damages, is
examined in the presented selected papers for mechanically loaded plates. The quasi-
isotropic composite circular plate under quasi-static lateral load and low-velocity impact
tests is presented in [8]. The analysis was performed with the use of the non-linear
approximation method and the large deflection plate theory. The results show that the
low-velocity impact responses are close to the quasi-static behavior of the plate. The fiber
damage image, along with the damage propagation from the center of plate towards to
the edge, are presented for plates with varying thicknesses. The thin-walled sandwich
rectangular plates with axially compressed composite faces are examined in [9]. The
transverse full symmetry in a plate of sandwich structure, which is composed of two
multi-layered fiber reinforced plastic (FRP) faces, is examined.

The bifurcation instability presented for rectangular plates made of fibrous composite
materials with reinforcement subjected to long-term damage is formulated and solved
in [10]. The problem of matrix cracking and delamination in laminated composites is
presented in [11]. A model for the prediction of the propagation process of transverse
cracks in polymer matrix composite laminates is proposed. Various crack patterns are
analyzed. The failure model for the simulation of change in laminated composite plates is
presented in [12]. Plates are subjected to dynamic loading. Matrix cracking propagation
is analyzed numerically. The mathematical formulation for the modelling of damage
in laminated composite plates and shells is presented in [13,14]. The micromechanical
model for predicting the impact damage of composite laminas is proposed in [15]. The
model is based on the laminate microstructure and various failure such as matrix cracking,
fiber breakage, and delamination. The non-destructive testing method to characterize the
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composite material local damage is presented in [16]. Furthermore, [17] presents the use
of the finite element analysis procedure, which is developed to predict the initiation and
propagation of damages in laminated composite plates.

The author’s papers showing the buckling behavior of laminated composite annular
plates with structure failure subjected to mechanical loading are presented in [18–20]. An
attempt to create a full image of plate stability responses is shown in a graphic form similar
to the one assumed in this paper. In addition, the use of the mathematical formulae is
proposed in [21], which modifies the elements stiffness matrix of composite structure.

Thermal or thermo-mechanical responses of plates are the subject of the numerous
works. Some of them are mentioned in this part of the introduction. A chapter of book [22]
is dedicated to stability problem analysis of thermally loaded general heterogeneous
FG annular plates. The buckling of heated FGM annular plates on elastic foundation is
presented in [23]. Thermal buckling analysis of transversally graded circular plate subjected
to a central elastic foundation is presented in [24]. Paper [25] presents a solution for a
moderately thick annular plate made of FGM composite. Furthermore, the effects of the
uniform temperature rise and heat conduction across the plate thickness on critical buckling
are considered. The non-axisymmetric buckling behavior of annular plates subjected to
temperature rise is presented in [26]. The problem of the asymmetric buckling behavior
of isotropic homogeneous annular plates on a partial elastic foundation under uniform
temperature is investigated in [27]. The case of moderately thick annular FGM plates
on partial elastic foundation under uniform temperature rise, including the temperature
dependent material properties, which are graded across the plate thickness, is presented
in [28]. The critical buckling temperature is examined for plates with a temperature-
dependent elasticity modulus and a thermal expansion coefficient. The problem of the
FG annular plate loaded with thermal shock is presented in [29]. The critical buckling
and dynamic post-buckling responses of the FGM annular plates with initial geometric
imperfections are considered in [30]. The effects of the loads and material parameters
and imperfection rates on dynamic behaviors and values of critical temperatures are
examined in detail. The computational analysis of the non-linear vibration and thermal
post-buckling of a heated orthotropic annular plate is presented in [31]. The axisymmetric
thermal buckling analysis of thin FG annular plates based on von Karman’s plate theory is
undertaken in [32]. Vibration evaluations used in the optimization of elastic annular plates
subjected to thermal loading and vibrations thermally induced by oscillating heat stream
are presented in [33]. Free vibration analysis of FG annular plates with various thickness in
the thermal environment supported on elastic foundation is investigated in [34].

Plates models subjected to thermal environment are the subjects of consideration in
author’s works [35–37]. The solutions for three-layered annular plates which are differently
supported and loaded with stationary temperature field are employed in [35]. The evalu-
ation of behavior of three-layered annular plate made of steel facings and supported in
slideably clamped edges subjected to time-dependent temperature field and two dynamic
fields, mechanical and thermal, is presented in [36]. The analysis focused on the effect
of viscoelastic core of a three-layered annular plate with homogeneous steel facings on
responses due to mechanical and/or thermal loading is presented in [37]. Results show the
dynamic stability of plate models supported with clamped edges when the plate is loaded
only thermally and plates with slideably clamped edges for plates which are located in the
thermal environment and mechanically loaded.

The literature review shows an insufficient range of investigations, which undertake
the combined problem of buckling, as well as static and dynamic analysis and thermal
loading performed for composite plates with micro-damaged laminate layers. Such an
issue is the multi-parameter problem dependent on geometrical, material, and structural
properties of the plate, connected with a support system and a somewhat loading state.
Additionally, the procedure of plate modelling based on the approximation methods has
influence on the accuracy of final results. Graphically presented results will show the
character of changes of critical temperatures, which denotes ordered responses of damaged
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and thermally loaded plates. Such an observation initiates the research problem with new
elements leading to diagnostic evaluation of composite plates in temperature fields. So, the
analyzed problem is scientifically interesting and practically important.

2. Problem Formulation

A three-layered annular plate with thin laminated facings and a thicker core was
placed in a thermal environment. Temperature differences between the inner and outer
plate edge created thermal gradients of temperature fields surrounding plate perimeters.
The plate was subjected to a loss of stability. The critical state depended on various
parameters which were also connected with the quality of laminated plate outer layers.
Fiber or matrix cracks in laminas changed the structure properties and the ability of
the plate yield to work in variable conditions. Then, the plate cross-section geometry
can be transversally symmetrical or asymmetrical. Including both the symmetrical and
asymmetrical forms of plate buckling and different cases of lamina damages, the evaluation
of the temperature field effect on plate stability was analyzed for two environmental
models: static and dynamic. Dynamically, the plate was loaded with temperature difference
expressed by the following relation (see, the main notations presented in Table A1—part
Appendix A of paper):

∆T = at (1)

Figure 1 shows a scheme of the clamped–clamped plate in a thermal environment
with temperatures Ti and To in the area of plate hole and outer perimeter, respectively. The
undertaken dynamic stability problem requires the adoption of a stability loss criterion.
The criterion presented by Volmir in [38] was adopted. According to this criterion, the plate
stability loss occurs at the moment when the speed of the point of maximum deflection
reaches the first maximum value. Black dots shown in Figure (see, for example Figure 2)
presented in the paper signify the moment of the plate dynamic stability loss.

Plate facings composed of four laminas with fibers were arranged according to the
code [0/−45/45/90]. The configuration of laminas fulfilled the conditions of the quasi-
isotropic composite. This allowed for a comparison of results between two plate models
built using the finite difference method (FDM) and the finite element method (FEM). The
two plate models are examined with isotropic or orthotropic thermal properties.

The temperature field was axisymmetrical and flat. There was no heat exchange
between the plate surfaces. The heat flow, defined by the logarithmic distribution of tem-
perature versus the plate radius (see, Equation (20)), existed only in the radial direction of
plate facings. Material constants did not depend on temperature. Two cases of temperature
changes were examined with positive and negative thermal gradients, when the tempera-
ture Ti in the plate whole was higher than in the outer surroundings (Ti > To, see Figure 1)
and when the temperature values were opposite (Ti < To), respectively.

Figure 1. Scheme of the three-layered annular plate composed of facings (layers 1, 3) and core
(layer 2) subjected to axisymmetrical temperature field expressed by Ti, To.
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Figure 2. Time histories of deflection of quasi-isotropic FDM plate with health and damaged facings
in the form of all cracked fibers.

3. Problem Solution

The solution to the problem required the use of the numerical approximation meth-
ods. Two variants of the solution were proposed. The first of them was based on the
orthogonalization and finite difference methods (FDM) plate model. The problem of the
clamped–clamped classical three-layered plate was solved analytically and numerically.
The solution was conducted for quasi-isotropic thermo-mechanical properties of plate lay-
ers was expressed by the engineering constants, such as Young’s modulus—E, Kirchhoff’s
modulus—G, Poisson’s ratio—ν, mass density—µ, and linear expansion coefficient—α in
thermally isotropic facings.

The second variant of the solution to the problem was based on the finite element
method (FEM) plate model. The plate model was built using the ABAQUS system. FEM
plate models made it possible to observe the static and dynamic stability behavior of each
of the examined structures: a composite without any defects, treated as quasi-isotropic one,
and a composite having fiber or matrix cracks in selected facing laminas. That includes
plates whose thermal properties are isotropic or orthotropic.

Both used methods were approximate. In the case of the FDM method, the basic
inaccuracies were linked to the essence of method. It was connected with the demand that
continuous function must be substituted by the set of discrete values. The convergence of
the method with the grid concentration is the fundamental expectation (see, exemplary
results presented in Tables 1 and 2). The accuracy of the FEM method, connected with
the process of the “idealization” of system geometry and the disruptions of the strains
continuity, depended on the form of shape function describing the strain state of element
and the degree of division into elements (see, point 3.3 of the paper).

Table 1. Critical static temperature differences ∆Tcr of an FDM plate model loaded thermally with a
positive gradient versus a different number N of discrete points.

m
∆Tcr [K]

N = 11 N = 14 N = 17 N = 21 N = 26

0 112.86 111.95 111.46 111.11 110.85
1 111.02 110.21 109.77 109.45 109.23
2 107.51 106.96 106.67 106.45 106.31
3 106.54 106.26 106.12 106.03 105.98
4 109.08 109.03 109.02 109.03 109.06
5 112.69 112.82 112.92 113.03 113.13
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Table 2. Critical dynamic temperature differences ∆Tcr of axisymmetrical FDM plate model (m = 0)
loaded thermally with a positive gradient versus a different number N of discrete points.

Number N 11 14 17 21 26

∆Tcrdyn [K] 139.1 131.7 125.6 121.9 120.6

Both presented methods of the solution to the problem based on the thermo-mechanical
relations for laminate facings. The classical lamination theory was used [21,39,40]. The
composite degradation of plate structure was expressed by the calculated and suitably
modified plate rigidity parameters [21].

3.1. Thermo-Mechanical Model of Fibrous Composite

The physical relation for linear elastic theory is expressed by:

σi = Qij
(
ε j − αj∆T

)
(2)

where:
α—thermal expansion,
Q—stiffness matrix.
Using the classical lamination theory [21,39,40] the resultant forces and moments are

expressed as follows:

{N} = [A]{ε}+ [B]{k} −
{

NT
}

(3)

{M} = [B]{ε}+ [D]{k} −
{

MT
}

(4)

where:
{N}, {M}—vectors of resultant forces and moments, respectively,{

NT},
{

MT}—vectors of resultant thermal forces and moments, respectively,
[A], [B], [D]—matrixes of extensional coupling and bending stiffness, respectively,
{ε}, {k}—vectors of strains and curvatures of the middle surface, respectively.
The elements of stiffness matrixes [A], [B], [D] of laminate facings are expressed by

the following relations:

Aij =
N

∑
k=1

(
Qij

)
k
(zk − zk−1) (5)

Bij =
1
2

N

∑
k=1

(
Qij

)
k

(
z2

k − z2
k−1

)
(6)

Dij =
1
3

N

∑
k=1

(
Qij

)
k

(
z3

k − z3
k−1

)
(7)

where Qij—transformed reduced stiffness matrix of lamina, N—number of layers, zk and
zk−1—coordinates in cross-section laminate of the outer surfaces of layer numbered as k
and k − 1 with thickness equal to tk, respectively.

Thermal forces and moments are described by:

{
NT
}
= ∆T

N

∑
k=1

[
Q
]

k{α}ktk (8)

{
MT
}
= ∆T

1
2

N

∑
k=1

[
Q
]

k{α}k

(
z2

k − z2
k−1

)
(9)

where
{α}—the vector of the apparent thermal expansion.



Materials 2021, 14, 4559 7 of 24

The apparent αx, αy, and αxy rates of thermal expansion in laminate axis (x,y) were
calculated for laminas treated as thermally orthotropic. The apparent rates of thermal
expansion were obtained using the plus and minus transformation of orthotropic thermal
expansion rates α1, α2 in the main material axis 1, 2.

The elastic, engineering constants E, G, ν for configuration of quasi-isotropic composite
are expressed by the following formulae [21]:

E = 2
A66

tl

(
1 +

A12

A11

)
, G =

A66

tl
, ν =

A12

A11
(10)

where A11, A12, A66—extensional stiffness Aij (i, j = 1, 2, 6).

3.2. Composite Degradation Model

Fiber or matrix cracks in the plate facings changed the mechanical properties of the
laminate and the rigidity of the plate structure. The accepted model of the composite
degradation was based on the theory of correction parameter method, presented in [21].
The mathematical essence of this method was based on the modification of the stiffness
matrix, whose form for undamaged lamina is expressed by the following elements:

Q11 =
E1

(1− ν12ν21)
, Q22 =

E2

(1− ν12ν21)
, Q12 =

E1ν21

(1− ν12ν21)
, Q21 =

E2ν12

(1− ν12ν21)
, Q66 = G12 (11)

It is assumed that a matrix crack eliminates rigidity in the direction transverse to the
fibers. It is expressed by the correction parameter η. For the lamina with a matrix crack,
elements Q11, Q12, Q22 take on the following new values:

Q11 = η Q11, Q12 = Q22 = 0. (12)

When a fiber crack occurs, the stiffness matrix modification is limited to a replacement
of elements Q11 by Q22 [21]:

Q11= Q22 (13)

The analyzed problem of plates with quasi-isotropic composite facings was solved
analytically and numerically using the orthogonalization method and the finite difference
method (FDM), and only numerically using the finite element method (FEM). The FEM
makes it possible to thoroughly observe the plates with quasi-isotropic composite facings
and composite facings with damages. The examinations were conducted for plate models
with facings being damaged in the form of fiber or matrix cracks of a single lamina or
all laminas.

3.3. Plate Model Built Using the Finite Element Method

The calculations were carried out using the ABAQUS system at the Academic Com-
puter Center CYFRONET-CRACOW (KBN/SGI_ORIGIN_2000/Płódzka/030/1999). The
full annulus plate model was built of shell elements and solid elements creating a mesh of
the facing and the solid, respectively. The outer surfaces of facings and core mesh elements
are tied using a program option expressed as surface contact interaction. The numbers,
which characterize the FEM plate model are as follows: number of elements—3042 includ-
ing number of internal elements generated for contact—2232, number of nodes—10044
including number of internal nodes generated for contact—4464, total number of variables
in the model—30132.

The structural stiffness of plate facings was expressed by the elements of matrixes
Aij, Bij, Dij (5 – 7), which were calculated separately and introduced in the shell option
of the ABAQUS system. The stiffness elements Aij, Bij, Dij, were modified separately for
each facing lamina according to the analyzed case of facing failure. The relations (11) –
(13) of the composite degradation were used. The Buckle and Dynamic options of the
program were used for the examination of the static and dynamic stability problem. The
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temperature influence was taken into account by the expression of vectors of thermal forces
and moments

{
Nth
}

[41]. The formula for thermal forces
{

Nth
}

, which change linearly
with temperature and include thermal expression α, which is not a function of temperature
is presented as follows: {

Nth
}
= α(θ − θI)

{
F
}

(14)

where{
F
}

—vector of stresses caused by a fully constrained unit temperature rise [41], whose
elements were calculated using the geometry and material expressions of relations (8) and (9),

θI—stress-free initial temperature,
θ—the temperature.
The value of thermal expression α was inputted separately as the scaling modulus for

vectors
{

F
}

in the case of thermal isotropy of facing material. Including thermal orthotropy
of laminate material, the apparent thermal expansions were taken into account, calculating
the vectors

{
F
}

. Then, the required scaling modulus is equal to 1.

3.4. Plate Model Built with Finite Difference Method

The variant of the solution to the problem refers to the procedure used in a numerical
analysis of mechanically loaded three-layered annular plates. The problem has been de-
scribed in works [5,6,42] in detail. The proposed solution was based on the classical theory
of sandwich plates. The broken line hypothesis and the division of stresses into normal
loading for the plate facings and shear load for the core were accepted. The main elements
of the solution process were based on the description of the dynamic equilibrium equations
and the linear physical relations, the expression of the geometry non-linear equations for
facings using the Kármán’s equations, the introduction of the stress function, the deter-
mination of the supported conditions, and initial boundary conditions. After algebraic
operations, a basic differential equation of plate dynamic deflections was obtained:

k1wd ,rrrr +
2k1

r wd ,rrr − k1
r2 wd ,rr +

k1
r3 wd ,r +

k1
r4 wd ,θθθθ +

2(k1+k2)
r4 wd ,θθ+

+ 2k2
r2 wd ,rrθθ − 2k2

r3 wd ,rθθ +
2k2
r2 wd ,rrθθ − 2k2

r3 wd ,rθθ+

−G2
H′
h2

1
r

(
γ,θ + δ + rδ,r + H′ 1

r wd ,θθ + H′wd ,r + rH′wd ,rr

)
=

2h′
r

(
2
r2 Φ,θw,rθ− 2

r Φ,θrw,θr +
2
r2 w,θΦ,θr − 2

r3 Φ,θw,θ + w,rΦ,rr + Φ,rw,rr+

+ 1
r Φ,rrw,θθ

)
−Mwd,tt

(15)

where H’ = h’ + h2, k1 = 2D, k2 = 4Drθ + νk1, D = Eh′
3

12(1−ν2)
, Drθ = Gh′3

12 —flexural rigidity of
the outer layers, M = 2h’µ + h2µ2.

In order to obtain the basic differential system of equations of plate deflections, we em-
ployed shape functions of additional plate deflections, preliminary deflections, and stress
function. The plate model had a preliminary deflection expressed by the function fulfilling
the conditions of the clamped–clamped edges. Some of the dimensionless quantities (16)
and shape functions of additional deflection (17), preliminary deflection (18) and stress (19)
are as follows:

ζ1 =
wd
h

, ζo =
wo

h
, F =

Φ
Eh2 , ρ =

r
ro

, t∗ = t
a

∆Tf
, (16)

ζ1(ρ, θ, t) = X1(ρ, t) cos(mθ) (17)

ζo(ρ, θ) = ξ1ηo(ρ) + ξ2ηo(ρ) cos(mθ) (18)

F(ρ, θ, t) = Fa(ρ, t) + Fb(ρ, t) cos(mθ) + Fc(ρ, t) cos(2mθ) (19)

where ξ1, ξ2—calibrating numbers, ηo(ρ) = ρ4 + A1ρ2 + A2ρ2lnρ + A3lnρ + A4, Ai—quantities
fulfilling the conditions of the clamped edges by the function ηo(ρ), i = 1, 2, 3, ro—outer
radius of the annular plate.
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The temperature distribution is a function of the plate radius and it is expressed by a
logarithmic equation, according to theory presented in [43].

TN = To +
Ti − To

ln ρi
ln ρ (20)

where Ti, To—temperatures of the inner and outer plate perimeters, (see, Figure 1).
The conditions for the thermally loaded plate with clamped–clamped edges are

expressed by the Equations (22) and (23) established at discrete points 0 and N + 1, which are
the points of the plate support. Equations (22) and (23) were obtained from Equation (21),
which is expressed by means of the relations of the Hooke’s law in the plane stress state
performed for normal forces with thermal elements in plate facings and after the elimination
of the radial r and circumferential θ strains, and the acceptance of stress function Φ:

F′ρρ −
ν

ρ

(
F′ρ +

1
ρ

F′θθ

)
= −S · TN (21)

where S = r2
o

h2 α.
Approximating the derivatives at points 0 and N + 1 with the use of the FDM differ-

ences in front and back the following relations were established:

for ρ = ρiyo =
bρi

ρi + bν

(y1

b
+ S(To + at)

)
(22)

for ρ = ρoyN+1 =
b

1− bν

(yN
b
− STo

)
(23)

where:yo, y1, yN , yN+1—elements of vector Y = F′ρ of stress function at discrete points 0, 1,
N, N + 1.

The solution process required a lot of algebraic operations and the use of the orthogo-
nalization method. Then, by the approximation of the derivatives with respect to ρ by the
central differences at discrete points, the following system of equations for the three-layered
annular plate in the thermal environment was obtained:

PU + Q = K ·
..
U (24)

MYY = QY − ρ · S · TN′ρ (25)

MV(Z)V(Z) = QV(Z) (26)

MDD = MUU + MGG (27)

MGGG = MGUU + MGDD (28)

where K =
(

a
∆Tf

)2
· h′

h · roh2M; U, Y, V, Z,
..
U, Q, QY, QV , QZ, D, G—vectors of additional

deflections and derivatives with respect to time t, initial deflections, components of the stress
function, geometric and material parameters, radius ρ, quantity b (b—length of the interval in
FDM), coefficients δ, γ (differences of radial and circumferential displacements of points in
the middle surfaces of facings) and number m of buckling waves; P, PL, MYMV , MZ, MD, MG,
MGG, MGD, MU, MGU—matrixes with elements composed of geometric and material plate
parameters, the quantity b, radius ρ, the number m, respectively.

The system of Equations (24) – (28) was solved using the Runge–Kutta–Gill integration
method for the initial state of the plate. The way to solve the problem of the static stability
of a thermally loaded plate is employed in [35] in detail. The main elements of the
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solution process are as follows: the presentation of the stress function as the solution to the
Equation (6) in the following form:

Y = −1
2

CSρ ln ρ +
CSρ

4
+ e1ρ +

e2

ρ
(29)

Assuming the following temperature conditions TN |ρ=ρi
= Ti , TN |ρ=1 = To, the form

of stress function Y (29) is presented as follows:

Y = ∆Tcr
1

ln ρi
S
(
−1

2
ρ ln ρ +

ρ

4
+ ρE1 +

E2
ρ

)
− STo

1− ν
ρ (30)

Finally, following the introduction of the dimensionless quantities and expressions
of shape function and the use of the system of equations, which were established by
orthogonal method for elimination of the angular variable θ and the finite difference
method for approximation of the derivatives with respect to ρ by the central differences
at the discrete points the problem solution comes down to the calculations of the critical
temperature difference ∆Tcr as the minimal value solving the eigen-value problem:

det(MAPT − ∆T MACT) = 0 (31)

where MAPT, MACT—matrixes of elements composed of geometric and material parameters
of plate, the quantity b, and the number m.

This next section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4. Example Analyses

The presented results will show a composite plate response on the temperature field,
the action of which on the plate edges is either static or dynamic. Different combinations
of laminas failures composed of fiber or matrix cracks create various symmetrical or
asymmetrical plate transversal structures. The distribution of the critical temperature
differences calculated between edges of plates with undamaged and damaged facings is
the image of the plate reactions and shows plate sensitivity to thermal environment.

4.1. Plate Structure Parameters and Loading Coefficients

Accepted in numerical calculations material, geometrical and loading parameters of
examined plate models are presented in Table 3. Glass/epoxy composite is an orthotropic
material of the facing lamina treated as thermally isotropic or thermally orthotropic. Then,
the full orthotropic properties of glass/epoxy lamina are taken into account [40,44]. The
core material is made of polyurethane foam.

Using Equation (10), the engineering constants E, G, ν of isotropic facings were
calculated for two facings examples: facings with undamaged laminas and for facings with
all laminas with damages in the form of fiber cracks.

Thermal environment is characterized by an axisymmetric flat temperature field.
Temperature fields, which surround the plate edges, cause a positive thermal gradient
when inner temperature Ti is higher than outer temperature To (Ti > To) and negative
(Ti < To), (see, Figure 1). Two profiles of temperature field are analyzed: static with fixed
calculated temperature difference between the plate edges, expressed by the critical one
∆Tcr and dynamic ∆Tcrdyn with temperature differences increasing in time according to the
linear Equation (1); and assumed growth rate a for a positive temperature gradient.

The fiber-reinforced laminate plate facing consists of four laminas arranged as follows:
[0/−45/45/90]. The configuration and the kind of lamina damages are shown in Figure 3.
The correction parameter η (see, (12)) in the accepted damage theory of composite facings
is equal to η = 0.1 [21]. Figure 3b shows the examples of facing laminate structures under
analysis. The following cases were taken into account: facing with all laminas undamaged,
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facing with damaged lamina no. 1 (see, Figure 3a), and facing with damages in all laminas
in the form of a crack of fiber or matrix.

Dynamic stability exemplary analyses focus on the observation of axisymmetrical
plate models, whose preliminary geometry is without circumferential waves for number m
equal to m = 0.

Table 3. Material, geometrical and loading parameters of examined plate models.

Geometrical Parameters

inner radius ri, m 0.2

outer radius ro, m 0.5

total facing thickness h’, mm 0.5

thickness of each lamina h”, mm 0.125

core thickness h2, m 0.005

Material Parameters

orthotropic glass/epoxy composite of facing lamina polyurethane foam of core

Young’s modulus E1, GPa 53.781 E2, MPa 13
Young’s modulus E2, GPa 17.927

Kirchhoff’s modulus G12, GPa 8.964 G2, MPa 5

Poisson’s ratio ν12 0.25 ν2 0.3

mass density µ, kg/m3 2900 µ2, kg/m3 64

linear expansion coefficient α, 1/K
for material thermally isotropic 1.96 × 10−5 α2, 1/K 70 × 10−6

linear expansion coefficient α11, 1/K
linear expansion coefficient α22, 1/K

for material thermally orthotropic

6.295 × 10−6

20.504 × 10−6 - -

calculated engineering constants of quasi-isotropic facings

facings with undamaged laminas facings with damaged all laminas (fiber cracks)

Young’s modulus E, GPa 31.1 18.71

Kirchhoff’s modulus G, GPa 12.5 7.91

Poisson’s ratio ν 0.245 0.182

Loading Parameters

rate of thermal loading growth a, K/s 200

fixed temperature difference ∆Tf, K 10

Figure 3. The configuration of laminate [0/−45/45/90] (a), the key to graphic description of laminate
failure (b).
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4.2. Convergence Analysis for FDM Plate Model and Comparison of FDM and FEM Results

The calculations carried out using the finite difference method are proceeded by the
selection of the number N of discrete points. Tables 1 and 2 present the results of the critical
static temperature ∆Tcr and the dynamic temperature ∆Tcrdyn for an FDM plate model
with different number N of discrete points equal to N = 11, 14, 17, 21, and 26. Results
were calculated for plates with damaged structure in the form of all fibers cracked in
both laminate facings. The differences of critical values ∆Tcr and ∆Tcrdyn presented in
Tables 1 and 2 are very small. The number N = 14 of the discrete points was chosen in the
FDM numerical calculations.

The comparison of values of critical temperature differences ∆Tcr and ∆Tcrdyn obtained
for the FDM and FEM models of plates with isotropic undamaged and damaged both
facings is shown in Table 4. All fibers are cracked in damaged facings laminates. The
plate is subjected to a positive temperature gradient. Obtained results: values and bucking
modes are comparable for asymmetric plate cases. Critical static and dynamic temperature
differences are smaller for the FEM plate model. Minimal critical static temperature
differences ∆Tcr correspond with the number m = 2 or m = 3 of circumferential buckling
waves. The comparison of results calculated for the axisymmetric plates m = 0 shows that
critical dynamic temperature differences are higher than the static ones.

Table 4. Critical static and dynamic temperature differences of the FDM and FEM plate models
loaded thermally with positive gradient.

Plate Model

Asymmetric Plate m 6= 0 Axisymmetric Plate m = 0

Static Analysis Static Analysis Dynamic Analysis

∆Tcr [K] ∆Tcr [K] ∆Tcrdyn [K]

Undamaged Facings

FDM 69.36/3 72.14 86.70

FEM 62.20/2 64.35 70.82

Damaged Facings

FDM 106.26/3 111.95 131.70

FEM 94.05/3 98.06 113.82

Additionally, Table 5 shows a comparison of dynamic temperature differences ∆Tcrdyn
calculated for the FDM and FEM plate models. The presented values refer to plates with an
undamaged structure and symmetrically transversally damaged by cracks of all fibers in
laminate facings. Then, the plate structure has the quasi-isotropic properties. Calculations
were carried out for five plate modes: axisymmetric one (m = 0) and asymmetrical ones
(m = 1 ÷ 4). Critical temperature differences ∆Tcrdyn for FEM plate model are lower than
those obtained for the FDM plate model but the level of values is comparable. Both plate
models show the asymmetrical (m 6= 0) waved form of plate buckling as this one, whose
value of temperature difference ∆Tcrdyn corresponds to the minimal one.

Curves of time histories of deflections, presented in Figure 2, show two groups of
results of the quasi-isotropic plate FDM model with both facings undamaged and damaged
in the form of all fibers cracked. Black dots express the moment of the dynamic stability loss
of axisymmetrical (m = 0) and asymmetrical (m 6= 0) plates. Detailed critical time values
are presented in Table 5. Critical parameters vary in time but the range of dimensionless
deflections equal to 0.2 ÷ 0.3 is similar for both groups of examined plates. Using the
expression (16) to describe the dimensionless additional deflection, values of the plate
critical deflection can be calculated. The values are smaller than plate total thickness, equal
to 1.2 ÷ 1.8 mm.
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Table 5. Critical dynamic temperature differences of the FDM and FEM plate models with different
modes loaded thermally with positive gradient.

Plate Mode

∆Tcrdyn [K]

Undamaged Facings Damaged Facings

FDM Model FEM Model FDM Model FEM Model

0 86.7 70.82 131.7 113.82
1 84.9 67.82 130.3 99.82
2 81.7 67.82 123.5 103.82
3 78.5 66.82 119.0 105.82
4 77.5 70.82 119.4 109.82

Summarizing presented observations, it is noticeable that:

• temperature differences cause plate buckling in a circumferentially wavy form;
• the thermal environment with the temperature growth in time increases the criti-

cal value of temperature differences, which are the reason for the plate dynamic
stability loss;

• failure of lamina structure changes the response of the plate to thermal loading. Then,
plate buckling occurs for higher values of critical temperature differences;

• the comparison of ∆Tcr and ∆Tcrdyn values calculated using the FDM and FEM plate
models shows their comparability and a similar nature of changes;

• the critical deformation expressed by the values of the critical deflections does not
differ for the examined plate models with health facings and fully damaged ones by
fiber cracks.

4.3. Static Temperature Field

The effect of the static temperature field on the values of the critical temperature
differences ∆Tcr is shown graphically in Figure 4. The distribution of the ∆Tcr values
depends on the combination of the damages in laminated facings. The presented results
are obtained for isotropic thermal properties of facings laminate characterized by the fixed
expansion coefficient α. The examined FEM plate model is subjected to a positive (Ti > To)
or negative (Ti < To) temperature gradient (see, Figure 4a,b, respectively). The results are
presented graphically which makes it possible to observe the nature of the ∆Tcr changes
depending on various damages and the increasing degree of failures. The shown changes
are regular in the directions indicated by lines. The minimal value of ∆Tcr is for the plate
with both healthy facings. Damages, which disrupt the material continuity, increase the
value of ∆Tcr. There are observed combinations of damages, which make the plate structure
transversally asymmetrical, as is the case of the plate with one facing healthy and the other
one bearing a crack of the fiber or matrix in lamina no.1. The values of critical temperature
differences of such plate structures are smaller than those obtained for plates with the
transversal symmetry of distributed damages. Plates subjected to a positive temperature
gradient for the most of the examined case lose stability in the form of m = 3 waves in
circumferential plate direction (see, the plate modes shown in Figure 5). Cases of m = 2 or
m = 4 modes are observed, too. The buckling mode m = 4 exists for plates subjected to a
negative τεµπερατυρ∆ε gradient but cases of m = 3 are observed, too.
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Figure 4. Distribution of the values of critical, temperature differences ∆Tcr depending on the
form of the structure failure for a thermally isotropic plate subjected to a positive (a), negative (b)
temperature gradient.
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Figure 5. Forms of the buckling modes for a plate with thermal isotropic.

The same graphical presentation of the results obtained for plate models with full
mechanical and thermal orthotropic properties of the laminate material of facings is shown
in Figure 6. The impact of the thermal environment on the plate buckling reaction is similar.
The minimal value of ∆Tcr is observed for the plate with healthy facings but the maximum
one is for a plate which has been completely destroyed with its both facings’ matrices
cracked. The critical temperature differences ∆Tcr are higher than those for a plate model
with thermal isotropy. The buckling modes are not circumferentially regular. The tendency
to number m = 3 or m = 4 of waves exists (see, the plate modes shown in Figure 7).

To summarize, one can notice that:

• both the thermal model of temperature field and properties of facings laminate mate-
rial are of significance in the process of evaluation of the plate reaction to the impact
of the surrounding environment;

• damaged plates with a transversal symmetry of structure and a smaller failure in the
form of cracks located only in the single lamina lose their stability for smaller values
of temperature differences ∆Tcr than other destroyed plates. Smaller ∆Tcr values are
observed for plates with an asymmetrical structure when one of the facings is healthy;

• the temperature gradient direction influences the values ∆Tcr;
• the buckling mode is circumferentially waved;
• the reaction of plates with heavy failures to the temperature environment is smaller

than when plates are insignificantly damaged or completely healthy. Such an observa-
tion can be helpful in the process of diagnosing laminate composite structures with
different damages.

4.4. Dynamic Temperature Field

The model of the dynamic changes of temperature fields has been expressed by the
temperature linearly increasing in time with the exemplary accepted growth equal to a
= 200 K/s (see, (1)). The process of time histories of deflection and velocity of deflection
for the FDM and FEM plate model with quasi-isotropic facings is shown in Figure 8. The
examined plate subjected to a positive temperature gradient is axisymmetrical (m = 0,
see, Figure 5). Isotropic temperature material properties are analyzed. According to the
accepted criterion of the plate stability loss (marked point in Figure 8a), the calculated
values of critical dynamic temperature differences ∆Tcrdyn are as follows: ∆Tcrdyn = 81.7 K
for the FDM plate model, and ∆Tcrdyn = 70.82 K for the FEM plate model. The time histories
obtained for the axisymmetrical m = 0 FEM plate model with undamaged facings, also
subjected to a positive temperature gradient, are shown in Figure 9. The value of ∆Tcrdyn is
equal to ∆Tcrdyn = 78.82 K. Results presented in Figures 8 and 9 indicate regions of values
of displacements and velocities of displacements, which should be treated as showing the
critical states of plates. Calculated values of ∆Tcrdyn belong to these regions and identify
the thermal critical state of the plates under examination.
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Figure 6. Distribution of the values of critical, temperature differences ∆Tcr depending on a form of
the structure failure for thermally orthotropic plate subjected to a positive (a), negative (b) tempera-
ture gradient.
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Figure 7. Forms of buckling modes for plate with thermal orthotropic.

Figure 8. Time histories of deflection and velocity of deflection of quasi-isotropic plate with undamaged facings represented
by (a) FDM model, (b) FEM model.
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Figure 9. Time histories of deflection and velocity of deflection of undamaged FEM plate model.

Comparing the quasi-isotropic FDM, FEM, and FEM plates, whose fibers in all facings
laminates (see, Figures 10 and 11) are cracked, one can observe a similar nature of both the
displacement curve growth and regions of critical values for quasi-isotropic plate models
(see Figure 10). Time history of the velocity of deflection of the FEM plate model with all
laminate facings damaged (see, Figure 11) indicates the time moment of the plate stability
loss equal to t = 0.59 s. The values of the critical dynamic temperature differences ∆Tcrdyn
are as follows: ∆Tcrdyn = 129.1 K for the quasi-isotropic FDM plate model, ∆Tcrdyn = 113.82
K for the quasi- isotropic FEM plate model, and ∆Tcrdyn = 118.82 K for FEM plate model
with all fibers cracked.

The graphical image of the distribution of values of critical dynamic temperature
differences ∆Tcrdyn, which depends on the grade of the FEM plate structure failure, is
shown in Figure 12. The presented results are obtained for axisymmetrical (m = 0) plates
with thermal isotropy and subjected to a positive temperature gradient. Calculated values
increase with the increase in the laminate degradation. The changes of values ∆Tcrdyn are
similar to those shown in the static analysis. The minimum values of ∆Tcrdyn correspond
to the asymmetrical (m 6= 0) plate mode. Then, the values of ∆Tcrdyn are a little smaller
than those obtained for the axisymmetrical (m = 0) mode. Exemplary results are presented
in Table 5 for the dynamically loaded plates with a symmetrical cross-section built of
undamaged facings or destroyed in the form of all laminate fibers being cracked.

The failure of the matrix of laminate facings discloses an interesting very high value
of ∆Tcrdyn (∆Tcrdyn > 189.92 K—see, Figure 12) and different time histories of displacement
and velocity of displacement. The curves are shown in Figure 13. The loss of possibility to
work of such damaged plate structure is clearly seen by very small values of displacements.

To summarize, one can formulate the following remarks:

• presented results show the influence of dynamic temperature model on response of
the composite plate;

• values of dynamic temperature difference ∆Tcrdyn are higher than those calculated in
the static analysis but correspond with the changes of the static ones and confirm the
observed effect of the static temperature environment on the buckling phenomenon of
plates with varying grade of failure;

• numerical analyses show a possibility to use the temperature field in the failure
diagnostic process.
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Figure 10. Time histories of deflection and velocity of deflection of quasi-isotropic plate with all fibers cracked in damaged
facings represented by (a) FDM model, (b) FEM model.
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Figure 11. Time histories of deflection and velocity of deflection of damaged FEM plate model with all fibers cracked.

Figure 12. Distribution of the values of critical, dynamic temperature differences ∆Tcrdyn depending on the form of
the Scheme 13. Time histories of deflection and velocity of deflection of the damaged FEM plate model with laminate
matrices cracked.
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Figure 13. Time histories of deflection and velocity of deflection of the damaged FEM plate model with laminate matrices cracked.

5. Conclusions

The presented problem complements the recognition of the behavior of the complex
composite structure working in variable conditions. The object of the consideration is the
three-layered annular plate with different damaged laminate facings subjected to the action
of the static or dynamic temperature field model. Three aims of this contribution were
formulated and realized. The main one is to evaluate the stability response of composite
layered plate with damages under thermal loading. Two others are as follows: presentation
of the analytical and numerical procedure of problem analysis using the mathematical
calculations of structure rigidity and finite element method in plate modelling, and proposal
of the analytical and numerical solution based on approximation methods including
orthogonalization and finite difference to calculation of three-layered plates with laminate,
quasi-isotropic, undamaged, and damaged facings. Furthermore, the results obtained for
the selected FEM and FDM plate models were compared.

The undertaken analyses show the responses of an examined object, i.e., a three-
layered annular plate to the action of the thermal environment. The values of the tem-
perature differences, which cause the static or dynamic loss of the stability of plates with
undamaged health of layers with defects, were evaluated in detail. Various cases of possible
structure failures have been analyzed to show a system of reactions of examined plate
models. The created combinations of variously located damages approximate the examined
structure to the real one with the lamina defects distributed randomly and diversely in
the two plate facings. An approach to create the full image of plate stability responses has
been undertaken.

The presented results have both a scientific aspect and a practical one in the evaluation
of the behavior of the mixed composite structure with damaged and healthy laminated lay-
ers. Basically, the values of temperature differences obtained for statically and dynamically
loaded plate models increase with the growth of the lamina degradation degree. Healthy
plates without any cracks of fibers or matrix are particularly subjected to the loss of stability
due to the action of temperature gradient. The higher values of temperature differences
indicate an existence of some structural damages. This observation can be fundamental,
particularly to conduct the qualitative diagnostic evaluation of the plate structure. In the
exploitation process, such structure can be subjected to mechanical loads, too. Then, the
depressing of the laminate fibers or matrix with diversely situated cracks becomes highly
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unfavorable and dangerous. The presented analyses have important elements of scientific
novelty. They open a possible area of examination of a laminated structure under variable
thermo-mechanical conditions. The experimental analysis, including both temperature
conditions of performance of composite structure and thermal parameters, which exist
during the technological laminate hardening process, could be a very important addition
to the undertaken numerical examinations. This is because a consideration of the thermal
effects in the laminate stress analysis is necessary above the hardening temperature.

The presented results show the essential influence of the temperature field parameters,
such as the values of the critical temperature differences and the direction of the tempera-
ture gradients on plate responses can lead to the further analyses of the effects of additional
parameters of the thermal environment surrounding the plate. Such investigations will be
presented in the next publication.
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Appendix A

The main notations are presented in Table A1.

Table A1. Nomenclature.

Symbols Definition

ri, ro inner and outer radii of the annular plate
r, θ, z cylindrical coordinates
r, ρ plate radius and dimensionless radius
tl thickness of laminate

h’, h2 thickness of facings and core thickness
h” thickness of each lamina

h = 2h’ + h2 total thickness of plate
t, t* time and dimensionless time
∆T temperature difference

Ti, To inner and outer temperature
∆Tcr, ∆Tcrdyn static and dynamic critical temperature difference

a rate of temperature loading growth
∆Tf fixed temperature difference
m number of circumferential waves corresponding to the form of plate buckling

wd, wo additional and preliminary plate deflection
ζ1(ρ,θ,t), ζo(ρ,θ) Shape functions of dimensionless additional and preliminary plate deflection
E1, E2, G12, ν12 Young’s and Kirchhoff’s moduli and Poisson’s ratio of the facings orthotropic material

E, G, ν
engineering constants: Young’s and Kirchhoff’s moduli and Poisson’s ratio of the facings

quasi-isotropic material
E2, G2, ν2 core Young’s and Kirchhoff’s moduli and Poisson’s ratio

µ, µ2 facing and core mass density
α, α2 linear expansion coefficient for isotropic material of facings and core

α11, α22 linear expansion coefficient for orthotropic material
ηo = f(ρ) form of plate pre-deflection

η correction parameter η in damage theory
(),x partial derivative
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