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Abstract: The paper presents a thoroughly modified method of solving the problem of vibration
suppression when boring large-diameter holes in large-size workpieces. A new approach of adjusting
the rotational speed of a boring tool is proposed which concerns the selection of the spindle speed
in accordance with the results of the simulation of the cutting process. This streamlined method
focuses on phenomenological aspects and involves the identification of a Finite Element Model
(FEM) of a rotating boring tool only and validating it with a real object, while dispensing with
discrete modelling of a completely rigid workpiece. In addition, vibrations in the boring process in
all directions were observed, which implies a geometric nonlinearity of the process model. During
the simulation, the values of the Root Mean Square (RMS) of the time plots and the dominant values
of the “peaks” in the displacement amplitude spectra were obtained. The effectiveness of the method
was demonstrated using a selected mechatronic design technique called Experiment-Aided Virtual
Prototyping (E-AVP). It was successfully verified by measuring the roughness of the indicated zone
of the workpiece surface. The economic profitability of implementing the method in the production
practice of enterprises dealing with mechanical processing is also demonstrated.

Keywords: boring; vibration suppression; simulations; the best spindle speed; experimental identification

1. Introduction

The relative vibrations between the tool and the workpiece are recognized as the main
cause of various problems detected during large-size structures machining [1]. Under
certain circumstances occurring in the boring process, they can lead to a loss of system
stability and the appearance of self-excited chatter vibrations, due to process and structure
dynamic interactions resulting in modulated chip thickness [2]. These can cause a reduction
in the overall machine tool performance or the quality of the workpiece surface, increased
tool wear, especially when boring large diameter holes [3]. In some extreme cases it can
even lead to the destruction of the tool or workpiece. To increase the milling efficiency
while maintaining the surface quality and minimizing the vibration level, parameters of
the machining process should be adjusted [4].

There are many scientific studies devoted to the problems of vibration reduction in
the boring process [5]. For example, chatter is a limiting factor during boring of deep
holes with long slender boring bars and may be effectively damped by the magnetorhe-
ological damper at different machining conditions for boring of Inconel 718 and Al 7075
workpieces, but the method was presented only for a case of small boring tool (length
300 mm, diameter 25 mm) [6]. In [7] Miguélez et al. presented the behavior of boring
bars, which were modelled as cantilever Euler–Bernoulli beams, with a passive dynamic
vibration absorber for chatter suppression. Only the first mode of vibration of the bars
was considered. Bansal and Law presented (in [8]) a receptance coupling-based method to
optimally tune and place a tuned mass damper on a similar slender boring bar. Chatter-free
depth of cut for boring was increased a few times, which is a significant improvement. The
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considerations concerned a rotating workpiece, the spindle speed of which has not been
identified. In [9] Yadav et al. described a receptance coupling approach in which the sub-
structural receptances of the boring bar modelled as a cantilevered Euler–Bernoulli beam
are combined with the substructural receptances of a damper modelled as a rigid mass
integrated anywhere within the bar. The improvement of the damping capability of boring
tools by using impact dampers was investigated in [10]. Chatter vibration elimination
during deep hole boring using slender bars was considered in [11,12]. Composite material
may have much higher stiffness and damping in comparison to metal, and tests of such
properties for chatter suppression were investigated in [13–16]. The design and testing
of a new dynamic system for boring, based on a tuned holder that increases the dynamic
stiffness of slender boring bars by matching the holder natural frequency to the clamped-
free boring bar natural frequency, reduced susceptibility to chatter [17]. However, the
considerations made there were not verified in the real machining process. In [18] design
of the low-cost damped tool holder using different types of high-density materials such as
copper and brass to suppress the chatter of boring operations is investigated. The design
of an anisotropic boring tool as a chatter suppression method was presented in [19,20]. The
obtained theoretical and experimental results showed that using piezoelectric shunt damp-
ing it is possible to significantly increase the stability margin in boring operations during
tests limited to small boring bars and rotating parts with undefined spindle speed [2]. An
adaptive sliding mode control approach is presented to suppress the chatter in the boring
process in the presence of uncertainties of model and dynamics [21]. The industrialized
version of the boring bar with embedded sensors gives valuable insight into the cutting
process during which chatter and excessive insert wear can be detected [22]. The vibration
measurement gives an indication of the quality of the machined surface and thus shows
the potential of the technology. The results of machining in both Maraging 250 and steel at
a cutting speed of 120 m/min, a hole diameter of about 90 mm and a slender bar, whose
length is unidentified, are presented. In order to meet the requirements of boring holes
about 22 mm diameter with rotating bars, overhang lengths from 160 mm to 420 mm, at
high rotational speed (2500 rpm), a boring bar was designed and manufactured with high
stiffness pitch-based carbon fiber epoxy composite whose parameters were experimentally
determined [23]. Its dynamic characteristics were measured by boring aluminum engine
blocks, and the dynamic stiffness of such a bar was increased by approximately 30%.
Chatter did not occur when the ratio of length and diameter was about 30% greater than
for the tungsten bar. The influence of different inner cores on the dynamic behavior and
technical capabilities of non-rotating boring bars (250 mm × 25 mm) during machining
of a rotating workpiece with an inner diameter of 60 mm was successfully evaluated [24].
The limit of stability depends not only on the mechanical properties of the boring bar, but
also on its fixation and on the machine tool. Performance limiting machining parameters
can be raised, thereby improving the productivity of machining operations. In [25] the
vibration stability of the boring process is discussed, in which the workpiece rotates, a
medium-size bar (0.3 m × 0.020 m) is fixed, and a passive dynamic vibration absorber is
used. The boring bar is modelled as an Euler–Bernoulli cantilever beam and the absorber
is considered to be attached by a spring and a damper at a certain cross-section of the
beam. In order to determine the optimal values of the absorber parameters, the criterion
was the maximization of the minimum values of the stability lobe diagram and the classic
Nelder–Mead method was used for unconstrained optimization problems. However, no
machining test was performed. The stability limit was strongly improved by increasing
it by about 15% and the stability lobes were only shown analytically. Active damping of
the boring bars with an in-house designed magnetic actuator offers good prospects for
practical use in the case of large boring tools [26]. A boring bar with an internal friction
damper has also been proposed to reduce chatter vibration of the boring bars [27]. This
simple friction damper consisted of several pins axially mounted inside the bar, which
caused resistance and energy dissipation during bending vibrations. Unfortunately, users
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of large-size boring tools have practically no possibility to modify the elastic-damping
properties of these tools on their own.

A separate investigation concerns the mechanics of single-point boring operations
used in the industry, due to its valuable nature in modelling the chip thickness distribution
along the cutting edge [3]. Cutting forces are correlated to the chip area using mechanistic
cutting force coefficients. The latter makes it possible to predict them satisfactorily in three
Cartesian directions. The model is an essential foundation for examining not only chatter,
but also forced vibrations in boring processes. A mathematical model of the cutting force
system was developed when boring holes with large diameters and boring head with
multiple inserts is spinning [28]. The model includes tool geometry, chip load, cutting edge
contact length and process parameters, kinematics and mechanics of the boring process, as
well as axial and radial runouts. When runout occurs in the inserts the cutting forces normal
to the axis of the hole become periodic at the tooth passing frequency. The model has been
experimentally verified with success, so that the surface finish and dimensional quality
of the holes are maintained by avoiding excessive forced vibrations. In [29] an analytical
model for the stability of turning and boring processes is proposed, which includes the
dynamics of the system in a multi-dimensional form with emphasis on the true process
geometry and the insert nose radius in a precise manner.

A thorough and exhaustive review of publications in the field of production engineer-
ing proves that despite many scientific reports on the dynamics of the boring process, an
insufficient number is noted, especially in the case of large-size workpieces. Moreover,
scientific research is far away from the requirements in this field [30]. The reason is that
academia usually does not have access to the requirements of this niche industry, and the
topic, as a cross-sectorial one, is not of particular interest to academia due to the limited
possibilities for in-depth research. A high level of investment is also required to have large
machine tools in the laboratories. Therefore, most advances in machine tools for large parts
have been achieved thanks to solutions proposed by and implemented in close cooperation
with the industry.

Large-scale machining is increasingly becoming the domain of small and medium-
sized enterprises that do not have their own research facilities. Hence, their interests
do not concern the implementation of costly integrated computerized system solutions,
but the ad hoc optimization of individual technological activities at the level of process
implementation. After all, the production of large-size products is usually estimated at
a small number of details and due to the expected profitability—a separate approach is
required for each type of product.

The above considerations indicate the only direction of effective solving of the prob-
lems of boring large-size objects, which is the performance of basic and applied research
in strict cooperation with an industrial partner. The subject of the article is a method of
searching for conditions for minimizing the vibration level of a rotating tool during the
boring process in large-size products, based on the results of previous computer simula-
tions of the identified boring tool model. The article in question is a creative, progressive
and thorough modification of the considerations presented earlier in [31]. However, unlike
the previous one, a new computational model of the boring process was proposed in the
phenomenological aspect, in which:

– discrete modeling of an inherently rigid workpiece was abandoned;
– the focus was put on the discrete modeling of a boring tool with the use of a set of

flexible bars, and on the assessment of model compliance with a real object;
– vibrations in the boring process were observed in all directions, and the cutting process

itself shows the features of geometric nonlinearity due to the dynamic change in the
thickness and width of the layer.

2. Simulation Model

The process of boring holes in a perfectly rigid large-size workpiece mounted on
a machine tool table (Figure 1) using a rotating flexible boring tool (Figure 2) can be
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considered in the convention of a non-stationary Finite Element Model (FEM) [4,32,33].
When boring holes of large diameters, the design of the tool is more complicated and
cannot be modelled with a single bar. Thus, in the appropriate machining process model
(Figure 3), it is possible to distinguish structural system, i.e., non-stationary discrete model
of rotating indexable tool with a desired spindle speed n and linearly displacing with
a desired feed speed vf, as a set of 4 flexible finite elements, the Euler–Bernoulli Bars
(E-BBs) [32], Spring-Damping Elements (SDEs) [34], and cutting process, i.e., Coupling
Element (CE) no. l [32,35]. Hence, the behavior of the structural system obtained in this
way, unlike the hybrid system considered earlier [31], is described by the vector of its
generalized coordinates q in local Cartesian coordinate systems xe1, xe2, xe3 of every E-BB
no. e. The relatively small (much below 1000 rpm) values of the boring tool rotational
speed allow for disregarding the influence of the gyroscopic effects related to spinning on
its dynamic properties [32,36].

Figure 1. View of a large-size workpiece mounted on the table of the WHN 13-15 CNC machine. The
roughness measurement point is indicated.

Figure 2. Boring tool views with attached accelerometers in the minimum extension of the damped
adaptor [31].
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Figure 3. The computational model of boring process of the rigid workpiece in the FEM convention,
including Euler–Bernoulli Bars (E-BB), Spring-Damping Elements (SDEs) and Coupling Element (CE)
no. l.

Moreover, the scheme of the boring process shows:

– rake angle γ0 and clearance angle α0, as elements of cutting edge geometry in the
orthogonal plane of the edge,

– cutting edge angle κr,
– force Fyl1, acting in the direction of the cutting speed vc,
– the time-varying thickness of the cutting layer hl, and the force acting in its direction—Fyl2,
– the time-varying width of the cutting layer bl, and the force acting in its direction—Fyl3.

Within the range of the cutting speed of 100–240 m/min and the changed depth
of cutting in the range of 0.625–1.750 mm, the cutting forces in boring have a linear
dependency with the chip area [3]. The latter allows for assumptions about the proportional
model of the cutting process [37,38]. Moreover, the cutting forces are separated into
tangential and friction directions, but the friction force is further projected into the radial
and feed directions [3]. Hence, taking into account the changes in the thickness hl(t) and the
width bl(t) of the cutting layer over time, the components of the cutting forces acting in the
direction of the Cartesian coordinates yl1, yl2, yl3 of CE no. l, were obtained in the forms:

Fyl1(t) =
{

kdlbl(t)hl(t), hl(t) > 0 ∧ bl(t) > 0,
0, hl(t) ≤ 0 ∨ bl(t) ≤ 0,

(1)

Fyl2(t) =
{

µl2kdlbl(t)hl(t), hl(t) > 0 ∧ bl(t) > 0,
0, hl(t) ≤ 0 ∨ bl(t) ≤ 0,

(2)

Fyl3(t) =
{

µl3kdlbl(t)hl(t), hl(t) > 0 ∧ bl(t) > 0,
0, hl(t) ≤ 0 ∨ bl(t) ≤ 0,

(3)

where:
bl(t) = bD − ∆bl(t)

hl(t) = hD − ∆hl(t) + ∆hl(t− τl)
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and: bD—desired cutting layer width (bD = ae/sin κr); ∆bl(t)—dynamic change in cutting layer
width for CE no. l; hD—desired cutting layer thickness (hD = fz sin κr); ∆hl(.)—dynamic change
in cutting layer thickness for CE no. l; kdl—average dynamic specific cutting pressure for
CE no. l; µl2, µl3—cutting force ratios for CE no. l, respectively as the quotient of the forces
Fyl2 and Fyl1, and the forces Fyl3 and Fyl1; τl—time-delay between the same position of
CE no. l and of CE no. l–1; ae—radial depth of cutting; fz—feed per tooth (fz = vf/(nz));
z—number of boring tool teeth.

Dependencies (1)–(3) show that due to the presence of nonlinear constraints in the
form of inequalities, the components of cutting forces have the character of strong geomet-
ric nonlinearities.

Description of cutting forces for CE no. l in six-dimensional space takes the form:

Fl(t) = F0
l −DPl(∆bl(t))∆wl(t) + DOl(∆bl(t))∆wl(t− τl), (4)

where:
Fl(t) = col

(
Fyl1(t), Fyl2(t), Fyl3(t), 03×1

)
, (5)

F0
l = col(kdlbDhD, µl2kdlbDhD, µl3kdlbDhD, 03×1), (6)

DPl(∆bl(t)) =


0 kdl(bD − ∆bl(t)) kdlhD
0 µl2kdl(bD − ∆bl(t)) µl2kdlhD 03×3
0 µl3kdl(bD − ∆bl(t)) µl3kdlhD

03×3 03×3

, (7)

DOl(∆bl(t)) =


0 kdl(bD − ∆bl(t)) 0
0 µl2kdl(bD − ∆bl(t)) 0 03×3
0 µl3kdl(bD − ∆bl(t)) 0

03×3 03×3

, (8)

∆wl(t) = col(qzl(t), ∆hl(t), ∆bl(t), 03×1), (9)

∆wl(t− τl) = col(qzl(t− τl), ∆hl(t− τl), ∆bl(t− τl), 03×1), (10)

and: qzl(t)—relative displacement of edge tip and workpiece along direction yl1 at instant
of time t; qzl(t− τl)—relative displacement of edge tip and workpiece along direction yl1
at instant of time t—τl.

Components of generalized displacements ∆wl(t) in the Cartesian coordinate system
yl1, yl2, yl3 of CE no. l are related to the vector of generalized displacements q of the
structural system using the time-dependent constraints equation [32]:

∆wl(t) = Tl(t)q(t), (11)

where: Tl(t)—transformation matrix of displacements vector q from the xe1, xe2, xe3 coordi-
nates of E-BBs, e = 1, . . . , 4, to the coordinate system yl1, yl2, yl3 of CE no. l [32,35,39].

The equation of the dynamics of the non-stationary model of the cutting process, after
taking into account the expression (11), has the final form:

M
..
q + L

.
q +

(
K +

il

∑
l=1

TT
l (t)DPl(q)Tl(t)

)
q =

il

∑
l=1

TT
l (t)F

0
l +

il

∑
l=1

TT
l (t)DOl(q)∆wl(t− τl), (12)

where :M, L, K—matrices of inertia, damping and stiffness of the set of E-BBs and accom-
panying SDEs, il—number of “active” coupling elements, i.e., cutting edges currently being
in contact with the workpiece. The way of determining these matrices is shown in the
Appendix A. The dependence of the matrices DPl and DOl on the vector of generalized
displacements q results in another argument proving the geometric nonlinearity of the
model of dynamics of the boring process, described by Equation (12). It should be noted
that the latter equation describes the behavior of the structural system in generalized
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coordinates and shows significant advantages over the description of the behavior of the
system considered in hybrid coordinates [31].

3. Selecting the Best Spindle Speed

The proposed method of supervising the boring process by Experiment-Aided Virtual
Prototyping (E-AVP) determines the best rotational speed of the tool based on the simula-
tion of the boring process, carried out for a computational model of the tool tuned to the
results of modal tests, along with the adopted model of the cutting process (Figure 4).

Figure 4. Scheme of choosing the best spindle speed in the process of boring large-sized workpieces using E-AVP. The
scheme is based on [31].

The FEM parameters of the boring tool obtained by the Theoretical Modal Analysis
(TMA) were validated with the results of the Experimental Modal Analysis (EMA). The
validation concerned the natural frequencies of the dominant vibration modes fα, dimen-
sionless damping coefficients ζα and vectors of normal modes Ψα. It should be noted that
the frequently used Modal Assurance Criterion (MAC) [4,32] was not applied here. The
reason is that the positions of the E-BBs nodes are, in general, different from the locations
of the accelerometers used in the experiment. After taking into account the time-varying
positions of the edges (CE no. l) of the boring tool, a non-stationary computational model
of the machining process is created. It is impossible to estimate the parameters of the
computational model of the boring process based on the assessment of compliance of
the Root Mean Square (RMS) of the simulated plots with the values obtained during the
measurements in the real process. However, due to the simplicity of the mathematical
description of the adopted model of proportional cutting dynamics, which is its advantage,
for the correct estimation of the parameters of the cutting process, it is enough to actually
choose only 3 values of abstract meaning, i.e., average dynamic specific cutting pressure kdl
and the cutting force coefficients µ2 and µ3. Determining the values of these parameters is
only a means to an end. The exact determination of the values sought is time-consuming,
and at the same time does not significantly translate into improved results. Hence, these
cutting process parameters are estimated using the so-called “mechatronic” procedure [40].
It allows, in contrast to the method presented in [4], to resign from the simulation cycle for
the case of cutting with the standard spindle speed in order to adjust the values of these
parameters. It is sufficient to perform a single simulation, the results of which form the
basis for the selection of the best speed later. Subsequently, the permissible range of tested
spindle speeds is selected and for chosen speeds from this range, the cutting process simu-
lations are performed. It should be noted that instead of the previously considered abstract
hybrid model [31], this time a non-stationary structural model of the machining process
with deep physical meaning was used for the simulation. The spindle speed is selected
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as the best if it assures the lowest vibration level or the lowest dominant amplitudes in
the spectra.

The key elements of the proposed method are the identification of model parameters
of the boring tool itself (before machining), estimation of the necessary parameters of
the cutting process, computer simulations made for a finite set of spindle speeds, and
finally the machining process with parameters derived from the simulation results. It is an
innovative model of decision support in the design of boring processes in large-size objects
and is addressed to a wide group of recipients interested in the results of research on the
quality and efficiency of production.

4. Modal Identification of Boring Tool

During the experimental investigation, the Sandvik CoroBore® 825 XL boring tool,
manufactured by Sandvik Coromant, Sandviken, Sweden, an international supplier of the
cutting tools was used [41]. Modal identification of the boring tool mounted in a damped
adaptor at its minimal extension (see, Figure 2) was performed in order to validate the
parameters of the tool FEM, in accordance with the procedure presented in the previous
section. Positions and directions of the accelerometers used during modal tests are shown
in Figure 5. Impact modal tests were performed with a modal hammer and the object
responses were measured with 15 accelerometers (marked as A17–A31 in Figure 5). There
were 4 sets of 40 impacts made in the direction of accelerometers A18, A21, A22 and A29.
For each set, the Frequency Response Function (FRF) was calculated using the H3 estimator.

Figure 5. Scheme of the Sandvik CoroBore 825 XL boring tool with marked 1-axis accelerometers
positions. Black arrows indicate the positive direction of measured accelerations. Accelerometers
marked with a lighter color are covered by the object [31].

Examples of the FRF are illustrated in Figure 6. From the point of view of the analysis
of vibrations occurring during machining, the most important are the modes of vibration
in the low-frequency range, especially those characterized by significant values of displace-
ment. For the tested boring tool, the frequencies up to 2000 Hz were analyzed. One should
also pay attention to the coherence function. Seemingly, it looks low on the collective chart.
However, if you look at individual channels, it turns out that the low values of coherence
relate primarily to those channels that were weakly excited at a given point. For example,
when excitation was acting in the direction of A18, low coherence concerns accelerometers
A22 and, especially, A21, which measure accelerations in planes perpendicular to excitation
direction. Figure 6 shows FRFs measured only for A18, 21 and 22 to make plots easier to
analyze. During tests, FRFs for all of the 15 accelerometers were calculated and later used
for modal identification.
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Figure 6. Exemplary force-displacement FRFs of the boring tool for excitation in the direction of sensor no. (a) A18, (b) A21,
(c) A22.

Identification of the parameters of the modal model of the boring tool was performed
using the ERA (Eigenvalue Realisation Algorithm) [4,32,42] and the p-LSCFD (polyreference—
Least Squares Complex Frequency Domain) [32,43,44] methods. Measurements were made
by uniaxial accelerometers that were mounted to measure vibration for three orthogonal
directions at 5 different points (Figure 5). An important element facilitating the assessment
of the correctness of the estimated figures is the symmetrical configuration of the structure.
The displacements on one side of the boring tool should correspond to the displacements
on the other side.

The values of the natural frequencies and dimensionless damping coefficients (the
so-called modal damping), determined using both methods in the frequency range from
0 to 2000 Hz, are summarized in Table 1. The convergence of their values proves the
correctness of the identified modal parameters.

The determined normal modes of natural vibrations in the frequency range up to
1000 Hz, using both identification methods, are of very good quality. This is evidenced by
the comparison of the results of both methods with the use of the MAC criterion (Figure 7).

Graphs of the normal modes of the boring tool in the frequency range up to 1000 Hz
are presented using the wireframe model in Figure 8. The presented modes are normalized
in such a way that for each mode the maximum deflection from the equilibrium position
is equal to one. The tool holder is located in the upper part of the drawing. The first
two figures illustrate bending modes with respect to clamping the boring tool in the X-Z
and Y-Z planes. The third form is the bending of the boring tool itself in the X-Z plane.
The fourth figure is a “winglet” mode. The fifth and sixth forms are very similar and are
bending ones in the Y-Z plane. The first torsional mode has not been identified, which may
be due to its effective damping by the propulsion system.
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Table 1. Natural frequencies and modal damping coefficients of the identified normal modes of CoroBore 825 XL boring tool.

Mode Number
ERA

Natural Frequency
(Hz)

ERA
Modal Damping

(%)
Mode Number

p-LSCFD
Natural Frequency

(Hz)

p-LSCFD
Modal Damping

(%)

1 125.77 3.3 1 127.12 2.7
2 145.59 4.0 2 144.06 2.8
3 381.73 2.7 3 382.02 2.8
4 460.25 2.6 4 457.59 2.6
5 672.39 3.6 5 674.50 3.6
6 987.76 2.1 6 982.15 1.9
7 1128.6 1.5 – 1130.7 2.1
8 1203.8 3.5 – 1222.8 2.6
– – – 7 1299.99 3.1
9 1454.38 2.0 8 1447.36 1.7

10 1477.27 2.3 9 1475.39 2.5
11 1580.28 2.1 10 1582.56 1.9
12 1675.22 1.9 11 1643.77 2.5

Figure 7. MAC values for normal modes obtained by ERA and p-LSCFD methods.

Figure 8. Normal modes of vibration of a boring tool determined by the p-LSCFD method. For the
mode 1, sensor locations are marked.
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5. The Calculation Model of a Boring Tool

Based on the characteristic geometrical dimensions of the CoroBore® 825 XL boring
tool, a FEM was created containing four 2-node finite elements of the Euler–Bernoulli Bar
(E-BB) type (6 degrees of freedom in each node), connected by Spring-Damping Elements
(SDE) [31,32] (see, Figure 3).

Using the proprietary programs developed in Fortran, the frequencies and modes of
natural vibrations of the created computational model were calculated. The calculation
results for the first 6 normal modes are graphically illustrated in Figure 9. These results
were compared with the boring tool modal parameters obtained from the identification
(Table 1, Figure 8). Despite slight differences in the values of frequencies 3 and 4, the
obtained results were found to be consistent. This also applies to the calculated modes
of natural vibrations. With the exception of some differences, mainly noticeable in forms
3rd and 5th, in other cases, the obtained figures generally reflect the image consistent with
the experimentally determined. The above allows us to take into account the obtained
computational model of the boring tool in computer simulations of the boring process.

Figure 9. Normal modes of vibration of a boring tool determined by the calculation model.

6. Computer Simulations

The process of boring a hole (∅ 733.44 mm) in rigid large-size cast iron (EN-GJS-400-
18-LT) workpiece, from the standard production program of the industrial partner PHS
HYDROTOR Inc., Tuchola, Poland, was simulated using proprietary software developed
in Fortran. Taking into account the previously postulated “mechatronic” procedure [40], on
the basis of the considerations presented in the literature [3], the values of the parameters of
the calculation model of the boring process were estimated as: kdl = 20 daN/mm2, µl2 = 0.4,
µl3 = 0.2. Selected simulation results for 5 different pairs of technological parameter values
are summarized in Table 2. Contrary to the considerations presented in [31], this time the
vibrations were observed in three characteristic directions of the components of the cutting
force [3], i.e., radial, feed speed and cutting speed. Thanks to creative modifications of
the simulation software, the average simulation time was reduced to about 20% of the
main machining time in the case of the simulation run on the Intel Core i7 6700 processor,
compared to the calculations in [31].
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Table 2. Simulated vibrations displacements of the edge tip. The RMS values and dominant peaks of amplitudes in spectra.
Underlined value—the best configuration, bold value—adverse configuration.

Spindle Speed Feed Speed 1st Natural
Frequency Radial Direction Feed Speed Direction Cutting Speed Direction

n
(rpm)

vf
(mm/min)

f
(Hz)

RMS
(mm)

q0
(mm)

RMS
(mm)

q0
(mm)

RMS
(mm)

q0
(mm)

105 9.6 127.21 0.0229 0.0234 0.0546 0.0535 0.0196 0.0180
110 10.1 126.26 0.0360 0.0390 0.0858 0.0930 0.0187 0.0162
115 10.5 126.26 0.0323 0.0250 0.0770 0.0597 0.0172 0.0104
120 11.0 127.35 0.0208 0.0233 0.0496 0.0535 0.0189 0.0197
125 11.4 126.65 0.0380 0.0475 0.0906 0.1133 0.0219 0.0248

The machining was first considered according to the standard technology of the
cooperating company (i.e., n = 105 rpm, vf = 9.6 mm/min), and then the obtained results
were compared with the proposed method. Then, the hole was machined for standard
parameters, and subsequently—in a series of repetitive simulations—the predicted values
of the best spindle speeds were determined, for which the boring process was planned to
be carried out.

Thus, in Figure 10a, we can observe time plots and spectra of vibrations of the tool
edge tip in the radial direction (i.e., normal to the bored hole surface), for the best spindle
speed, and in Figure 10b for an adverse spindle speed. In Figure 11a, we can see time plots
and spectra of vibrations of the tool edge tip in the feed speed direction, for the best spindle
speed, and in Figure 11b for an adverse spindle speed. In Figure 12a, we can observe time
plots and spectra of vibrations of the tool edge tip in the cutting speed direction, for the
best spindle speed, and in Figure 12b for an adverse spindle speed. The starting times of
the observation of the spectra were 300 s, with 217 samples for each plot. It is easy to see
that at an adverse spindle speed, the vibrations that occur are much greater. In addition,
relatively low excitation frequencies from 1.75 to 2.08 Hz following the entry of the cutting
edge into the material and resulting from the adopted range of rotational speeds of the
boring tool, cause—in all cases—vibrations to be stimulated with a frequency close to the
first mode of natural vibrations, with the predominant vibration amplitudes in the feed
speed direction.

Figure 10. Simulated vibrations of the edge tip in the radial direction: (a) the best spindle speed n = 120 rpm, (b) adverse
spindle speed n = 125 rpm.
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Figure 11. Simulated vibrations of the edge tip in the feed speed direction: (a) the best spindle speed n = 120 rpm, (b) adverse
spindle speed n = 125 rpm.

Figure 12. Simulated vibrations of the edge tip in the cutting speed direction: (a) the best spindle speed n = 115 rpm,
(b) adverse spindle speed n = 125 rpm.

The Root Mean Square (RMS) values and amplitudes of dominant peaks (q0) in
spectra are evaluated for various values of technological parameters. Comparing the
simulation results (Table 2) in the radial direction and in the feed speed direction, we obtain
the best configuration of parameters for n = 120 rpm, but the adverse configuration of
parameters for n = 125 rpm. Although in the cutting speed direction, the best configuration
of parameters is obtained for n = 115 rpm, the direction of these vibrations, unlike the
first two, is not decisive from the point of view of machining quality (geometric accuracy,
surface roughness). Hence, it can be assumed that the best-simulated spindle speed is
n = 120 rpm.

7. Experimental Research of the Boring Process

Experimental research to evidence the accuracy of computer predictions, concerned
boring a hole in a rigid large-size cast iron (EN-GJS-400-18-LT) workpiece, which was
mounted on a milling and boring WHN 13-15 CNC machine, produced by TOS VARNS-
DORF A.S. in Varnsdorf, Czech Republic (see, Figure 1). Boring was performed using
Sandvik CoroBore® 825 XL boring tool (see, Figures 2 and 5). In Table 3, the roughness
parameters Ra and Rz of the hole surface at the lowest place (Figure 1) are compared,
obtained in accordance with the standard technology of the cooperating industry and on
the basis of 3 modifications of technological parameters, as a consequence of previously
conducted simulations (Table 2).
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Table 3. Parameters and results of boring the large-size workpiece [31].

Procedure ae (mm) n
(rpm)

vf
(mm/min)

D
(mm)

Ra
(µm)

Rz
(µm) Technology

W1 1 105 9.6 727.4632 5.080 24.73 Standard
W2 1 110 10.1 729.4516 4.063 19.93 Modification 1
W3 1 120 10.8 731.4521 5.852 26.53 Modification 2
W4 1 125 11.9 733.4432 3.935 20.09 Modification 3

Compared to the standard technology (i.e., n = 105 rpm, vf = 9.6 mm/min), the
vibration level decreased noticeably in the case of the best simulation (Table 2). The
RMS values were reduced accordingly: in the radial direction—by 9%, in the feed speed
direction—by 9%, and in the cutting speed direction—by 4%. The dominant amplitudes
in the spectra remained almost the same comparing to standard machining technology.
In addition, the evident reduction in vibration of the boring tool is accompanied by an
increase in the spindle speed from 105 to 120 rpm (i.e., 14%), which results in a reduction
of the main machining time by 0.89 min (11%) and a simultaneous increase in machining
efficiency. At the same time, the measured values of the Ra and Rz parameters did not
deteriorate (Table 3), which confirms that the requirements for maintaining the required
surface quality were assured.

Although a further increase in the spindle speed to 125 rpm results in a reduction
of the roughness parameters, doing so is in fact not recommended. This is because it
adversely affects the durability of the cutting inserts, significantly shortening their service
life. Thereby, it unreasonably increases processing costs.

8. Implementation Profitability Assessment

The purpose of these considerations, which make a significant contribution compared
to [31], is to develop the basis for managerial insights that facilitate the accuracy of decision-
maker actions in the industrial practice of small and medium-sized enterprises that are not
interested in implementing advanced system solutions, but in meeting the requirements of
the profitability criterion at the technological process level of the product.

In order to obtain information on the profitability resulting from the application of
the presented method, the standards of technological times were compared [45]. Let
us reconsider the process of boring a hole in a rigid large-size cast iron EN-GJS-400-18-
LT workpiece on the WHN 13-15 CNC table milling and boring machine in one pass.
According to the standard technology, such machining has so far been performed in a unit
time (approximately equal to the execution time), which is:

tj0 = lp0 × tpk0 + tg0 (13)

where:

– lp0—number of inspection cuts for pass,
– tpk0—time of inspection cut of pass,
– tg0—main time of pass.

For the sake of simplicity, in Formula (13), other components of the auxiliary time tp
were omitted. Assuming lpk0 = 1, tpk0 = tg0 = 8.02 min., we get tj0 = 16.04 min.

In the solution for the best combination of technological parameters, the expected
main time of pass is tg = 7.13 min., and there are no inspection passes (lp = 0). This gives
the total unit time tj = 7.13 min, which is 56% shorter. The total time per unit for boring a
hole is therefore:

– for standard technology—16.04 min,
– in the case of technology based on the best combination of parameters—7.13 min.

In the case of the proposed technology, there is no need to increase the machining time
by the theoretical and experimental modal analysis times, and by the boring simulation
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series time, because the above concern only the boring tool, regardless of the number of
rigid workpieces mounted on the machine.

The profitability of applying the obtained results is therefore seen in the category of:

– minimizing the vibration level of the boring tool, thereby maintaining the required
product quality, and

– shortening the total standard of time by 8.91 min, i.e., by 56%.

9. Conclusions

The results obtained during the research confirmed, in the production conditions of the
industrial partner, the effectiveness of the proposed method of suppressing the vibrations
of a rotating boring tool. Because of the use of the Experiment-Aided Virtual Prototyping
(E-AVP), the best spindle speed was selected when boring holes in large-size structures.
Due to technical impossibility, the vibrations of the workpiece were not measured on-line
during machining. Nevertheless, the results of roughness measurements (i.e., Ra, Rz) of
the bored surface made with a profilometer after boring confirmed the accuracy of the
prediction for the best selection of technological parameters n, vf for the machining process.

The present study makes it possible to predict the best conditions of the process of
boring large workpieces only on the basis of a simulation of the computational model of the
process in which the parameters of the boring tool were validated with a real object. The
approach presented in the article, due to its uncomplicated nature, can be easily applied
in the economic practice of many companies dealing with the machining of large-size
objects—even those who do not have their own research facilities and their own hardware
and software infrastructure.

The applied method does not require interference in the structure of the machine
tool and, apart from identifying the computational model of the boring tool, no previous
experimental tests are needed to simulate the boring process. Computational models of
many boring tools can be prepared off-line for the selected configurations (e.g., overhang,
boring diameter), and then the appropriate model can be selected to perform the simulation.

The assessment of the profitability of implementing the proposed method should
be seen in the category of minimizing the vibration level of the boring tool, resulting in
an improvement in the quality of workmanship, as well as a significant reduction in the
production standard of the unit execution time. In addition, the cost reduction of the
material to be removed cannot be overestimated due to the lack of inspection cuts that
actually exist in standard technology.

Although the increased efficiency of boring holes in large-size workpieces was ac-
companied by the maintenance of roughness indicators appropriate for finishing, research
perspectives should be directed at the successive improvement of the quality of the ma-
chined surface, obtaining Ra below 1 µm. This challenge is to be met by the method
of suppressing the vibration level of a rotating tool proposed in this paper, effectively
implemented at the level of the boring process.
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Appendix A

Appendix A.1. Matrix of Shape Functions of E-BB No. e

Ne(ξ) =

[
Ne11 Ne12
Ne21 Ne22

Ne13 Ne14
−Ne21 Ne24

]
6×12

(A1)

where:

Ne11 =

 1− ξ −xe2· 6le ξ(ξ − 1) xe3· 6le ξ(1− ξ)

0 2ξ3 − 3ξ2 + 1 0
0 0 2ξ3 − 3ξ2 + 1

, (A2)

Ne12 =

 0 xe3·
(
3ξ2 − 4ξ + 1

)
−xe2·

(
3ξ2 − 4ξ + 1

)
−xe3·(1− ξ) 0 ξle

(
ξ2 − 2ξ + 1

)
xe2·(1− ξ) ξle

(
−ξ2 + 2ξ − 1

)
0

, (A3)

Ne13 =

 ξ −xe2· 6le ξ(1− ξ) xe3· 6le ξ(ξ − 1)
0 ξ2(−2ξ + 3) 0
0 0 ξ2(−2ξ + 3)

, (A4)

Ne14 =

 0 xe3·
(
3ξ2 − 2ξ

)
−xe2·

(
3ξ2 − 2ξ

)
−xe3·ξ 0 ξ2le(ξ − 1)
xe2·ξ ξ2le(−ξ + 1) 0

, (A5)

Ne21 =

 0 0 0
0 0 − 6

le
ξ(ξ − 1)

0 6
le

ξ(ξ − 1) 0

, (A6)

Ne22 =

 1− ξ 0 0
0 3ξ2 − 4ξ + 1 0
0 0 3ξ2 − 4ξ + 1

, (A7)

Ne24 =

 ξ 0 0
0 ξ(3ξ − 2) 0
0 0 ξ(3ξ − 2)

, (A8)

ξ = xe1
le

, le—length of E-BB no. e.

Appendix A.2. Inertia Matrix of E-BB No. e

Me = ρele


Me11 Me12
MT

e12 Me22

Me13 Me14
Me23 Me24

MT
e13 MT

e23
MT

e14 MT
e24

Me11 −Me12
−MT

e12 Me22


12×12

(A9)

where:

Me11 =


Ae
3 0 0
0 13Ae

35 + 6Ixe3
5l2

e
0

0 0 13Ae
35 + 6Ixe2

5l2
e

 (A10)

https://doi.org/10.34808/nhsy-hy21
https://doi.org/10.34808/nhsy-hy21
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Me12 =

 0 0 0
0 0 11Ae le

210 + Ixe3
10le

0 − 11Ae le
210 −

Ixe2
10le

0

, (A11)

Me13 =


Ae
6 0 0
0 9Ae

70 −
6Ixe3
5l2

e
0

0 0 9Ae
70 −

6Ixe2
5l2

e

, (A12)

Me14 =

 0 0 0
0 0 − 13Ae le

420 + Ixe3
10le

0 13Ae le
420 −

Ixe2
10le

0

, (A13)

Me22 =


Ixe1
3 0 0

0 Ae l2
e

105 + 2Ixe2
15 0

0 0 Ae l2
e

105 + 2Ixe3
15

, (A14)

Me23 =

 0 0 0
0 0 − 13Ae le

420 + Ixe2
10le

0 13Ae le
420 −

Ixe3
10le

0

, (A15)

Me24 =


Ixe1
6 0 0

0 − Ae l2
e

140 −
Ixe2
30 0

0 0 − Ae l2
e

140 −
Ixe3
30

 , (A16)

ρe—mass density of the E-BB no. e material; Ae—cross section area of E-BB no. e; Ixe1—second
moment of area with respect to the xe1 axis of E-BB no. e; Ixe2—second moment of area
with respect to the xe2 axis of E-BB no. e; Ixe3—second moment of area with respect to the
xe3 axis of E-BB no. e.

Appendix A.3. Stiffness Matrix of E-BB No. e

Ke =
Ee

le


Ke11 Ke12
KT

e12 Ke22

−Ke11 Ke12
Ke23 Ke24

−KT
e11 KT

e23
KT

e12 KT
e24

Ke11 −Ke12
−KT

e12 Ke22


12×12

, (A17)

where:

Ke11 =

 Ae 0 0
0 12Ixe3

l2
e

0

0 0 12Ixe2
l2
e

 , (A18)

Ke12 =

 0 0 0
0 0 6Ixe3

le
0 − 6Ixe2

le
0

 (A19)

Ke22 =


Ixe1

2(1+νe)
0 0

0 4Ixe2 0
0 0 4Ixe3

 (A20)

Ke23 =

 0 0 0
0 0 6Ixe2

le
0 − 6Ixe3

le
0

, (A21)
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Ke24 =

 −
Ixe1

2(1+νe)
0 0

0 2Ixe2 0
0 0 2Ixe3

, (A22)

Ee—Young modulus of the E-BB no. e material, νe—Poisson’s ratio of the E-BB no. e material.

Appendix A.4. Damping Matrix of E-BB No. e

Le =
ηe

Ee
Ke (A23)

where: ηe—damping constant of the E-BB no. e material.

Appendix A.5. Inertia Matrix of the Whole M-Degree-of-Freedom Discrete System

M =
ie

∑
e=1

Me (A24)

where:

Me =



· · · · · · · · ·
· · · Me · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


m×m

(A25)

Appendix A.6. Damping Matrix of the Whole M-Degree-of-Freedom Discrete System

L =
ie

∑
e=1

Le +
ik

∑
k=1

Lk (A26)

where:

Le =



· · · · · · · · ·
· · · Le · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


m×m

, (A27)

Lk =



· · · · · · · · · · · · · · · · · ·
· · · NT

e1kΘT
e1kLkΘe1kNe1k · · · · · · −NT

e1kΘT
e1kLkΘe2kNe2k · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · −NT

e2kΘT
e2kLkΘe1kNe1k · · · · · · NT

e2kΘT
e2kLkΘe2kNe2k · · ·

· · · · · · · · · · · · · · · · · ·


m×m

, (A28)

Θek =


Θ∗ek 0 0 0

0 Θ∗ek 0 0
0 0 Θ∗ek 0
0 0 0 Θ∗ek

, (A29)

Lk = diag(lki), i = 1, . . . , 6—matrix of damping coefficients of SDE no. k, connecting
E-BB no. e = e1 and E-BB no. e = e2,
Θ∗ek =

[
cos αekij

]
3×3

—matrix of direction cosines of angles αekij between axis yki of SDE no.

k and axis xej of E-BB no. e, i = 1, . . . , 3, j = 1, . . . , 3,
Nek—matrix of shape functions of E-BB no. e, determined for the coordinates of the
connection point of SDE no. k and E-BB no. e.
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Appendix A.7. Stiffness Matrix of the Whole M-Degree-of-Freedom Discrete System

K =
ie

∑
e=1

Ke +
ik

∑
k=1

Kk, (A30)

where:

Ke =



· · · · · · · · ·
· · · Ke · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·


m×m

, (A31)

Kk =



· · · · · · · · · · · · · · · · · ·
· · · NT

e1kΘT
e1kKkΘe1kNe1k · · · · · · −NT

e1kΘT
e1kKkΘe2kNe2k · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · −NT

e2kΘT
e2kKkΘe1kNe1k · · · · · · NT

e2kΘT
e2kKkΘe2kNe2k · · ·

· · · · · · · · · · · · · · · · · ·


m×m

, (A32)

Kk = diag(kki), i = 1, . . . , 6—matrix of stiffness coefficients of SDE no. k, connecting
E-BB no. e = e1 and E-BB no. e = e2.

Appendix A.8. Time-Dependent Matrix of Transformation from Generalized Coordinates Vector
qm × 1 to Cartesian Coordinates yl1, yl2, yl3 of CE No. l

Tl(t) =
[

0 · · · Θel(t)Nel(t) · · · 0
]

6×m , (A33)

where:

Θel =


Θ∗el 0 0 0
0 Θ∗el 0 0
0 0 Θ∗el 0
0 0 0 Θ∗el

 , (A34)

Θ∗el =
[
cos αelij

]
3×3

—matrix of direction cosines of angles αelij between axis yli of CE no. l

and axis xej of E-BB no. e, i = 1, . . . , 3, j = 1, . . . , 3,
Nel—matrix of shape functions of E-BB no. e, determined for the coordinate of the connec-
tion point of CE no. l and E-BB no. e.

Note: The formulas in Appendices A.1–A.3 of the Appendix A were developed on the
basis of the References [32,33], while the formulas in Appendices A.4–A.7—based on [32].
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