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Abstract: (1) Background: Obesity is one of the most widespread chronic diseases and increases
the risk of several other chronic diseases, especially type 2 diabetes. (2) Methods: Endobarrier is a
new medical device what is worn in the small intestines for the treatment of type 2 diabetes and
obesity. However, given the invasive and other adverse effects of the Endobarrier, we propose the
use of RGD peptide conjugated with chitosan (RC) as an alternative. (3) Results: The FTIR and NMR
spectrum showed RGD peptide was successfully conjugated on chitosan and RGD−CT is retained in
the small intestine even after digestion. In vitro of wst-1 and live and dead staining studies show
that the RGD−CT gel is highly biocompatible and non-toxic. Rats treated with the RGD−CT gel for
a short term showed significant decrease change more than 30% in body weight, while the blood and
hematic biometrics were within normal values. (4) Conclusions: The RGD−CT gel is safe, suitable
for the short-term, reducing visceral fat rate health food to control weight. In the future, it is expected
to develop a safe, long-term effective, flexibility of use and low-side-effect anti-obesity therapy in the
era of precision medicine by further modification.

Keywords: obesity; RGD; chitosan; type 2 diabetes; highly biocompatibility

1. Introduction

Obesity arises from the energy imbalance between food intake and calorie expenditure.
According to the WHO, the body mass index (BMI) which is calculated based on an
individual’s body weight and height is the easiest and the most common way to categorize
an individual as underweight, normal weight, overweight, or obese [1]. A BMI over
25 kg/m2 falls within the overweight and obesity range and it is estimated that 60% of
the population worldwide will be obese by 2030. Considering the potential advances in
developing countries, this is potentially an underestimation [2,3]. In fact, obesity is one of
the most widespread chronic diseases around the world and it elevates the risk of several
other chronic obesity-related diseases, especially type 2 diabetes [1,4].

Lifestyle interventions focusing on dietary control and exercise plan are common
ways to regulate body weight, but they have limited effects and low efficiency. Previous
studies have indicated that due to the body’s adaptation to physiological neurohormonal
changes, reduction in food intake will eventually lead to weight regain [5].

Advances in pharmacotherapy have provided other options to treat obesity. To date
there are only five types of medications approved by the US Food and Drug Administra-
tion (FDA) for long-term treatment of obesity. These include the lipase inhibitors (Roche,

Materials 2021, 14, 4467. https://doi.org/10.3390/ma14164467 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6055-4126
https://orcid.org/0000-0001-5218-5121
https://orcid.org/0000-0002-2994-6671
https://doi.org/10.3390/ma14164467
https://doi.org/10.3390/ma14164467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14164467
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14164467?type=check_update&version=1


Materials 2021, 14, 4467 2 of 11

Basel, Switzerland, Orlistat, Xenical®), serotonin agonists (Arena Pharmaceuticals, San
Diego, CA, USA, Lorcaserin, Belviq®), combination of phentermine-opiramate (VIVUS
Inc., Campbell, CA, USA, Qsymia®), glucagon-like peptide1 liraglutide (Novo Nordisk,
Denmark, Saxenda®) and a combination of bupropion-naltrexone (Orexigen, CA, USA,
Contrave®) [6]. However, there are potential hazards associated with these all these phar-
maceutical treatments. Sibutramine (Abbott Laboratories, Chicago, IL, USA, Reductil®),
another anti-obesity treatment reduces appetite by inhibiting the central nerve re-uptaking
norepinephrine, serotonin, and dopamine. Its side effects include hypertension and heart
disease. It was launched in 1998 but was withdrawn in 2010 [7].

The small intestine plays an important role in the digestive absorption and control
of blood glucose levels which are regulated by endocrine responses and glucose intake.
Endobarrier is a medical device which is worn inside the body for the treatment of type
2 diabetes and obesity [8]. It is a thin plastic sleeve that is implanted by an endoscopic
bariatric procedure which prevents the body from digesting food within the upper part
of the small intestine. Disruption of the digestive absorption in the upper part of the
small intestine leads to changes in fatty acid and glucose metabolism through a variety of
mechanisms, including modulation of gut hormones, alterations in the gut bacteria and
disruption of bile flow. The Endobarrier has two operators that require both an implant and
an explant. Prior to the implant, the patients are required to take protein pump inhibitors
and continue them throught the implant period and for some time after the device is
removed. The implant is then delivered endoscopically under fluoroscopic X-ray guidance,
which exposes the patients to radiation. Patients have to be on a liquid diet during the
EndoBarrier placement and for a short duration after the procedure [8,9].

Given these inconveniences associated with the Endobarrier usage, search for alterna-
tive options has been on. Chitosan (CT) is a new substance that can potentially replace the
EndoBarrier. CT is a biodegradable, biocompatible, and bioplastic material which is very
safe for use in health and biotechnology products such as drug carriers and scaffolds [10,11].
It is a weak base with a pKa of 6.5, and can therefore, bind to free fatty acids and bile acids.
As ionically binding anions [12], the coacervation of CT’s positively charged amino groups
and the negatively charged fatty acids and bile acids results in the formation of mixed
micelles [13,14]. As the pH gradually increases in the proximal small intestine, the micelles
are disrupted by the removal of the bile acids or fatty acids. Furthermore, in the neutral pH
environment, bile acids bind with CT to a greater degree compared to fatty acids. In other
words, CT, which is a health supplement, could bind to free fatty acids efficiently in the
stomach but not in the small intestine [15]. This adhesive capability of CT can be further
enhanced by conjugation of suitable targeting ligands, such as peptides that specifically
bind to the intestinal epithelial cells even in a neutral or alkaline pH environment [16,17].

The RGD peptide is made up of arginine, glycine, and aspartic acid. It has been
identified as the minimal recognition sequence within integrins such as α5β1, αVβ1, and
α8β1 required for cell attachment. The RGD peptide has been widely used in nanoparticles
to target tumor cells, and for coating implantable medical devices to avoid immunological
rejection. RGD−conjugated CT (RC) gel could be developed as an oral health supplement
for anti-obesity treatment, based on its biocompatibility, low risk, and ability to coat the
surface of gastrointestinal tract for a medium term, to form an absorption barrier. The gel
is designed to be similar to the EndoBarrier®, taking advantage of the affinity of the RGD
peptide for integrins.

The RGD−CT was prepared and then checked using Fourier-transform infrared
spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), and Ninhydrin test to confirm
functional groups, molecular structure, respectively. We hypothesize that the RGD−CT
will be effective in regulating body weight. We focus on the results of the following: cell
viability and cytotoxicity on a cellular level, chronic toxicity, body weight control, blood
analysis, serological analysis, and sectioning examination of internal organs. In this study,
we describe the conjugation of the RGD peptide to CT and evaluate the chemical properties
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of the conjugated product and its therapeutic effects as a supplement for body weight
control both in in vivo and in vitro models.

2. Materials and Methods
2.1. Preparation of the RGD−CT Gel

Fully deacetylated chitosan (Carbosynth Ltd., Compton, UK, YC06764, 190–310 kDa)
was dissolved in 1M acetic acid at 2% w/v concentration and 3000 rpm for 30 min cen-
trifuged to remove impurities in the solution. Next, 0.45 mol 1, 4-butanediol diglycidyl
ether (BDDE) (Sigma-Aldrich Ltd., Burlington, MA, USA, 220892), 10% v/v of 100 mL
isopropanol, and 3 mg RGDs (NHRI)peptide powder were added and stirred to allow
cross-linking for 3 h at room temperature. The solvent was then removed, freeze-dried,
and stored at −80 ◦C. Figure 1 shows the final product.

Materials 2021, 14, x FOR PEER REVIEW 3 of 11 
 

 

we describe the conjugation of the RGD peptide to CT and evaluate the chemical proper-

ties of the conjugated product and its therapeutic effects as a supplement for body weight 

control both in in vivo and in vitro models. 

2. Materials and Methods 

2.1. Preparation of the RGD−CT Gel 

Fully deacetylated chitosan (Carbosynth Ltd., Compton, UK, YC06764, 190–310 kDa) 

was dissolved in 1M acetic acid at 2% w/v concentration and 3000 rpm for 30 min centri-

fuged to remove impurities in the solution. Next, 0.45 mol 1, 4-butanediol diglycidyl ether 

(BDDE) (Sigma-Aldrich Ltd., Burlington, MA, USA, 220892), 10% v/v of 100 mL isopropa-

nol, and 3 mg RGDs (NHRI)peptide powder were added and stirred to allow cross-linking 

for 3 h at room temperature. The solvent was then removed, freeze-dried, and stored at 

−80 °C. Figure 1 shows the final product. 

 

Figure 1. Chemical structure of the RGD−Chitosan conjugate. 

2.2. Fourier-Transform Infrared (FTIR) Spectrometry 

A Fourier-transform infrared spectrometer (PerkinElmer-FTIR spectrum100) was 

used to identify the functional groups of organic and polymers compounds by measuring 

absorption of infrared radiation of wavelengths. It was used to identify qualitative 

changes in the functional groups after conjugation. After correcting for the blank back-

ground, dry samples prepared with CT, RGD−CT and RGD powder were placed on the 

holder and scanned. The scan range was set to a 400–4000 cm−1 wavelength and 4 cm−1 

resolution, and 16 scans were obtained. 

2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy 

The nuclear magnetic resonance (NMR) spectroscopy is based on the spin and mag-

netic moments of the nucleus; therefore, in a strong magnetic field, it will induce energy-

level splitting and can be used to analyze the molecule structure. Samples (10 mg) in 0.5 

mL of 10% acetic acid-D2O (Fluka, St. Gallen, Switzerland) were taken in 5 mm NMR tubes 

and analyzed in an NMR spectrometer (Bruker, Billerica, MA, USA, Bruker Avance III 600 

MHz). The one-dimensional NMR proton spectrums (1H) for CT and RGD−CT were com-

pared to determine if the RGD immobilization was successful. 

2.4. RGD Functionality Test 

To evaluate the RGD functionality in digestive fluids, we set up an in vitro gastric 

and intestinal environment according to the method described by Knorr et al. [18]. We 

added 100 mg of CT and RGD−CT to 10 mL of 0.1 M hydrochloric acid solution (pH: 1.0–

2.0) and stirred in a 37 °C water bath for 2 h. We then added 0.1M sodium hydroxide 

solution until the pH increased to 6.5–7.5. The samples were then centrifuged to remove 

the additional solution and freeze dried. 

  

 
Figure 1. Chemical structure of the RGD−Chitosan conjugate.

2.2. Fourier-Transform Infrared (FTIR) Spectrometry

A Fourier-transform infrared spectrometer (PerkinElmer-FTIR spectrum100) was used
to identify the functional groups of organic and polymers compounds by measuring
absorption of infrared radiation of wavelengths. It was used to identify qualitative changes
in the functional groups after conjugation. After correcting for the blank background, dry
samples prepared with CT, RGD−CT and RGD powder were placed on the holder and
scanned. The scan range was set to a 400–4000 cm−1 wavelength and 4 cm−1 resolution,
and 16 scans were obtained.

2.3. Nuclear Magnetic Resonance (NMR) Spectroscopy

The nuclear magnetic resonance (NMR) spectroscopy is based on the spin and mag-
netic moments of the nucleus; therefore, in a strong magnetic field, it will induce energy-
level splitting and can be used to analyze the molecule structure. Samples (10 mg) in
0.5 mL of 10% acetic acid-D2O (Fluka, St. Gallen, Switzerland) were taken in 5 mm NMR
tubes and analyzed in an NMR spectrometer (Bruker, Billerica, MA, USA, Bruker Avance
III 600 MHz). The one-dimensional NMR proton spectrums (1H) for CT and RGD−CT
were compared to determine if the RGD immobilization was successful.

2.4. RGD Functionality Test

To evaluate the RGD functionality in digestive fluids, we set up an in vitro gastric and
intestinal environment according to the method described by Knorr et al. [18]. We added
100 mg of CT and RGD−CT to 10 mL of 0.1 M hydrochloric acid solution (pH: 1.0–2.0) and
stirred in a 37 ◦C water bath for 2 h. We then added 0.1M sodium hydroxide solution until
the pH increased to 6.5–7.5. The samples were then centrifuged to remove the additional
solution and freeze dried.

2.5. Ninhydrin Test

The ninhydrin was obtained from Sigma-Aldrich N4876. A chemical test, ninhydrin
test, is a way to check whether a given analyte contains amines or α-amino acids and Free
amino groups will react with the reagent to yield a purple solution. Dissolving Ninhydrin
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powder in 95% alcohol solution at 3% w/v, then adding 2M acetic acid buffer in regents
with 50% volume ratio, and the regents stored in dark at 4 ◦C. Standard samples were
prepared by adding 1.2, 1, 0.8, 0.6, 0.4, 0.2 and 0 mL of 0.1 mmol cysteine solution. RGD−CT
was dialyzed in Ninhydrin solution, and we calculated the amount of conjugated RGD by
measuring the amount of unconjugated amino acid. the 2, 2-dihydroxyindane-1, 3-dione
(Ninhydrin) was used to examine the amount of amine groups in samples and the color of
the solution changed from light yellow to purple, which could be quantified at 570 nm by
spectrophotometer microplate reader.

2.6. WST-1 Assay for Cell Proliferation

WST-1 kit was obtained from Roche, Inc. (Basel, Switzerland) 05015944001 and
used to evaluate cell viability. IEC-6 (American Type Culture Collection, Manassas,
VA, USA, ATCC Number CRL-1592), an intestinal epithelial cell line was cultured in
high glucose Dulbecco’s modified eagle medium supplemented with 5% fetal bovine
serum, 1% antibiotics and 2 c.c/L insulin (insulin transferrin selenium mixture, ITS-M) at
37 ◦C in a 5% CO2 incubator. After the cells stabilized in culture, they were seeded
into 96-well plates at 3 × 103 cells/well for biocompatibility tests. The next day, cells
were washed with phosphate-buffered saline (PBS), and the extractive solution (200 µL
per well) of CT and RGD−CT were added for 3 days, followed by ISO-10993 standards;
the extractive solution from co-incubating chitosan or RGD−chitosan with medium for
24 h. Cell viability was measured using a tetrazolium salt (WST-1), which is cleaved to
produce a soluble formazan dye by the action of succinate-tetrazolium reductase in the
mitochondrial respiratory chain of the viable cells. Optical density (OD) was measured the
absorbance on a spectrophotometer microplate reader with a test wavelength at 450 nm
and a reference wavelength at 630 nm and the percent cell viability was calculated using the
following equation:

Cell viability (%) =
Experimental value

control value
× 100% (1)

2.7. Live and Dead Cells Staining

We used the LIVE/DEAD® Viability/Cytotoxicity Kit for mammalian cells (Invitro-
gen™) (Thermo Fisher Scientific, Waltham, MA, USA, L3224) to visualize the live and dead
cells. After seeding IEC-6 cells into 12-well plates at 5 × 104 cells/well, we added 1 mL of
the material solution (CT/RC) to each well and cultured for them 4 h. At the end of this
treatment, we removed the medium, washed the cells with PBS, and then added 5 µL/mL
of Calcein AM and 1 µL/mL of propidium iodide (PI) to each well. The reagents were
allowed to react for 20 min in the dark and were finally washed with PBS and observed
under a fluorescence microscope.

2.8. Dose Optimization

To evaluate the optimal effects of CT and RGD−CT on cell viability, CT and RC
solutions (1, 2, and 3 mg/mL prepared in 0.01 M acetic acid) were tested in IEC-6 cells for
one and three days, respectively, using the WST-1 cell viability assay.

2.9. Cell Adhesion Test

To test whether the RGD−CT promotes IEC-6 cell adhesion, we used ibidi micro fluid
channel seeded IEC-6 cells to simulate the intestinal environment. First, the cell suspension
(1 × 106 cells/mL) was injected into the device (length: 50 mm, width: 5 mm, height:
800 mm) and incubated for 24 h. At the end of the incubation, we removed the medium
and added Hoechst and Safranin O dyes at a concentration of 1 µL/mL to stain the nucleus
and cell-secreted mucins. CT and RGD−CT containing medium were passed through
the channel at a flow rate of 750 µL/h using a syringe pump according to a previously
described protocol [19,20]. After allowing the solutions to flow for 30 min to mimic a meal,
the channel was stored in glycerol and observed under a fluorescence microscope.
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2.10. Animal Model

Male Sprague Dawley rats (10 weeks old) were obtained from Biolasco. This ethical
code number of animal experiment is NHRI-IACUC-106159-A and this protocol has re-
viewed and approved by the Institutional Animal Care and Use Committee (IACUC). The
rats were housed under a 12 h light/12 h dark cycle and controlled for temperature and
humidity. The animals had free access to food and water and were studied after 1 week of
adaptation to the lighting conditions. The rats were treated according to the guidelines of
the Institutional Animal Care and Use Committee, National Health Research Institutes. At
the beginning of the trial, 6 rats with the closest body weights were randomly assigned
to the same group. The animals were divided into three groups (6 rats in each) and were
given the following diets: normal control (NC), CT by gavage, and RGD−CT by gavage.
The CT and RGD−CT gel solutions were both given at 30 wt.%/100 g of body weight
according to the US FDA dose conversion method. The NC group was given saline based
on the same schedule. Each rat was gavaged three times a week for 6 weeks to evaluate the
efficacy of the RGD−CT gel.

2.11. Change in Body Weight

The changes in bodyweight and standard weight gain were calculated using the
following equations:

Percent Weight change = (Weightfinal − Weightoriginal)/Weightoriginal × 100% (2)

2.12. Serum Chemistry and Hematology

After 12 h of fasting, the rats were deeply anesthetized with isoflurane, and blood
was drawn from the heart, before sacrificing them. Blood was centrifuged at 3000 rpm for
10 min. The supernatants were collected and used for studying the serum chemistry. Blood
mixed uniformly with EDTA was used for hematological analysis by flow cytometry.

2.13. Percent Body Fat

We collected adipose tissue from the visceral fat (epididymal, mesentery, perirenal,
retroperitoneal adipose tissue) and subcutaneous fat (anterior, posterior, dorsolumbar,
inguinal, gluteal adipose tissue).

The percent body fat was calculated as follows:

Body fat (%) = [Total visceral fat weight (g)/Body weight (g)] × 100% (3)

2.14. Statistical Methods

Data were expressed as mean ± standard deviation of at least three replicates. Statisti-
cal analyses were performed by one-way ANOVA and t-test analysis of the variance test.
The results were considered significant when the p-value was <0.05.

3. Results
3.1. Material Analysis

As shown in Figure 2 the RGD peptide and RGD−CT have absorption bands of
1735–1750 cm−1 and 1640–1690 cm−1, respectively, while that for CT has different absorp-
tion bands of 1400 cm−1. In addition, compared to RGD and RC, both RGD−CT and
CT showed the peak of 1000–1300 cm−1, indicating the presence of ether bonds, which
provide the nucleophilic attack to the epoxy structure that caused the conjugation. Besides,
the CT polymer itself had an ether bond. Based on the above results, it was assumed
that the RGD peptide had successfully conjugated with CT via BDDE [21]. As Supple-
mentary Figure S1 shows, the diluted cysteine solution was measured for standard curve
of free amino group concentration as shown in Figure S1 (R2 = 0.99). The summation
of free amine concentration from five dialysis samples was 6.72 × 10−6 (mol/g) and
1.67 × 10−7 (mol/g); however, considering there were two amine groups in each RGD
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structure, the final concentration of conjugated RGD was 3.56 × 10−8 (mol/g). The results
were greater than 0.6 pmol, which the minimum RGD concentration for cell adhesion.
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Figure 2. FTIR analysis of the RGD peptide, RGD−Chitosan conjugate, and fully deacetylated
chitosan. The stretching vibration absorption band of the ester group (OC=O) is at 1750 cm−1, while
that for the primary amine bond (H2NC=O) is at 1680 cm−1, and ester bond is at 1100 cm−1.

The NMR proton spectrum in Figure 3 shows the additional chemical shifts (δ)
in RGD−CT compared to CT at 1.2806 ppm and 8.2292 ppm. The chemical shift at
1.2806 ppm was due to the formation of a carboxy long chain during conjugation, and that
at 8.2292 ppm was due to an additional indole amine, which arginine and glycine pos-
sessed. Since the CT was nearly 90% deacetylated, it can be inferred that the source of the
amide bonds was the RGD peptide. Therefore, based on the 1H NMR, it could be concluded
that the RGD peptides had conjugated with CT, resulting in molecular changes [22].

To determine whether the RGD short peptides would be inactivated by digestive
fluids, the RGD−CT was allowed to react with simulated gastric and intestinal fluids
in vitro (defined as After-RC), and its FTIR spectrum was compared with the original RC.
As shown in Figure 4A, the characteristic absorption peaks for RGD were 1750, 1680, and
1400 cm−1. A comparison between RGD−CT and after-RC showed that the peaks were
retained although at a slightly lower intensity, which was attributed to the decomposition
in the in vitro digestive fluid environment. These results show that the RGD peptide on
the RGD−CT retained its functional group even after digestion [23]. Figure 4B–G shows
fluorescent staining overlay for Control group, CT group and RGD−CT group at 40 min
and 12 h. At 12 h, small fragments of the materials are left.

3.2. In Vitro Studies

Figure 5B shows that cells treated with 3 mg/mL of RGD−CT in 0.01M acetic acid
solution had the highest viability based on a 3-day assay. The viability of CT and RGD−CT
treated cells were comparable to those of control cells. The morphology of these cells
(Figure 5A) visualized by optical microscopy showed no changes, thereby indicating
that RGD−CT is highly biocompatible. Additionally, live cell staining following CT and
RGD−CT treatments was comparable to that in the control cells (Supplemental data
Figure S2). The poor PI staining in combination with the WST-1 data confirms that the
RGD−CT is not toxic in vitro.
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Figure 3. The NMR analysis of 90% deacetylated chitosan and the RGD−Chitosan conjugate.

3.3. In Vivo Studies

Figure 6 shows the change in the average body weights in the NC, CT, and RGD−CT
groups. A significant difference lower (p < 0.05) was seen between the NC and RGD−CT
groups after 4 weeks of treatment, while no significant difference was seen between the
NC (414.6 ± 5.9 g) and CT (401.9 ± 3.2 g) groups. The percent weight change in 4 weeks
was significantly lower in the RGD−CT (384.0 ± 4.2 g) group when compared to the NC
group. However, this difference became less obvious after 4 weeks. Compared to the NC
group, the RGD−CT group had a 62% weight gain rate in 4 weeks, which increased to 70%
after 4 weeks. These results suggest that the conjugated CT could regulate weight more
effectively than its non-modified version. Besides, the RGD−CT gel appeared to be more
effective when used for short-term (between 4 to 6 weeks), which was consistent with the
findings of previous clinical trials [24,25].
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the CT group. At 12 h, small fragments of the materials are left.
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Figure 6. Change in average body weights. Shown are the changes in body weights in the normal
control (NC), chitosan (CT) and RGD−Chitosan conjugate (RC) groups. The NC and the RGD−CT
groups show significant changes after 4 weeks of treatment (*: p < 0.05, n = 6).

4. Discussion

Previous studies and data from clinical trials of the Endobarrier have indicated device-
related adverse effects during the implant periods, which often require premature explant
for melaena and device migration resulting in the blockage of the duodenal-jejunal bypass
liner with food and abdominal pain [8]. The explant of the Endobarrier between 12 to
26 weeks, endoscopic surgery is the only way to deal with the discomfort during the
treatment. Despite its ease of performance compared to traditional surgery, endoscopic
surgery is still inconvenient for patients. RGD−CT gel is, therefore, a good alternative to
endoscopic surgery.

The viability and morphology of CT and RGD−CT treated cells (Figure 4 and
Supplemental data Figure S1) shows that RGD−CT is highly biocompatible and not toxic.
It demonstrates that RGD peptide and chitosan modified by BDDE do not causes increased
toxicity. Our in vivo results show that 4–6 weeks of continuous use of the RGD−CT gel
resulted in a significant difference lower in body weight with no side effects, confirm-
ing our hypothesis. The blood and hematic biometrics were within the normal values
(Supplemental Table S1) and were consistent with those reported previously [26]. Besides,
the RGD−CT gel can be administered orally, has no side-effects and requires a brief stay in
the body.

5. Conclusion

This study developed a method to combat obesity and diabetes through a safe and
without negative side-effect oral intake of RGD−modified chitosan hydrogel.

It does not cause any inconvenience to the patients, and in any cases of any discomfort,
its administration can be stopped immediately. Moreover, considering the high cost of
RGD, patients can adjust the frequency of the oral intake of the RGD−CT gel as per their
needs. Given the flexibility of use and low-side-effect RGD−CT gel is a new anti-obesity
therapy in the era of precision medicine [26].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14164467/s1, Figure S1: Ninhydrin test concentration calculation of the RGD pep-
tide, RGD-Chitosan conjugate, and 90% deacetylated chitosan, Figure S2: Live and dead staining.
(A) Control (B) Chitosan (CT), and (C) RGD-Chitosan conjugate (RC), Table S1: Blood and hematic
biometrics of the normal control (NC), chitosan (CT) and RGD-Chitosan conjugate (RC) groups.
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