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Abstract: The crack tip strain and stress condition are one of the main factors affecting stress corrosion
cracking (SCC) behaviors in the dissimilar metal welded joint of the primary circuit in the pressurized
water reactor. The mechanical property mismatch of base metal and weld metal can significantly
affect the stress and strain condition around the crack tip. To understand the effect of different
weld metals on strain and stress fields at SCC crack tips, the effects of strength mismatch, work
hardening mismatch, and their synergy on the strain and stress field of SCC in the bi-material
interface, including plastic zone, stress state, and corresponding J-integral, are investigated in small-
scale yielding using the finite element method. The results show a significant effect of the strength
mismatch and work hardening mismatch on the plastic zone and stress state in the weld metal and
a negligible effect in the base metal. J-integral decreases with the single increase in either strength
mismatch or work hardening mismatch. Either the increase in strength mismatch or work hardening
mismatch will inhibit the other’s effect on the J-integral, and a synthetic mismatch factor can express
this synergistic effect.

Keywords: strength mismatch; work hardening mismatch; stress corrosion cracking; strain and stress
fields; synergistic effect

1. Introduction

As the operating time of nuclear power plants increases, stress corrosion cracking
(SCC) has become a widespread issue during the last few decades [1]. SCC is a slow
crack growth process under the combination of environment, material, and load stress
in the crack tip area [2]. Because of the heterogeneous microstructure and mechanical
properties in the bi-material interface regions, the dissimilar metal weld joint (DMWJ)
is more susceptible to SCC and becomes the weakest link of structural materials in the
pressurized water reactor (PWR) [3,4]. The stress and strain condition around the crack
tip is a critical factor affecting the SCC behaviors [1]. Therefore, it is essential to calculate
strain and stress fields at the crack tip of SCC for predicting the crack growth direction and
rate of SCC quantitatively. The mechanical property mismatch is an important factor to
be considered because it can significantly affect the stress and strain condition around the
crack tip.

In general, the mechanical property mismatch is defined by the strength mismatch
ratio of the yield strength of the weld metal and base metal. Many efforts were made
regarding the effect of strength mismatch on the crack-tip stress and strain field [5] and
corresponding crack driving force [6,7], crack-tip constraint [8,9]. In most of these studies,
the default weld metal and base metal have the same hardening properties, i.e., the true
stress–strain curves of two metals after yielding are parallel. Nevertheless, a few studies
showed that the work hardening mismatch could significantly affect the crack-tip stress
and strain fields and crack driving force with the same yield strength [10–12]. In fact, the
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yield strength and work hardening of the base metal and weld metal are mismatched
simultaneously in the DMWJ. Due to the use of different base metals and weld metals,
the mismatch states are different, and the degradation of materials in the welded joint
will occur and change the macro mechanical properties due to the influence of extreme
environments such as irradiation and high temperature [13]. Moreover, the “local mis-
match” was proposed meaning the difference of yield strength and work hardening near
the crack [14,15]. Therefore, the effect of mechanical property mismatch on the crack-tip
stress and strain field of SCC needs to be studied in more detail.

However, when it comes to the effects of strength mismatch and work hardening
mismatch on the crack-tip stress and strain field and crack driving force, it can be found that
previous studies focused on one of them with the other unchanged or ignored. The synergy
(inhibition or promotion) of these two mismatches has not been studied. In the present
study, the effects of strength mismatch, work hardening mismatch, and their synergy
on the strain and stress field of interface SCC crack tip are investigated in small-scale
yielding by the finite element method (FEM) based on elastic–plastic fracture mechanics
(EPFM) approach. The plastic zone and stress level near the crack tip and corresponding
J-integral are also discussed. The results presented in this work can provide more detailed
recommendations for selecting welding materials and evaluating the structural integrity of
the DMWJ from the perspective of the SCC crack driving force.

2. Materials and Methods
2.1. Materials and Specimen Geometry

The Ramberg-Osgood equation can be used to express the true stress–strain (σ-ε)
curves of both the weld metal and base metal in the DMWJ, which is written as

ε

ε0
=

σ

σ0
+ α

(
σ

σ0

)n
, (1)

where σ0 is the yield strength, ε0 is the yield strain, α is the Ramberg–Osgood coefficient,
and n is the work hardening exponent. The safe-end DMWJ is utilized to join the ferric steel
pipe-nozzle of the pressure vessel with the austenitic stainless steel safe-end. Ferritic low
alloy steel A508, usually used for the pipe-nozzle of the nuclear pressure vessel, is selected
as the base metal. The material mechanical parameters of A508 are Young’s modulus
E = 183,000 MPa, Poisson’s ratio ν = 0.3, yield stress σ0 = 410 MPa, strain hardening expo-
nent n = 5.41, and the Ramberg–Osgood coefficient α = 5.11 at the operating temperature of
about 340 ◦C [16,17]. At present, the world’s uses of safe-end weld metal are 309L/308L,
Inconel 82, and Inconel 152 in the United States; Soudonel 690 in Belgium; Thermanit 690
in Germany; Nic 703D in Japan; and Sanicro 71 in Sweden. They all have different yield
strengths and work hardening coefficients. For example, the yield strength of alloy 82 is
315 MPa, and the work hardening coefficient is 7.01 at 320 ◦C [18]; the yield strength of
alloy 52 is 380 MPa, and the work hardening coefficient is 3.29 at 340 ◦C [19]; the yield
strength of 309L/308L is 270 MPa, and the work hardening coefficient is 3.74 at 295 ◦C [20].
Therefore, a wide range of the strength and work hardening mismatch ratio should be
selected in this study for almost covering the yield strength and work hardening coefficient
of all weld metal.

To investigate effects of strength mismatch, work hardening mismatch, and their
synergy on the strain and stress field, it is assumed that Young’s modulus E, Poisson’s ratio
ν, and the Ramberg–Osgood coefficient α in the weld metal are consistent with base metal,
but the yield strength and work hardening exponent vary in the weld metal. The strength
mismatch ratio is usually defined as

MS =
σW
σB

, (2)

where σW and σB are the yielding strength of the weld metal and base metal. MS varies
from 0.7 to 1.3, which is considered to be a typical range [21]. The MS is 0.7, 0.85, 1, 1.15,
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and 1.3, and the corresponding yield strength of the weld metal is 287, 348.5, 410, 471, and
533 MPa in this study. Similar to the strength mismatch, the work hardening mismatch
ratio is defined as

MN =
nW
nB

, (3)

where nW and nB are the work hardening exponent of the weld metal and base metal,
respectively. The range of MN from 0.5 to 1.8 is considered, and the value interval is 0.1.
Therefore, the work hardening exponent of the weld metal varies from 2.71 to 9.74, which
is approximately coincident with the variation range of work hardening exponent in other
studies [22,23].

As shown in Figure 1, according to ASTM E399-17 [24], 1T-CT welded joint specimen
(W = 50 mm, a = 0.5 W) was used in finite element analysis, which is often used in SCC
experiments [25]. The crack is located at the interface of the weld metal and base metal.

Figure 1. Geometry of 1T-CT specimen.

2.2. FEM Model

The two-dimensional finite element model with 10738 8-node biquadrate plane strain
quadrilateral (CPE8) elements is shown in Figure 2. The meshes around the crack tip
were refined with 1728 CPE8 elements, as shown in Figure 2b. The crack growth direction
is the X direction in the coordinate system. The finite element model was calculated by
ABAQUS code using the incremental theory of plasticity. The stress intensity factor (K)
is usually used as a parameter to measure the external load of the CT specimen in SCC
experiments. To investigate the synergistic effect of two mismatches on the strain and stress
field under the same load, K is set as constant 30 MPa·m1/2, which is usually used in SCC
experiments [26,27]. The specimen was loaded by concentrated force in the center point of
two loaded holes in the vertical direction, and all other motions of the center point were
restrained except the vertical direction. The coupling constraint was defined between the
center point and the loaded hole.
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Figure 2. Finite element model of CT specimen. (a) The whole model and (b) meshes around the crack tip.

3. Results and Discussion
3.1. Plastic Zone

The local stress and strain distribution near the crack tip can significantly affect the
SCC growth rate and direction. Therefore, they are usually used as mechanical parameters
to predict the SCC behavior quantitatively [28,29]. The plastic zone around the crack tip
is investigated in this section, and the stress distribution will be investigated next section.
To investigate the plastic zone on both sides of the SCC crack, as shown in Figure 3, the
plastic zone area (surrounded by 0.2% equivalent plastic strain isoline) of the weld metal
and base metal are defined and expressed by ApW and ApB, respectively.

Figure 3. Diagram of plastic zone area of the base metal and weld metal.

The plastic zone area of the weld metal and base metal are shown in Figure 4, where
ApW and ApB are normalized by the plastic zone area of any side homogeneous base metal
(MS = MN = 1) Apref. It can be seen from Figure 4a that when work hardening is evenly
matched (MN = 1), the plastic zone area of the weld metal decreases with increasing strength
mismatch ratio, consisting with the study of Lee and Kim [30]. When yield strength is
evenly matched (MS = 1), the plastic zone area of the weld metal also decreases with
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increasing work hardening mismatch ratio. Meanwhile, with increasing MS from 0.7 to
1.3, the change degree of ApW with MN is reduced. Additionally, the change degree of ApW
with MS is reduced with increasing MN from 0.5 to 1.8. It indicates that when the yield
strength and work hardening exponent are mismatched simultaneously, the increase in
either inhibits the effect of the other on the plastic zone area of the weld metal. Figure 4b
shows that when work hardening is evenly matched (MN = 1), the plastic zone area of the
base metal increases with increasing MS. When yield strength is evenly matched (MS = 1),
the plastic zone area of the base metal also increases with increasing MN, which is opposite
to the trend of change in the weld metal. This opposite phenomenon can be explained as
the increase in the plastic zone in the weld metal releases more high stress at the crack tip.
Therefore, the high stress to be released in the base metal decreases, the plastic zone of the
base metal decreases correspondingly, and vice versa. Those results are consistent with the
other studies [29,30]. However, when comparing Figure 4b with Figure 4a, the variation in
the plastic zone area in the base metal (from 0.62 to 1.33) is much smaller than weld metal
(from 0.17 to 13.06). Thus the effects of strength mismatch and work hardening mismatch
on the plastic zone area are negligible in the base metal but significant in the weld metal.

Figure 4. Plastic zone area. (a) Weld metal and (b) base metal.

It is assumed that the plastic zone area is regarded as the crack driving force in addition
to the applied loading [15]. Therefore, the ratio of ApW and ApB is greater than 1, indicating
that the crack driving force in the weld metal is greater than the base metal, and the crack
might grow into the weld metal and vice versa. Figure 5 shows the ratio between the
plastic zone area of the weld metal and base metal. The ratio of ApW and ApB is dominated
by the ApW as the variation in ApW is much greater than ApB. The results in Figure 5 further
indicate that the crack growth direction depends on both strength mismatch and work
hardening mismatch. For example, the crack might grow into the base metal when MS > 1,
without considering the work hardening mismatch (MN = 1), but into the weld metal when
MN = 0.7. Therefore, it is not enough to consider one mismatch only for estimating the
crack growth direction, and the synergistic effect of strength mismatch and work hardening
mismatch must be considered.
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Figure 5. The ratio between plastic zone area of the weld metal and base metal.

3.2. Stress Distribution

For convenience, the “point match” method, i.e., selecting one or several points near
the crack tip to characterize the stress level [31], is used to study the stress field at the crack
tip. Additionally, the 20 µm can be used as the distance from the characteristic point to the
crack tip of the SCC [2]. Therefore, to investigate stress level on both sides of the SCC crack,
two points in r = 0.02 mm, θ = ±90◦, are selected in this study, where r and θ are the polar
coordinates centered at the crack tip with θ = 0◦ corresponding to the interface. The stress
level in the base metal and weld metal is represented by the Von Mises stress at these two
points and is expressed by σVB and σVW.

Figure 6 shows the Von Mises stress in the weld metal and base metal for different
strength mismatches and work hardening mismatches, where σVB and σVW are normalized
by the Von Mises stress of the homogeneous base metal (MS = MN = 1) σV0 in r= 0.02 mm,
θ = 90◦. The results in Figure 6a suggest that when work hardening is evenly matched
(MN = 1), the Von Mises stress in the weld metal increases with increasing strength mis-
match ratio MS, consistent with other studies [5,29]. When yield strength is evenly matched
(MS = 1), the Von Mises stress in the weld metal decreases with increasing work hardening
mismatch ratio MN. Meanwhile, the change degree of σVW with MN decreases with increas-
ing MS (from 0.7 to 1.3), and the change degree of σVW with MS increases with increasing
MN (from 0.5 to 1.8). It indicates that when the yield strength and work hardening exponent
are mismatched simultaneously, the increase in MS inhibits the effect of MN on the stress
level in the weld metal. The increase in MN promotes the effect of MS on the stress level
in the weld metal. Figure 6b shows that the tread of σVB is similar to that of σVW, which
is because the stresses in the weld metal and base metal are similar to the relationship
between force and reaction force. However, the maximum variation in σVB, which occurs
in MS = 0.7 and MN = 1.8, is less than 8% compared with the homogeneous base metal.
It implies that the effects of strength mismatch and work hardening mismatch on stress
in the base metal can be neglected compared with variation in stress level in the weld
metal (33%).
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Figure 6. Von Mises stress. (a) Weld metal and (b) base metal.

To compare the Von Mises stress in the weld metal and base metal, Figure 7 illustrates
the ratio between them. The variation in σVW/σVB is consistent with the variation in σVW
(Figure 6a) because the ratio of σVB and σVW is dominated by σVW. As MS changes, the
σVW/σVB curve is not a simple translation. It demonstrates that the synergistic effect of
strength mismatch and work hardening mismatch on stress distribution at the crack tip
is significant.

Figure 7. The ratio between Von Mises stress in the weld metal and base metal.

3.3. J-Integral

The stress and strain fields at the crack tip are not in accordance with the HRR
(Hutchinson–Rice–Rosengren) field distribution due to the mechanical property mismatch
of the base metal and weld metal. However, it is notable that the J-integral is still an
effective parameter to measure the scale of stress and strain region at the SCC crack tip [32].
When the stress intensity factor (K) is constant, the mechanical property mismatch affects
the J-integral.
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Figure 8 shows the J-integral with different strength mismatches and work hardening
mismatches. The J-integral for homogeneous base metal (MS = MN = 1) is 4.651, and its
value is 4.602, calculated by the EPRI (Electric Power Research Institute) approach. The
relative error is 1.07%, which demonstrates that the FEM analyses are reliable in this study.
The J-integral decreases with increasing strength mismatch ratio MS when work hardening
is evenly matched (MN = 1), which is consistent with Lee’s research [6]. When yield strength
is evenly matched (MS = 1), the J-integral also decreases with increasing work hardening
mismatch ratio MN, and the variation range less than 1% when MN > 1. In addition, with
increasing MS from 0.7 to 1.3, the J-integral curve to MN does not simply translate, and
the change in J-integral reduces from 29.6% to 11.7%. With increasing MN from 0.5 to 1.8,
the change in J-integral with MS reduces from 17.8% to 1.5%. Therefore, when the yield
strength and work hardening exponent are mismatched simultaneously, the increase in
either will inhibit the effect of the other on J-integral rather than superimposed on each
other simply. The results in Figure 8 further indicate that higher yield strength and work
hardening coefficient of weld metal will lead to a smaller crack driving force (J-integral) for
interface SCC crack.

Figure 8. J-integral with different strength and strain hardening mismatches.

Further, in order to characterize the synergistic effect of strength mismatch and work
hardening mismatch on J-integral, the mismatch factor is attempted to define as

M2 = MN
√

MS, (4)

Figure 9 shows a fitting empirical equation curve of J-integral about M2 based on
Figure 8, where the J-integral is normalized by the J-integral of homogeneous base metal
Jref for engineering applications. There is an excellent fitting effect between J/Jref and M2,
and the equation is expressed as

J/Jre f = aMb
2 + c, (5)

where a = 0.01709, b = −3.358, and c = 0.9872, the coefficient of correlation R-square (R2)
is 0.988. Figure 9 further indicates that the J-integral decreases as a power function as
the mismatch factor M2 increases, and the variation (less than 1.6%) in J-integral can be
neglected when M2 > 1.
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Figure 9. Fitting function of J-integral with different mismatch factors.

Figure 10 illustrates the comparison between the FEA results and predicted J-integral
values with MS = 0.8, 0.9, 1.1, and 1.2. Good agreements are achieved, and the maximum
relative error is less than 1%. Therefore, M2 quantifies the interdependencies of effects
among strength mismatch and work hardening mismatch on J-integral and might be a
suitable strategy to estimate the J-integral of interface SCC crack for DMWJs. For example,
after J-integral of homogeneous base metal Jref is obtained by the Engineering Treatment
Model (ETM) or EPRI, the J-integral of interface crack for DMWJs can be estimated ac-
cording to the mismatch factor M2 between the weld metal and base metal. However, it
should be noted that as a practical attempt to characterize the synergistic effect of strength
mismatch and work hardening mismatch on J-integral, M2 and corresponding Equation (5)
are applicable in CT specimen with small scale yielding in this research. The effects of
constraints by different geometries and loads on M2 need to be further investigated.

Figure 10. Comparison between the FEA results and predicted J-integral.
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The J-integral, with respect to strength mismatch application, was extended based on
the EPRI approach [8,33] and used in the structural integrity assessment, such as R6 or BS
7910. However, this study demonstrates that the synergistic effect of strength mismatch
and work hardening mismatch on the J-integral is significant and must be considered in
small-scale yielding. To consider only one effect would result in a conservative or non-
conservative result. Therefore, it is recommended to calculate the crack driving force of SCC
related to both strength and hardening mismatch in the integrity design and evaluation of
the DMWJ in nuclear power plants.

4. Conclusions

In conclusion, the synergistic effect of strength mismatch and work hardening mis-
match on the strain and stress fields of SCC crack tip, including plastic zone, stress state,
and corresponding J-integral, were investigated in small-scale yielding by FEM numerical
analyses based on the EPFM approach. The following main conclusions were drawn from
the results obtained:

• The effect of strength mismatch and work hardening mismatch on the plastic zone
area is negligible in the base metal but significant in the weld metal. The increase in
either will inhibit the effect of the other on the plastic zone area of the weld metal. The
crack growth direction depends on the synergistic effect of two mismatches;

• The effect of strength mismatch and work hardening mismatch on the stress distribu-
tion is negligible in the base metal but significant in the weld metal. The increase in
strength mismatch ratio will inhibit the effect of the work hardening mismatch ratio
on the stress level of the weld metal. The increase in work hardening mismatch ratio
will promote the effect of the strength mismatch ratio on the stress level of the weld
metal;

• J-integral decreases with the single increase in either strength mismatch or work
hardening mismatch. Either the increase in strength mismatch or work hardening
mismatch will inhibit the other’s effect on the J-integral, and this synergistic effect
may be expressed by a synthetic mismatch factor M2. Further study of the mismatch
factor M2 and its use are currently being carried out;

• Higher yield strength and work hardening coefficient of weld metal will reduce the
crack driving force (including plastic zone and J-integral) for interface SCC crack. It is
recommended to calculate the strain and stress field and crack driving force of SCC
for both strength and hardening mismatch in structural integrity assessment.
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