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Abstract: The highly efficient eco-friendly synthesis of acetic acid (40% yield) directly from ethane is
achieved by the unprecedented use of N-heterocyclic carbene (NHC) and N-heterocyclic oxo-carbene
(NHOC) gold(I) catalysts in mild conditions. This is a selective and promising protocol to generate
directly acetic acid from ethane, in comparison with the two most used methods: (i) the three-step,
capital- and energy-intensive process based on the high-temperature conversion of methane to acetic
acid; (ii) the current industrial methanol carbonylation processes, based in iridium and expensive
rhodium catalysts. Green metrics determinations highlight the environmental advantages of the new
ethane oxidation procedure. Comparison with previous reported published catalysts is performed to
highlight the features of this remarkable protocol.

Keywords: NHC gold (I) complex; NHOC gold (I) complex; ethane oxidation; acetic acid; green metrics

1. Introduction

It is well-recognized that N-heterocyclic carbene (NHC) ligands have played an
increasingly significant role in designing homogeneous catalysts. NHC metal complexes
are able to catalyze different types of reactions, such as alkene activation, alkyne hydration,
hydroamination, hydrosilylation or C–C couplings [1–5].

Among the most challenging chemical reactions are alkane oxidations, in particular the
oxidation of the light gaseous ones [6,7]. In fact, despite alkanes being the most abundant
and relatively low-cost form of carbon, their inertness has hampered their use as feedstocks
for the synthesis of functionalized added-value products, namely, carboxylic acids. Harsh
reaction conditions (high temperatures, acidic medium, long reaction times, etc.) and low
product yields and/or selectivities are limitations that should be overcome through the
finding of efficient catalytic systems for the selective activation of the C−H bonds.

Acetic acid, a large tonnage commodity of high importance in view of its wide indus-
trial use (the global acetic acid market reached a volume of 9.07 million tons in 2020) [8], is
mainly produced via a three-step, capital- and energy-intensive process based on the high-
temperature conversion of methane or coal to syn-gas, conversion of syn-gas to methanol
and finally methanol carbonylation to acetic acid [9]. The current industrial methanol
carbonylation processes are CATIVA™ [10], and MONSANTO™ [11], based in iridium
and expensive rhodium catalysts, respectively. They have benefits such as high yield of the
product, but the disadvantages are also apparent, which include the environmental ones as
well as the severe corrosion to equipment by the required iodide co-catalyst.

Acetic acid may also be derived from acetaldehyde (at 150–160 ◦C and 80 bar) over
either cobalt or manganese acetate [12], or by the halide-free carbonylation of dimethyl
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ether over zeolite catalysts [13]. The latter selectively (>99%) [14,15] yields methyl acetate
which undergoes hydrolysis to methanol and acetic acid. Although promising, currently
reaction rates do not meet commercial targets.

Therefore, being able to synthesize acetic acid directly by oxidation of an alkane would
be much more clean, cheaper and therefore wiser, but also challenging. A suitable alkane for
such a process is ethane, although some advances on the production via carboxylation with
CO of acetic acid from methane have been reported [16–20]. However, the high stability
of the C–H bond in ethane has severely hindered the development of a viable process for
the partial oxidation of ethane under mild conditions. Adding further complication by the
fact that one must not only activate the inert alkane and be able to subdue the oxidation of
desirable products into compounds such as formic acid or carbon dioxide.

Direct (Scheme 1a) [21–23] or indirect (Scheme 1b) [23] processes from ethane have
been considered. The latter first requires steam cracking of ethane to ethene (in order
to activate the alkane substrate), followed by a two-step ethene-acetaldehyde-acetic acid
process. Although studies have shown such routes can lead to economic equivalence with
methanol carbonylation (at comparable levels of production scale) [23], direct oxidation of
ethane is always preferable as it annuls the need for the isolation of intermediate steps.
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Scheme 1. Direct and indirect ways to obtain acetic acid from ethane.

A wide range of catalysts and oxidant agents have been tested in the partial oxidation
of ethane to acetic acid, either in homo- or heterogeneous conditions [23]. Vital contribu-
tions are iridium cluster catalysts reported [24] by Ma et al., exhibiting notable performance
for the selective oxidation of ethane by molecular oxygen at 100 ◦C or the catalytic conver-
sion of ethane to acetaldehyde on an inert gold electrode achieved by Takehira et al. [25].
However, none of the tested catalytic systems have demonstrated the required performance
for industrial commercialization. This includes the only gold catalyst reported, HAuCl4,
which, with H2O2 in water at 90 ◦C for 1 h yielded CH3CHO, EtOH and CO2, but no traces
of acetic acid.

T. Strassner et al., reported [26] (to the best of our knowledge) the only example
of application of NHC-complexes as catalysts for C–H activation. They used palladium
bis-carbene complexes with potassium peroxodisulfate in trifluoroacetic acid to convert
methane into the methyl ester of trifluoroacetic acid. However, other substrates were
not tested. In the current study we successfully explored its diagonally adjacent element,
gold. Therefore, the unprecedented use of gold complexes as pre-catalysts for the direct
oxidation of ethane to acetic acid (Scheme 1a), under environmentally friendly conditions
(e.g., aqueous medium, low temperature) is disclosed herein.



Materials 2021, 14, 4294 3 of 9

2. Materials and Methods

All solvents and reagents were obtained from commercial sources (Sigma-Aldrich,
Munich, Germany) and were used without further purification. N-heterocyclic carbene
(NHC) and N-heterocyclic oxo-carbene (NHOC) gold(I) complexes 1–4 were synthetized
according to the literature [27]. Briefly, the strategic synthesis encompasses isonitrile-based
routes as depicted in Scheme 2.
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gold(I) complexes 1–4, R = cyclohexyl (1–3) or cyclododecyl (4). Adapted from: Zargaran, P et al.,
Adv. Synth. Catal.; published by Wiley, 2018.

The catalytic oxidation of ethane to acetic acid was performed in a stainless-steel reac-
tor with a capacity of 13.5 mL. Into the reactor, 4.33 mmol of oxidant (K2S2O8) and 1.50 mol
of catalyst (1–4) were added to 6 mL of (1:1) H2O/CH3CN (or 5.5 mL of trifluoroacetic
acid). When appropriate, the radical trap (TEMPO) was added. The reactor was closed and
flushed three times with ethane before being pressurized to 3 atm (0.78 mmol). The mixture
was heated in an oil bath at 80 ◦C (higher temperatures are not recommended for this
reaction due to a decrease of ethane solubility and to the decomposition of the oxidant) [28],
for 20 h. After the reaction, the reactor was placed in an ice bath to cool down to room
temperature, degassed and opened. 5 mL of diethyl ether (to extract organic products and
precipitate the catalyst) and 90 µL de n-butyric acid (as internal standard) was added to
1 mL of reaction and let stirring for 30 min. Then, the mixture was filtrated and analysed by
gas chromatography (GC), using the internal standard method. GC analyses were carried
out at a FISONS Instruments GC 8000 (Tokyo, Japan) series gas chromatograph with a
FID detector and a capillary column (DB-WAX 0.32 mm and 30 m of internal diameter
and column length respectively using helium as the carrier gas. The software was the
Jasco-Borwin v.1.50. (Tokyo, Japan) The temperature of injection was 240 ◦C. The starting
temperature is 100 ◦C for 1 min, then increases 10 ◦C/min until 180 ◦C and is kept at this



Materials 2021, 14, 4294 4 of 9

temperature for 1 min. Each value of yield results from the average obtained from runs
with identical results.

3. Results and Discussion
3.1. Direct Oxidation of Ethane to Acetic Acid

Five-membered saturated or unsaturated N-heterocyclic carbene (NHC) and unsym-
metrical N-heterocyclic oxo-carbene (NHOC) gold(I) chloride complexes were synthe-
sized [27]. Aiming to investigate structure-reactivity relationships, a set of cyclic carbene
complexes was selected having on one nitrogen atom the 2,6-diisopropylphenyl group
and on the other nitrogen atom the cyclohexyl or the cyclododecyl group (Figure 1). The
monodentate NHC electron rich σ-donor ligands are known to strongly bind to Au(I) in a
“push-pull” mechanism [29].
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Figure 1. Structures of five-membered saturated (1 and 4) or unsaturated (2) N-heterocyclic carbene
(NHC) gold(I) chloride complexes as well as of an unsymmetrical N-heterocyclic oxo-carbene (NHOC)
gold(I) chloride complex (3).

The direct oxidation of ethane to acetic acid (Scheme 1a) was performed using potas-
sium peroxodisulfate as oxidant and Au(I) complexes 1–4 as catalysts in aq. acetonitrile
at 80 ◦C for 20 h (optimized conditions). The effect of the structure of the N-heterocycle
as well as the substitution pattern at the nitrogen atoms were analyzed under exactly the
same reaction conditions.

All the gold(I) catalysts 1–4 performed with remarkable selectivity (acetic acid was
the only product detected by chromatographic analysis) and high activity (Table 1 and
Figure 2). The saturated NHC complex 1 bearing the cyclohexyl substituent at the nitrogen
atom exhibited the highest ethane conversion (acetic acid yield of 40%) while the effect
of different ring size substituent of complexes 1 and 4 was moderately significant (15%
yield decrease from a C6 to C12 ring, Figure 2). Moreover, the saturated NHC Au(I)
complex 1 delivered higher ethane conversion compared to complex 2 with different
imidazoline structure but same side chains. An almost similar behavior was observed
for the unsaturated gold(I) complex 2 (36% yield of acetic acid) and the NHOC gold(I)
complex 3 which showed a slightly low conversion (acetic acid yield of 34%).
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Table 1. Direct oxidation of ethane by K2S2O8 in water/acetonitrile (1:1) mixture.

Entry Catalyst
C2H6 Catalyst

Amount
(µmol)

Yield (%) a TON b

(atm) Acetic
Acid

Propionic
Acid

Acetic
Acid

Propionic
Acid

1 1 3 1.5 39.8 210
2 2 3 1.5 35.5 187
3 3 3 1.5 34.3 181
4 4 3 1.5 33.9 178
5 3 2.2

6 c 1 3 1.5
7 d 1 3 1.5 13.4 67

Reaction conditions: water/acetonitrile (1:1) mixture as solvent (6 mL), K2S2O8 as oxidant, T = 80 ◦C, 20 h. a molar
yield (%) based on C2H6, i.e., moles of acid per 100 mol of ethane. b TON (turnover number) = moles of product
per mol of catalyst. c no oxidant. d in the presence of TEMPO.
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Figure 2. Acetic acid yields achieved by direct oxidation of ethane by K2S2O8, catalysed by complexes 1–4.

The observed trend regarding the structure of the central cycle is in accordance with
the behavior found previously for other catalytic reactions of these complexes [27]. The
higher electron density at the metal center of the saturated NHC ligand compared with the
unsaturated one, in addition to a synergetic effect of π back-donation and σ donation of the
saturated NHC ligand, leads to a more stable complex and this stability plays an important
role in the catalytic properties of the gold(I) complexes, in particular for long reactions.

Blank experiments were performed in the presence of C2H6 and K2S2O8 (metal-free as
analyzed by ICP) and confirmed (see entry 5 of Table 1 for catalyst 1) that almost no acetic
acid formation was detected unless the Au catalyst was used.

The traditional solvent for the oxidation of ethane, trifluoroacetic acid (TFA), [22,30–32]
was also used with the Au(I) complexes 1–4. As depicted in Figure 2, the performance of all
pre-catalysts is much worse in TFA, leading to yield decreases of ca. 60% when compared
with the results attained in the water/acetonitrile (1:1) mixture.

A free radical mechanism for the oxidation of ethane to acetic acid, involving acyl rad-
ical formation, oxidation and subsequent hydroxylation by water (Scheme 3), is envisaged
from the performed radical trap experiments. In fact, when (2,2,6,6-tetramethylpiperidin-1-
yl)oxyl (TEMPO) radical was used as an oxygen radical trap [19], a drastic suppression of
the oxidation reaction and consequent acetic acid yield decrease, from 39.8% to 13.4%, was
detected (compare entries 1 and 7 of Table 1).
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SO4
•−

H2O 
C2H6

HSO4
−

C2H5
•

S2O8
2-

SO4
•− + SO4

2-

Au0

Au(I)

H3C

O

HO

Scheme 3. Proposed reaction mechanism for the oxidation of ethane to acetic acid.

To date, most of the oxidations of ethane to acetic acid were obtained as side reactions
of ethane carboxylation, with carbon monoxide, to propionic acid in the presence of
K2S2O8 and in trifluoroacetic acid (TFA) at 80 ◦C. Acetic acid is formed as a result of
the competitive metal catalyzed partial oxidation of ethane by the peroxodisulfate salt,
which led the researchers to run the reaction in the absence of CO [19,21,22,30], thus using
the peroxodisulfate salt as oxidizing agent and trifluoroacetic acid as the solvent and
carboxylating agent. These results are presented in Table 2 in order to have an insight
on the catalytic performance of 1–4 in our procedure compared with the state of art for
oxidation of ethane.

Table 2. Comparison of the catalytic performance of Au(I) complexes 1–4 and the state of the art for the oxidation of ethane.

Entry Catalyst
C2H6 Catalyst

Amount
(µmol)

Yield (%) a TON b

Ref.
(atm) Acetic

Acid
Propionic

Acid
Acetic
Acid

Propionic
Acid

1 1 3 1.5 16.1 18
this

work
2 2 3 1.5 20.3 22
3 3 3 1.5 12.1 13
4 4 3 1.5 15.9 18

5 [ReCl2{κ2-N,O-N2C(O)Ph}(PPh3)2] 3 20 3.3 2

22

6 [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2] 3 20 3.7 7
7 [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] 3 10 24.1 0.7 19 0.6
8 [ReOCl3(PPh3)2] 3 20 14.0 3.0 6 1.4
9 [ReCl3{κ3-HC(pz)3}] 3 20 5.1 2

10 [ReO3{κ3-SO3C(pz)3}] 3 20 27.9 1.0 13 0.4
12 [ReClF{N2C(O)Ph}(Hpz)2(PPh3)] 5 20 40.9 5.4 31 4.0

13 [ReOCl2(C5H4N(COO))(PPh3)] 10 20 5.0 1.3 7 2.9 30

14 Na2[MoO4] 3 20 25.0 63
3115 Nb2O5 1.5 20 18.0 10

16 H4[PMo11VO40]·34H2O 5 2.5 36.3 2.8 222 17
1917 H5[PMo10V2O40]·32H2O 5 2.5 20.2 3.2 124 20

18 H6[PMo9V3O40]·34H2O 5 2.5 35.2 2.9 216 18

Reaction conditions: TFA as solvent, K2S2O8 as oxidant, T = 80 ◦C, 20 h. a molar yield (%) based on C2H6, i.e., moles of acid per 100 mol of
ethane. b TON (turnover number) = moles of product per mol of catalyst.

Even in non-optimized reaction conditions (the water/acetonitrile mixture proved to
lead to superior performance, Figure 2), our gold pre-catalysts 1–4 exhibited, in general,
higher selectivity and acetic acid yields for a much lower catalyst load than the previously
tested complexes [22,30].

It is also worth to highlight the remarkable performance of the NHC gold pre-
catalysts 1–4, in particular of complex 1, which led to the same (40%) acetic acid yield
that was previously obtained by the best catalyst so far reported [22] for the oxidation of
ethane, [ReClF{N2C(O)Ph}(Hpz)2(PPh3)], but under highly intensive reaction conditions
(e.g., catalyst load ca. 13 times higher and much more hazardous medium).
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3.2. Green Metrics

Aiming at evaluating, as much quantitative as possible, the improvement brought by
our new ethane oxidation procedure, several dedicated green analytical chemistry metrics
were calculated and are presented in Table 3 [32–36].

Table 3. Green chemistry metrics for the oxidation of ethane to acetic acid catalyzed by Au(I)
complexes 1–4.

Entry Solvent Catalyst Theoretical
E-Factor

E-
Factor

AE
(%) MI RME AU

(%) f

1 H2O/ACN
1 0.2

0.5
20.0

36.5 66.5
100

107.1
2 TFA 2.7 90.3 26.9 696.8

3 H2O/ACN
2 0.2

0.7
20.0

41.0 59.4
100

120.1
4 TFA 1.9 71.6 34.0 552.6

5 H2O/ACN
3 0.2

0.8
20.0

42.4 57.1
100

124.3
6 TFA 4.0 120.2 20.1 927.2

7 H2O/ACN
4 0.2

0.8
20.0

42.9 55.3
100

125.8
8 TFA 2.9 91.6 25.9 705.7

The Environmental factor (E-factor), total weight (in kg) of all waste generated in an
industrial process per kilogram of product [33], was calculated to expose the waste of the
present process. An E-factor value approaching zero means that less waste is generated
and, therefore, the process exhibits higher environmental sustainability. As shown in
Table 3, the use of the solvent mixture H2O/acetonitrile ACN led always to lower E-factor
values than the ones obtained under the same reactional conditions but using TFA as
solvent. Although without a direct quantification of the hazards or the environmental risks
of the produced waste, the decrease of the values for the E-factor parameter highlights
the change for a greener solvent system. A theoretical E-factor was also estimated under
the assumption of a complete conversion of reagents and a minimization of waste, and
we can observe (Table 3) that this process, per se, is highly promising as a technological
or industrial process with a small environmental impact. For catalyst 1 in water/ACN
mixture, entry 1 of Table 3, corresponding to the highest attained acetic acid yield (Table 1
and Figure 2), the difference between the E-factor and the theoretical E-factor values is the
smallest, being also smaller than the one for pre-catalyst 1 in TFA (entry 2, Table 3). As
expected, a low number of generated products indicates a low activity process with room
for bigger improvement.

Following a multi-metrics approach, other parameters were determined. Atom Econ-
omy (AE) and Mass Intensity (MI) provide important indicators of the limitations of a
chemical process, since AE quantifies the atomic efficiency of the catalytic process and
MI its applicability (as quantifies reaction efficiency, stoichiometry, amount of solvents,
all reagents and auxiliary substances) [34,35]. Thus, an increase in AE should lead to a
decrease in MI. In this work, the atom economy is 20% (see Table 3). This value may appear
low, but we should note that oxidation reactions usually use a huge excess of oxidant (this
new process uses a reagent:oxidant ratio of 1:6). A comparison of our results, namely for
complex 1 (entry 1 of Table 3), with the previous complex allowing to achieve the nearest
yield of acetic acid (40.9%), i.e., [ReClF{N2C(O)Ph}(Hpz)2(PPh3)] (Hpz = pyrazole) [22]
(entry 7 of Table S1, ESI), shows that the value of MI doubles for our new process (as the
initial amount of reagents in the method using the Re catalyst is almost the double). This is
an evidence of the importance of a reaction input in the desired results.

Metrics considering the process upscaling possibility, such as Reaction Mass Efficiency
(RME) and Atom Utilization (AU) were also considered. RME is inversely related to the
overall E-factor [33] (Table 2), being only slightly higher for our catalytic method than for
processes currently known to possess excellent E-factor values [34], as it is a by-products-
free method. This is also reflected by the AU values (Table 3), since all the components of
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the reaction are used to produce the desired acetic acid, minimizing waste production.
To help in the quantification of the “greenness” of the overall process, a metric desig-

nated Solvent and Catalyst Environmental Impact Parameter (f), which takes into account
the real masses of materials used in the process (and if they are recycled, recovered or elimi-
nated) was determined (Table 3). Several reasons can lead to this improvement, namely the
higher selectivity (thus, higher efficiency) of our Au(I) catalysts. In addition, the amount
of gold complexes used by us is significantly lower (1.5 vs. 20 µmol, see Table S1, ESI),
indicating that, per atom, the conversion proceeds in a more efficient way. This seems to be
the case for complex 1 that, accordingly, should be more stable than the rhenium catalyst
(entry 7, Table S1, ESI).

4. Conclusions

An efficient and simple catalytic method for the acetic acid synthesis via the direct
oxidation of ethane has been developed. In view of the encouraging results achieved
by using NHC gold(I) catalysts, also attested by the determined green metrics, a better
understanding of the mechanism involved as well as further studies involving optimization
(e.g., catalyst recycling) is underway to help the design and growth of a sustainable catalytic
process for this pivotal transformation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14154294/s1, Table S1: Examples of green chemistry metrics applied in this work, Table S2:
Calculated metrics for the oxidation of ethane to acetic acid, Table S3: Calculated frequency metrics
for the oxidation of ethane to acetic acid.
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