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Abstract: A theoretical formulation of the electromagnetic response in graphene ribbons on dielectric
substrate is derived in the framework of the ab initio method. The formulation is applied to calcu-
late the electromagnetic energy absorption in an array of potassium-doped graphene nanoribbons
(KC8-NR) deposited on a dielectric Al2O3 substrate. It is demonstrated that the replacement of the
flat KC8 by an array of KC8-NR transforms the Drude tail in the absorption spectra into a series of
infrared-active Dirac plasmon resonances. It is also shown that the series of Dirac plasmon reso-
nances, when unfolded across the extended Brillouin zones, resembles the Dirac plasmon. The Dirac
plasmon resonances’ band structure, within the first Brillouin zone, is calculated. Finally, an excellent
agreement between the theoretical absorption and recent experimental results for differential trans-
mission through graphene on an SiO2/Si surface is presented. The theoretically predicted micrometer
graphene nanoribbons intercalation compound (GNRIC) in a stage-I-like KC8 is confirmed to be
synthesized for Dirac plasmon resonances.

Keywords: graphene ribbons; 2D plasmons; photonics; intercalated graphene

1. Introduction

Recently, graphene-based plasmonics and photonics are being used in various appli-
cations, such as bio-chemical sensing enhancement [1,2], photovoltaic efficiency enhance-
ments or amplification of graphene photoemission [3,4], in optoelectronics in the THz
and the infrared (IC) frequency region and in spintronics [5,6]. Graphene plasmonics are
also being tested for use in telecommunications [7–12]. Graphene-based gas detectors
use localized plasmons in the graphene nanoribbons to identify the rotational-vibrational
modes in various gas molecules [13].

One of the biggest challenges in applied plasmonics or photonics is finding a way
to excite and manipulate the 2D plasmons directly by the incident electromagnetic field.
Even though 2D plasmons modes produce a strong localized electric field, that field is
evanescent and therefore cannot be excited directly by light. In single-layer graphene,
the Dirac plasmon can be excited only indirectly, e.g., by exciting the localized plasmons
on the AFM tip, which then excites the Dirac plasmon in the graphene [14]. However,
subwavelength nanostructures such as graphene nanoribbons (GNRs) support ‘plasmon
resonances’ with very localized electric field that can be radiated into the surrounding area;
thus, it can also be pumped directly by an external radiation.

The measurements of the electromagnetic field transmission through the GNR arrays
on SiO2/Si substrate clearly show the existence of strong plasmon resonances in the THz
and mid-infrared frequency range (depending on nanoribbon thickness) [15,16]. Moreover,
the infrared near-field imaging of GNRs on an Al2O3 substrate shows that, in addition to the
conventional plasmonic resonances, GNRs support the edge plasmons (distributed along
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the graphene edges [17]). The plasmon resonances in submicrometer multilayer graphene
ribbons on an Si/SiO2 substrate caused by different doping concentrations (graphene Fermi
energy) enable the tuning of the IR reflectivity [18]. In the above experiments, the plasmon
resonances appear in the THz and IR frequency ranges, thus hybridization with IR active
Fuchs–Kliewer surface optical (SO) phonons [19] in polar substrates was also considered.

Thus far, the theoretical description of the optically active plasmon resonances in
submicrometer graphene ribbons, despite providing useful information, such as plasmon
wave functions or analytical dispersion relations, is limited to semi-analytical modeling,
mostly based on the simple Drude model conductivity, which does not take into account
the substrate polarization [20,21]. The ab initio calculations of the energy loss function in
semimetallic (zigzag) and semiconducting (armchair) nanoribbons [22] provide information
about the interesting interplay between the intraband and interband plasmons. The ab initio
calculations of the dielectric response in different GNRs, taking into account the electron
scattering with SO phonons in various polar and nonpolar substrates, provided very useful
information about plasmon propagation length and plasmon–phonon hybridization [23].
However, these ab initio studies have only focused on a few nanometers thick GNRs,
while the radiative plasmon resonances were not studied. Interesting experimental and
theoretical studies show that the THz absorbance of the graphene monolayer can be
considerably enhanced by depositing the graphene on a dielectric substrate of specific
dielectric permittivity and thickness [24,25]. Another very interesting phenomenon of the
modulation of the THz graphene absorption is achieved by applying an optical pump signal,
which modifies the conductivity of the graphene sheet [25]. However, the sharp plasmon
resonances, which occur only in graphene ribbons, are not observed in these investigations.

A way of approaching the creation of a Dirac plasmon (DP) in GNRs has been explored
via the synthesis of alkali-metal-doped graphene on metallic substrates, being extensively
studied experimentally and theoretically [26–29]. These experiments have shown that, by
doping graphene with electron donors, the Dirac plasmon resonances can be excited and
extensively studied. Furthermore, the use of advanced multilayer graphene nanoribbons
will help control the plasmonic resonances derived from the perpendicular electric field in
those nanostructures [18].

In this paper, we explore the electromagnetic response in an array of potassium-doped
graphene nanoribbons (KC8-NR) deposited on a (Al2O3) dielectric substrate. The single-
layer KC8 (KC8-SL) optical conductivity tensor σ0

µν(ω) and the bulk Al2O3 macroscopic
dielectric function εs(ω) are calculated from first principles. Special attention is paid to the
series of Dirac plasmon resonances (DPR) in d = 50, 100 and 200 nm thick KC8-NR arrays.
We show that the series of DPR consists of a series of dipolar or infrared-active DPR and
a series of non-dipolar or dark DPR. We demonstrate that the DPR in the first Brillouin
zone (1stBZ) when unfolded in the extended Brillouin zone (exBZ) resembles the Dirac
plasmon (DP) in the KC8-SL. For smaller separations between the nanoribbons, thus with
a stronger interaction between, which causes dispersion, we calculate the resulting DPR
band structure within the 1stBZ. Finally, we apply the proposed formulation to calculate
the electromagnetic absorption in the doped graphene microribbons on the SiO2/Si surface.
The results are then compared with experimental measurements of differential transmission
through the same sample [15], and KC8 micrometer length GNRs intercalation compounds
were synthesized.

The rest of the paper is organized as follows. In Section 2, we present the theoretical
model used to calculate the electromagnetic energy absorption A in the array of KC8-NR.
In Section 3, we present the ab initio computational details and the results for the KC8-SL
optical conductivity σ0

yy(ω) and the bulk Al2O3 macroscopic dielectric function εs(ω). In
Section 4, we present the results for the absorption spectra A in different arrays of KC8-NR
and DPR band structure. In Section 5, we show the comparison with available experimental
results. Section 6 contains some conclusive remarks. Unless stated otherwise, atomic units
are used, i.e., e = h̄ = m = 1, where e is the electronic charge, h̄ is the reduced Plank
constant, m is the electron mass and c is the speed of light in vacuum.
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2. Theoretical Formulation
2.1. Calculation of the Electromagnetic Energy Absorption A

In this section, we briefly describe the method of calculation of the electromagnetic
energy absorption in the system consisting of an array of KC8-NR deposited on a dielectric
Al2O3 substrate (according to the formulation developed by [30]). The dielectric substrate
occupies the region z < 0, while the KC8-NR of width d and period l are arranged so that
their graphene layers are placed at z = z0 above the dielectric surface, as illustrated in
Figure 1. The substrate polarization is described by the dielectric function εs, while the
polarization of the dielectric media occupying the region z > 0 is described by the dielectric
function ε0.

Figure 1. Array of KC8-NR of width d and period l deposited on a dielectric Al2O3 surface. The
separation between the graphene plane and the dielectric surface is z0.

If we assume that the sample is driven by an external electromagnetic field of unit
amplitude, frequency ω and wave vector k, with incidence perpendicular to the surface,

E = e cos(kz−ωt). (1)

the polarization e is parallel to the surface and ω = kc, where c is the speed of light. The
electromagnetic energy absorption in the array of KC8-NR can be obtained by using the
following expression [30]:

A(ω) = ∑
µν=x,y,z

eµeν<
∫

drdr′e−ikz σµν(r, r′, ω) eikz′ . (2)

Considering that the thickness of the KC8-SL is significantly smaller than the IR or
visible light wavelength (λ = 2πc

ω > 100 nm), and taking into account only the bare
polarizations (µ = x or y), Equation (2) can be simplified as

A(ω) = <
∫

drdr′σµµ(r, r′, ω). (3)

Here, the tensor σµν represents the screened conductivity of the KC8-NR array, which
is the solution of the Dyson equation [31]:

σµν(r, r′, ω) = σ0
µν(r, r′, ω) + ∑

αβ=x,y,z

∫
dr1dr2 σ0

µα(r, r1, ω)Γαβ(r1, r2, ω)σβν(r2, r′, ω), (4)

where σ0
µν is the nonlocal irreducible conductivity tensor of the KC8-NR array and Γαβ is

the propagator of the bare electric field corrected by the presence of the Al2O3 substrate.
The part of the electromagnetic energy absorbed by the Al2O3 substrate is neglected, which



Materials 2021, 14, 4256 4 of 17

is a reasonable approximation considering that the Al2O3 is mostly transparent in the
frequency interval of interest. Both tensors, σ0 and Γ, are described explicitly below.

If the nanoribbon width is much larger than the unit cell constant (d >> a), the
nonlocal effects in the x− y plane are negligible and the optical response of the KC8-NR
can be approximated by the local optical conductivity. Moreover, since the thickness of
the KC8-SL is significantly smaller than the wavelength λ > 100 nm, it can be treated
as a 2D crystal, localized, e.g., in the graphene, z = z0 plane. In this approximation, the
conductivity tensor becomes:

σ0
µν(r, r′, ω) ≈ δ(z− z0)σ

0
µν(ρ, ω)δ(r− r′), (5)

where ρ = (x, y) is the 2D position vector,

σ0
µν(ρ, ω) = σ0

µν(ω)
n=∞

∑
n=−∞

[θ(y− nl + d/2)− θ(y− nl− d/2)], (6)

and σ0
µν(ω) is the 2D optical conductivity of the KC8-SL. All this enables the Fourier

expansion of σ0
µν:

σ0
µν(r, r′, ω) = δ(z− z0)δ(z− z′)∑

gg′

∫ dQ
(2π)2 σ0

µν,gg′(ω)ei(Q+G)ρe−i(Q+G′)ρ′ . (7)

Here, the 2D reciprocal vectors are G = (0, g), with g = 2πn
l ; n = 0± 1,±2, . . ., and

σ0
µν,gg′(ω) = σ0

µν(ω)

{
2

l(g−g′) sin[(g− g′)d/2]; g 6= g′

d/l; g = g′
. (8)

where Q = (Qx, Qy) is the 2D transfer wave vector.
The propagator Γ remains translationally invariant in the x− y direction so it can be

Fourier transformed as

Γµν(r, r′, ω) = ∑
gg′

∫ dQ
(2π)2 Γµν,gg′(Q, ω, z, z′)ei(Q+G)ρe−i(Q+G′)ρ′ , (9)

where
Γµν,gg′(Q, ω, z, z′) = Γµν(Q + G, ω, z, z′)δgg′ . (10)

Using the expansions (7) and (9) and assuming that the screened conductivity σ can
be transformed the same way as the conductivity σ0 (expansion Equation (7)), the Dysons
Equation (4) transforms into matrix equation for the screened conductivity

σµν,gg′(Q, ω) = σ0
µν,gg′(Q, ω) + ∑

αβ
∑

g1g2

σ0
µα,gg1

(Q, ω)Γαβ,g1g2(Q, ω, z0, z0)σβν,g2g′(Q, ω). (11)

After inserting the Fourier expansion of the screened conductivity (Equation (7), where
σ0 → σ) into Equation (3), and using the identity σµµ,g−g0g′−g0

(Q + G0, ω) = σµµ,gg′(Q, ω),
we obtain the final expression for the electromagnetic energy absorption rate rate per unit area

A(ω) = <σµµ,g=0g′=0(Q = 0, ω). (12)

We use the expression (12) to determine the intensity of the electromagnetic modes
beyond the optical limit as well, e.g., in the nonradiative or evanescent region (Q > ω/c),
simply by using the conductivity σ calculated for a finite wavevector (Q 6= 0).
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2.2. Electric Field Propagator

The propagator of the electric field can be written as

Γ̂ = Γ̂0 + Γ̂sc, (13)

where the propagator of the ‘free’ electric field (or free photon propagator) is [31,32]

Γ̂0(Q, ω, z, z′) = − 4πi
ε0ω

δ(z− z′)z · z− (14)

2πω

β0c2 eiβ0|z−z′ | ∑
q=s,p

e0
q · e0

q.

The propagator of the scattered electric field in the region z > 0 is [32]

Γ̂sc(Q, ω, z, z′) = −2πω

β0c2 eiβ0(z+z′) ∑
q=s,p

rq · e+q · e−q . (15)

Here, the unit vectors of the s(TE) polarized electromagnetic field are e0,±
s = Q0 × z.

The unit vectors of p(TM) polarized electromagnetic field are e0,±
p = c

ω
√

ε0
[α0,±β0Q0 + Qz],

where α0 = −sgn(z− z′), α± = ∓1 and Q0 and z are the unit vectors in the Q and
z directions, respectively. More specifically, Γsc represents the electric field produced
by an external point dipole which is reflected at the dielectric surface. Therefore, ‘−’
represents the incident electric field, while ‘+’ represents the reflected electric field. Γ0

represents the ‘direct’ electrical field produced by point the dipole so that the superscript
‘0’ represents the spherical forward propagating field. The reflection coefficients of the
s(TE) and p(TM) polarized electromagnetic waves at the media/substrate interface are
rs = (β0 − βs)/(β0 + βs) and rp = (β0εs − βsε0)/(β0εs + βsε0), respectively. The complex

wave vectors in the perpendicular (z) direction are β0,s =
√

ω2

c2 ε0,s(ω)−Q2.

2.3. Calculation of RPA Optical Conductivity σµν(ω)

Since we study a 2D crystal which consists of just two atomic layers, its electromagnetic
response is strongly dispersive in the perpendicular z direction. For this reason, we define
the spatially dependent conductivity

σ0
µν(Q, ω, z, z′) =

1
L ∑

GzG′z

σ0
µν,GzG′z

(Q, ω)eiGzz−iG′zz′ ,

where the conductivity matrix is defined as [30]

σ0
µν,GzG′z

(Q, ω) = − ih̄
Ω ∑

K,n,m

1
EnK − EmK+Q

fnK − fmK+Q

h̄ω + iη + EnK − EmK+Q
×

jµ
nK,mK+Q(Gz) [jν

nK,mK+Q(G
′
z)]
∗. (16)

Here, the current vertices are

jµnK,mK+Q(Gz) =
∫

Ω
dre−iQρe−iGzz jµnK,mK+Q(r), (17)

and the current produced by the transitions between the Bloch states φ∗nK → φmK+Q is
defined as

jµ
nK,mK+Q(r) =

eh̄
2im

{
φ∗nK(r)∂µφmK+Q(r)− [∂µφ∗nK(r)]φmK+Q(r)

}
,
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where Gz = 2πn/L; n ∈ Z represents the reciprocal vector in the z direction, K = (Kx, Ky)
is the 2D wave vector and φnK and EnK are the Bloch wave functions and energies obtained
by the DFT calculations. The spin quantum number ‘s’ is merged with the band quantum
number, i.e., n ≡ (n, s), Ω = S× L is the normalization volume, S is the normalization
surface, L is the superlattice unit cell in the z direction and fnK = [e(EnK−EF)/kT + 1]−1 is
the Fermi–Dirac distribution at temperature T. ηintra and ηinter represent the phenomeno-
logical intraband and interband damping parameters, respectively. The two-dimensional
conductivity used in this study is defined as

σ0
µν(ω) =

∫ L/2

−L/2
dzdz′σ0

µν(Q = 0, ω, z, z′) = Lσ0
Gz=0Gz

′=0(Q = 0, ω).

It should be noted that this defined conductivity do not depend on lattice parameter
L. The KC8-SL is a conductive 2D crystal so it is appropriate to divide its RPA optical
conductivity into intraband and interband contributions

σ0
µν(ω) = σintra

µν (ω) + σinter
µν (ω), (18)

which are both determined from the optical limit of the nonlocal conductivities
σi

µν(ω) = σi
µν(ω, Q ≈ 0). According to (16), the nonlocal intraband (n = m) conduc-

tivity is [30]

σintra
µν (ω) = i

e2

m
nµν

ω + iηintra
, (19)

where the effective number of the charge carriers is

nµν = − m
Se2 ∑

n
∑

K∈1.SBZ

∂ fnK

∂EnK
jµ
nK,nK

[
jν
nK,nK(Gz = 0)

]∗. (20)

Here, K ∈ 1.SBZ indicates that summation is performed within the first surface
Brillouin zone. The nonlocal interband (n 6= m) conductivity is [30]

σinter
µν (Q, ω) = − ih̄

S ∑
n 6=m

∑
K∈1.SBZ.

jµ
nK,mK+Q(Gz = 0)

[
jν
nK,mK+Q(G

′
z = 0)

]∗
EnK − EmK+Q

×

fnK − fmK+Q

h̄ω + iηinter + EnK − EmK+Q
. (21)

An alternative modeling of the KC8-SL conductivity could be done in analogy with
the graphene conductivity modeling in the Dirac cone approximation [33], but taking into
account the parabolic K(σ) band crossing the Fermi level.

2.4. Calculation of Substrate Macroscopic Dielectric Function εs(ω)

We assume that the dielectric media is vacuum (i.e., ε0 = 1) and that the sub-
strate is aluminium-oxide (Al2O3) described by the macroscopic dielectric function εs(ω).
To calculate εs(ω), we start from the 3D Fourier transform of the independent electron
response function

χ0
GG′(q, ω) =

2
Ω ∑

k∈1.BZ
∑
n,m

fn(k)− fm(k + q)
ω + iη + En(k)− Em(k + q)

ρnk,mk+q(G) ρ∗nk,mk+q(G
′), (22)

where k ∈ 1.BZ indicates that summation is provided within first Brillouin zone. The
charge vertices are defined as

ρnk,mk+q(G) =
∫

Ω
dr φ∗nk(r)e

−i(q+G)rφmk+q(r). (23)
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Here, k = (kx, ky, kz), q = (qx, qy, qz) and G = (Gx, Gy, Gz) are the 3D wave vector,
the transfer wave vector and the reciprocal lattice vector, respectively, and the integration is
performed over the normalization volume Ω. We use the response matrix (22) to determine
the dielectric matrix as

EGG′(q, ω) = δGG′ −∑
G1

vGG1(q)χ
0
G1G′(q, ω), (24)

where the bare Coulomb interaction is vGG′(q) = 4π
|q+G|2 δGG′ . Finally, the macroscopic

dielectric function is determined by inverting the dielectric matrix

εs(ω) = ε1(ω) + iε2(ω) = 1/E−1
G=0G′=0(q ≈ 0, ω). (25)

3. Computational Details

The KS wave functions φnK and energies EnK used to calculate the RPA conductivities
σµν and the substrate macroscopic dielectric function ε(ω) are determined using the plane-
wave self-consistent field DFT code (PWSCF) within the QUANTUM ESPRESSO (QE)
package [34]. For all crystal structures (KC8-SL, doped graphene and bulk Al2O3), the core-
electrons interaction is approximated by the norm-conserving pseudopotentials [35,36].
The exchange correlation (XC) potentials in the KC8-SL and Al2O3 are approximated
by the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) func-
tional [37] and in the graphene by the Perdew–Zunger local density approximation (LDA)
functional [38]. The ground state electronic density in KC8-SL is calculated using the
8× 8× 1 Monkhorst–Pack K-mesh [39], the plane-wave cut-off energy is 60Ry and we use
the hexagonal Bravais lattice, where a = 4.922 Å and the separation between the KC8 layers
is L = 2.5a. Since the graphene unit cell is doped by holes, with the doping concentration
1.5× 1013 cm−2, the graphene ground state electronic density is calculated using a dense
101× 101× 1 K-mesh and the plane-wave cut-off energy 60Ry. The Bravais lattices is
hexagonal, where a = 2.461 Å and the separation between the graphene layers is L = 5a.
The ground state electronic density of the bulk Al2O3 is calculated using 9× 9× 3 K-mesh,
the plane-wave cut-off energy is 50Ry and the Bravais lattices is hexagonal (12 Al and 18 O
atoms in the unit cell) with the lattice constants a = 4.76 Å and c = 12.99 Å.

The optical conductivity (18)–(21) in the KC8-SL is calculated using a 201 × 201 ×
1 K-mash and the band summations (n, m) are performed over 100 bands. The damping
parameters are ηintra = 10 meV and ηinter = 40 meV and the temperature is T = 25 meV.
The graphene optical conductivity is calculated using a 601× 601× 1 K-mash and the band
summations are performed over 20 bands. The damping parameters are ηintra = 1 and
15 meV, ηinter = 25 meV and the temperature is T = 25 meV. The response function (22) of
the Al2O3 is calculated using a 21× 21× 7 k-point mesh and the band summations (n, m) are
performed over 120 bands. The damping parameter is η = 100 meV and the temperature is
T = 10 meV. For the optically small wave vectors q ≈ 0 used in this modeling, the crystal
local field effects are negligible, so the crystal local field effects cut-off energy is set to zero.

Figure 2 shows the ab initio optical conductivity <σ0
yy in the KC8-SL. The intraband

contribution σintra is turquoise shaded, while the interband contribution σinter is orange
shaded. The two pronounced peaks at ω ≈ 4 and 14 eV correspond with the interband
transitions between the graphene C(π) and C(σ) bands. The insert in Figure 2 shows the
KC8 band structure, and we can see that the KC8 band structure does not differ much from
the graphene band structure. The only influence of the K adatoms is the appearance of the
potassium parabolic K(σ) band (turquoise dashed lines show the parabolic fit of the K(σ)
band for the effective mass m∗ = 0.92) which abundantly donates electrons to the graphene
C(π) band (denoted by magenta dashed lines) but in the way that it still remains partially
filled. This causes the Fermi level shift by 1 eV above the Dirac point so that the onset for
the interband transitions between the graphene C(π) bands appear at 2 eV (also denoted
by brown dashed line in Figure 2). At the same time, this causes the appearance of two
intraband excitations channels, K(σ) and C(π), which appear as strong Drude peak (shaded
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by turquoise color at ω ≈ 0). Accordingly, this provides large effective number of charge
carriers, nyy = 0.021a−2

0 [7.58× 1014 cm−2], resulting in a very intensive Dirac plasmon
with zero direct interband damping.
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K(σ)C(π)+
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Figure 2. The ab initio optical conductivity<σ0
yy in the KC8-SL. The intraband σintra and the interband

σinter contributions are turquoise and orange shaded, respectively. The insert shows the KC8-SL
band structure. Turquoise dashed lines show the parabolic fit of the K(σ) band for the effective mass
m∗ = 0.92. Magenta dashed lines denote the graphene cone.

Figure 3a shows the ab initio macroscopic dielectric function (25) of the bulk Al2O3
crystal. We can see that ε1 is almost constant (ε1 ≈ 3) for low frequencies (ω < 3 eV),
i.e., in the IR and even in the visible range, while ε2 is zero up to the band gap energy
(Eg∼6 eV). This suggests that Al2O3 is a good choice for the substrate for the IR plas-
monics, since its electronic excitations are far above the IR plasmons, and its IR active SO
phonons (at ωTO < 100 meV) [40] are still below the IR plasmons considered here. There-
fore, in the frequency range of interest (red frame in Figure 3a), there is no dissipation of
the electromagnetic energy in the substrate (it is transparent) and the dielectric function
is constant.

Finally, in Figure 3b, we demonstrate the influence of the KC8-SL interband transitions
and the influence of the dielectric substrate polarization on the Dirac plasmon dispersion
relations. The dispersion relations are derived from the maxima of the real part of the
screened conductivity

σyy(Q, ω) =
σ0

yy

1− Γyy(Q, ω)σ0
yy(ω)

(26)

for σ0 = σintra and Γ = Γ0 (brown dashed line), σ0 = σintra + σinter and Γ = Γ0 (orange
dashed-dotted line) as well as σ0 = σintra + σinter and Γ = Γ0 + Γsc (solid turquoise line).
We can see that the interband transitions significantly push the Dirac plasmon towards
the lower frequencies. The substrate additionally screens the Dirac plasmon (reduces
its energy), which is especially important in the optical region (Q < 0.1 nm−1) when it
deviates from the standard square-root behavior in the self-standing sample.
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Figure 3. (a) Ab initio macroscopic dielectric function εs(ω) = ε1(ω) + iε2(ω) of the bulk Al2O3

crystal. Red frame denotes the frequency range of the IR active plasmons studied here; (b) Dispersion
relations of the Dirac plasmon in the KC8-SL obtained from the maxima of the real part of the screened
conductivity (26), where σ0 = σintra and Γ = Γ0 (brown dashed), σ0 = σintra + σinter and Γ = Γ0

(orange dashed-dotted) and σ0 = σintra + σinter and Γ = Γ0 + Γsc (solid turquoise).

4. Results

In this section, we first demonstrate how replacing the KC8-SL by the KC8-NR of
various widths d influences the absorption spectra A. Then, we demonstrate that the series
of the Dirac plasmon resonances in the KC8-NR when unfold in ExBZ resembles the Dirac
plasmon in the KC8-NR. Finally, we present the DPR band structure within the 1stBZ. We
focus on the e = ŷ (perpendicular to the NR) polarized electromagnetic field, and the
separation between the graphene planes and the dielectric surfaces is fixed to z0 = 3.0 Å.

The blue lines in Figure 4 show the absorption spectra (12) of the KC8-NR arrays
of widths: (a) d = 50 nm; (b) d = 100 nm; (c) d = 200 nm. The dashed orange lines
show the absorption spectra of the KC8-SL. Both structures are deposited on a dielectric
model Al2O3 surface and the nanoribbon period is chosen to be l = 2d. We can see that,
after cutting the KC8-SL into nanoribbons, the Drude asymmetric tail transforms into a
series of IR-active DPR n = 1, 3, 5, 7, . . . with the energy depending on the nanoribbon
width d. As expected, as d increases, the energy of the DPR decreases and the energy
difference between them becomes smaller. Considering that the sample is driven by
the electromagnetic field, homogeneous in the y direction, the peaks appearing in the
absorption spectra obviously represent optically active dipolar modes. According to the
continuity equation ρ̇ind = − ∂

∂y jind
y and jind = σ⊗ E, where E is the external field given

by Equation (1), the induced density can be calculated from ρind ∼ <∂σyy/∂y. Indeed,
Figure 5a, which shows the induced electronic densities at frequencies ω corresponding to
the absorption peaks n = 1, 3, 5, 7 in Figure 4a, clearly demonstrates their dipolar character.
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Figure 4. The absorption spectra of the KC8-NR of thicknesses (a) d = 50 nm, (b) d = 100 nm and (c) d = 200 nm (blue lines) and
the absorption spectra of the KC8-SL (orange dashed lines). Both structures are deposited on a dielectric model Al2O3 surface. The
nanoribbon period is l = 2d and z0 = 3.0 Å.
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On the other hand, the induced densities of the other non-dipolar modes n = 2, 4, 6, . . .
are zero, so they represents the dark modes, not visible in the absorption spectrum. For the
period chosen here (l = 2d), the separation between the nanoribbons d is quite large, and
the interaction between the dipolar modes in the different nanoribbons is negligible; thus,
they can be considered as almost decoupled resonances of the individual nanoribbons.
However, we show below that these modes are still weakly dispersive as we increase the
wave vector Qy, suggesting their small but finite interaction.
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Figure 5. (a) The induced electronic densities (ρind ∼ <∂σyy/∂y) calculated for Qy = 0, at the
frequencies corresponding with the IR active resonances n = 1, 3, 5, 7, in the KC8-NR of widths
d = 50 nm deposited on a dielectric model Al2O3 surface. The nanoribbon period is l = 2d and
z0 = 3.0 Å; (b) The absorption spectrum corresponding to the modes in (a); (c) Schematic presentation
of the ‘projection’ of the fractions of the DP (at Qy ≈ 2π(2k + 1)/l; k = 0, 1, 2, . . .) into the radiative
region where they become IR active resonances.

Figure 6 shows the absorption intensities A for different wave vectors Qy (mostly
outside the radiative region Qy > ω/c) in the KC8-NR arrays of widths: (a) d = 50 nm;
(b) d = 100 nm; (c) d = 200 nm. The figure also compares them with the absorption
intensities in the KC8-SL shown in Figure 6d. The nanoribbon period is again l = 2d.
The red doted lines denote the energies of the IR active modes (n = 1, 3, 5, . . .), as they
appear in Figure 4, while the turquoise doted lines denote the energies of the dark modes
(n = 2, 4, 6, . . .). Green dotted lines denote the dispersion relation of the Dirac plasmon in
the KC8-SL. We can see that the principal mode n = 1 is the most dispersive one (within
each BZ) and the most intensive in the first two BZ 0 < Qy < 4π/l. The rest of the modes,
n = 2, 3, 4, 5, . . ., are less dispersive (flat patterns within some of the exBZs), and they are
the most intensive through the few extended BZ, but precisely in the way that resembles
the DP dispersion relation. This is particularly noticeable for the larger widths d, as can
be seen by comparing Figure 6c,d. Moreover, we can see that the modes n = 3, 5, . . .
in the extended BZ are ‘folded’ (although with much lower intensity) into the radiative
region (Qy ≈ 0) where they become IR active. This is clearly noticeable, e.g., for the n = 3
mode in Figure 6a–c, where just a small fraction of that mode, in exBZ, ‘projects’ into the
radiative region (Qy = 0). This is in accordance with the results in Figure 4, where just
the principal mode n = 1 is the most intensive, while the higher modes n = 3, 5, 7 . . . are
significantly suppressed.
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Figure 6. (a–c) The absorption intensity A (in units 2πe2/h) in the KC8-NR arrays of widths: (a) d = 50 nm; (b) d = 100 nm;
(c) d = 200 nm. (d) The absorption intensity A in the KC8-SL. Red dotted lines denote the energies of the IR active modes n = 1, 3, 5, . . ..
Turquoise dotted lines denote the energies of the dark modes n = 2, 4, 6 . . .. Structures are deposited on a dielectric model Al2O3

surface. The nanoribbon period is l = 2d and z0 = 3.0 Å. Green dotted lines represent the DP dispersion in KC8-SL.

These results show us that we can fold the fragments of the Dirac plasmon (at
Qy ≈ 2π(2k + 1)/l; k = 0, 1, 2, . . .) into the radiative region and make them IR-active reso-
nances, in a controlled way, by cutting the KC8-SL into an array of nanoribbons, as sketched
in Figure 5b,c. For example, by changing the nanoribbon width, we can choose which part
of the Dirac plasmon in the KC8-SL we want to fold into the radiative region. It should
be noted that this procedure is also valid in the opposite direction, starting from a single
nanoribbon antenna. A single nanoribbon supports nondispersive and localized (both IR
active and dark) plasmon resonances, but, after the nanoribbons are arranged in a lattice,
the plasmon resonances unfold over the extended BZ resembling the DP, regardless of
the period l. All these manipulations are experimentally feasible, which could have a
significant impact on the applied plasmonics.

DPR Band Structure

We now analyze the dispersion relations of the DPR within the 1stBZ, Qy ∈ [−π/l, π/l],
i.e., the DPR band structure. In the previous examples, the separation between the nanorib-
bons is quite large, so the coupling between the DPR in the different ribbons is weak and,
consequently, the DPR are weakly dispersive within the 1stBZ. However, we show above
that the dispersion across the exBZs is strong so that it resembles the Dirac plasmon in
the KC8-SL. The origin of this dispersivity is simple: for larger wave vector Qy, the spatial
variation of the external field partially or fully fits the spatial variation (or symmetry) of
higher excited modes n = 2, 3, 4 . . ., regardless of whether they are dipolar or non-dipolar
modes, and finally it efficiently excites these modes. On the other hand, the homogenous
external field (Qy = 0) selectively and quite inefficiently excites the higher dipolar modes
n = 3, 5, 7, . . . Therefore, the inter-zonal dispersivity always exists, even though the inter-
action between the ribbons is negligible. However, for smaller separations, the interaction
between the nanoribbons is getting stronger and DPRs become dispersive within the 1stBZ
(or within some individual exBZ).

Figure 7 shows the absorption intensities A in the KC8-NR array deposited on the
Al2O3 surface for different wave vectors Qy ∈1stBZ. The nanoribbon width is d = 200 nm
and the period is l = 220 nm. The photon dispersion ω = Qc is also shown (green dotted
lines) in order to denote the radiative region ω > Qc. It can be noticed that this small
separation (l − d = 20 nm) causes substantial dispersivity of the principal n = 1 mode,
resulting with the band width of about W = 80 meV and the band gap opening of about
Eg = 60 meV. The higher DPR (n = 2, 3, 4 . . .) are less dispersive, probably because they
produce short-ranged electric field so the inter-ribbon interaction is weaker. It is interesting
that the dark mode n = 2 seems to split into two branches as Qy decreases. This may be
the evidence of the surface or ‘edge’ plasmons localized at the KC8-NR boundaries [17].
The edge plasmons are the counterparts of the standard surface plasmons appearing
on metal surfaces. They are the extra solutions of the Maxwell’s equation, due to the
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symmetry breaking caused by the edge, and have an evanescent character, in contrast to
the DPR which oscillate across the nanoribbon (see Figure 5a). The DPR band-gap can be
manipulated by changing the KC8-NR parameters which opens the possibility for trapping
the photons in the principal n = 1 band and achieving the Dirac plasmon Bose–Einstein
condensate. Therefore, the doped graphene nanoribbons enable direct light–plasmon
interaction, which can be exploited in many plasmonic or photonics applications, while at
the same time it can serve as a polygon for exploring fundamental physical phenomena
such as strong light–matter interactions, which has been intensively explored recently [41].

Figure 7. The absorption intensities A (in units 2πe2/h) in an array of KC8-NR deposited on
a dielectric model Al2O3 surface for Qy ∈ [−π/l, π/l] showing the DPR band structure. The
nanoribbons width is d = 200 nm, the period is l = 220 nm and z0 = 3.0 Å. Green doted lines denote
the photon dispersion relation ω = Qc. Turquoise dotted lines denote the 1stBZ boundaries.

5. Comparison with Experiment

In order to verify the accuracy and experimental feasibility of the above results, we
compare them with some recent experimental results. Since optical absorption experiments
on the KC8-NR arrays still do not exist, we compare our results with the experimental re-
sults for the differential transmission ∆T = T− TCNP through the array of doped graphene
micro-ribbons on Si/SiO2 substrate [15], where TCNP is the transmission coefficient through
the device at the charge neutral point (CNP). ∆T is directly related to our infrared absorp-
tion spectrum A. In our calculations, the graphene is doped by holes, where the hole
concentration is chosen to be 1.5× 1013 cm−2 [15] (EF = −0.374 eV with respect to the
Dirac point). The Si/SiO2 substrate is described by the dielectric constant εs = 6.5, which
is between 3.8 in SiO2 and 11.7 in Si. The separation between the graphene and the SiO2
surface is taken to be z0 = 4 Å [42].

In order to gain insight into the measured data for wider energy range, in Figure 8a,
we compare the experimental result for ∆T (blue circles) with our results for A calculated
for two intraband damping parameters ηintra = 1 meV (brown line) and ηintra = 15 meV
(turquoise line) and on extended frequency scale. The graphene ribbon width is d = 1 µm
and the period is l = 2 µm. We can see that for the smaller damping parameters absorption
spectra shows DPR n = 1, 3, 5, . . ., which for the larger damping smooth out into an
asymmetrical lineshape which is in excellently agreement with the experimental data.
Therefore, we can conclude that the experimental lineshape mainly consists of the principal
dipolar mode n = 1, and its asymmetry is a consequence of the excitations of higher-
order dipolar modes n = 3, 5, . . . Figure 8b shows the theoretical absorption spectra A
in an array of graphene ribbons of widths d = 1 µm (blue line), 2 µm (red line) and
4 µm (green line) and compares them with the experimental results for ∆T (blue, red and
green circles). The period is l = 2d. These results undoubtedly confirm that the broad
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experimental peaks corresponds to the n = 1 DPR, while the higher-order dipolar DPR
n = 3, 5, 7, . . . give the spectrum an asymmetric shape. Moreover, these results determine
the natural intraband damping parameter ηintra = 15 meV, which is a consequence of the
electron–phonon (instrinsic and SO phonons) interactions, scattering on impurities and
other crystal imperfections.
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Figure 8. (a) Comparison of the absorption spectra A in a doped graphene ribbons array of width
d = 1 µm calculated for ηintra = 1 meV (brown line) and for ηintra = 15 meV (turquoise line) with
the result of differential transmission ∆T [15] (blue circles); (b) Comparison of the absorption spectra
A in doped graphene ribbons array of widths d = 1 µm (blue line), d = 2µm (red line) and d = 4 µm
(green line) with the result of the differential transmission ∆T [15] (blue, red and green circles). Here,
the intra-band damping parameter is ηintra = 15 meV, the period l = 2d and z0 = 4 Å in all cases and
the hole concentration is 1.5× 1013 cm−2 (EF = −0.374 eV relative to Dirac point).

All this suggests that the electron–phonon interaction (or maybe some other scatter-
ing mechanisms) is likely to play a significant role in profiling the higher-order plasmon
resonances n = 3, 5, . . . . Below, we show that the synthesis of the potassium intercalated
graphene (KC8) ribbons is indeed possible and explore how the potassium adatoms influ-
ence the strength of the electron–phonon coupling. The latter is very important because
alkali metals can sometimes increase and sometimes decrease the strength of the electron
coupling to the graphene E2g phonon [43], which is, as already mentioned, very important
for the damping of the plasmon resonances.

Our scanning electron microscopy (SEM) analysis of GNRs placed on a carbon tape
and analyzed with 5 kV Helios NanoLab DualBeam scanning electron microscope showed
multilayer GNR structures with lengths of several microns and widths ranging around
100 nm. Figure 9a confirms a flat-rippled multilayer nanoribbon morphology. These
GNRs were synthesized via CVD following the procedure described in [44] and further
intercalated by conducting a two-zone vapor transport method, as described in [45]. The
intercalation compounds was obtained by the combination of an alkali metal (K) placed in
a glass vial with GNRs sealed under high vacuum conditions at 10−6 mbar in a proportion
of 3.2 mg of GNRs per 1.3 mg of potassium (∼KC8 GNRIC). The characteristic Raman
spectrum from the GNRs (Figure 9b–i) revealed the characteristic D-band and G-band
located at ∼1338 cm−1 and ∼1574 cm−1, respectively. The D-band exhibited a larger
intensity caused by the edge ripple proportion, while the D/G ratio was found to be
1.25 characteristic of graphene nanoribbons [44]. At ∼2674 cm−1, we observed the 2D-line
characteristic of graphitic GNRs [44,46]. An intercalation process using the discussed
pristine sample was performed obtaining a KC8 GNRIC. This sample was kept under
vacuum conditions to avoid oxidation during the Raman measurements. The Raman
spectrum obtained from the KC8 GNRIC in Figure 9c shows the characteristic broad
Fano-line-shape composed by a G-line at ∼1505 cm−1 caused by the intercalation of
potassium layers in between the graphene ribbons. This characteristic G-line in intercalation
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compounds originates from strong electron–phonon coupling (EPC) interactions existing
between the potassium atoms and the graphene layers, as we reported previously for
graphite intercalation compounds [47]. It is proven that by doping graphene with electron
donors the Dirac plasmon resonances can be excited [18]. Thus, here we could introduce
the fact that, by obtaining a highly e−-doped intercalation compound (i.e., KC8), we must
obtain: (i) a strong EPC that will be responsible for superconductivity in stage I GICs
according to the BCS theory directly related to the G-line phonon frequency and to the
adiabatic (ωA) and non-adiabatic (ωNA) phonon frequencies of the GIC; (ii) a strong EPC in
GNRIC will serve to excite plasmonic resonances derived from the perpendicular electric
field in those nanostructures. To estimate the renormalized electron–phonon scattering line
width (ΓEPC) in GNRIC, we consider the G-line phonon frequency (ωG from E2g) of the
Raman spectrum in Figure 9c in the following equation [47]:

γEPC

2
=
√
(ωG −ωA)(ωNA −ωG) (27)

where ωG is the measured G-line frequency from the Fano function (1505 cm−1), ωA is the
adiabatic phonon frequency (1223 cm−1) and ωNA corresponds to the non-adiabatic phonon
frequency (1534 cm−1) [48]. From this equation we obtained, ΓEPC =243 cm−1 for KC8
GNRIC is indicative of a potential superconducting behavior of the material as it behaves
linearly with the measured FWHM (Γph =262 cm−1). An individualized GNRIC can be
evinced in Figure 9d to confirm no further damage to the structure of the graphitic ribbon.

Finally, our theoretical results are in excellent agreement with the experimental results,
confirming the credibility of the presented method and the above-stated conclusions.

Figure 9. (a) SEM micrograph from pristine GNRs as obtained from the CVD process. A wide bundle
of ribbons are evinced in widths of around 100 nm and lengths higher than 10 microns; (b) Raman
spectra of pristine graphene nanoribbons. Characteristic GNRs features are present. The double
resonance single 2D-line component around 2700 cm−1 indicates the presence of a graphene-like
ribbon structure; (c) Raman spectrum of graphene nanoribbon intercalation compounds (GNRIC) in
a KC8 stoichiometry. The Fano-like line shape derived from the strong coupling between K atoms
and the graphene is a fine characteristic of a stage I intercalation compound; (d) Individualized
GNRs after potassium intercalation. The structure and shape of the GNRs was not affected after the
intercalation as observed in the micrograph. GNRs were confirmed to be longer than 10–20 microns
with a width ∼100–200 nm.
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6. Conclusions

We developed the ab initio theoretical formulation of the electromagnetic response
in doped graphene nanoribbons and used it to calculate the optical absorption in an
array of potassium-doped graphene nanoribbons deposited on a dielectric Al2O3 surface.
We demonstrated that the replacement of the single-layer doped graphene by the graphene
ribbons of different period l causes the ‘projection’ of the Dirac plasmon into the radiative
region, turning it into a series of IR-active Dirac plasmon resonances. This encourages the
fabrication of graphene nanoribbons with the desired electromagnetic response in the IR
or THz frequency range, which could be used in plasmonic, photonic or optoelectronic
applications. We showed that the DPR band structure (band gap Eg and band width W)
can be tuned by changing the period l. By creating a large band gap Eg, one can enable
trapping of the photons in the principal n = 1 band and achieve the Dirac plasmon Bose–
Einstein condensate. Therefore, the graphene ribbons can be exploited in many plasmonic
or photonic applications, but at the same time they can serve as a polygon for exploring
fundamental physical phenomena such as strong light–matter interactions.
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