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Abstract: Mitochondria play important roles in diverse cellular processes such as energy production,
cellular metabolism, and apoptosis to promote cell death. To investigate mitochondria-associated
biological processes such as structure, dynamics, morphological change, metabolism, and mitophagy,
there exists a continuous demand for visualizing and monitoring techniques elucidating mitochon-
drial biology and disease-relevancy. Due to the advantages of high sensitivity and practicality,
fluorescence phenomena have been most widely used as scientific techniques for the visualization
of biological phenomena and systems. In this review, we briefly overview the different types of
fluorescent materials such as chemical probes, peptide- or protein-based probes, and nanomaterials
for monitoring mitochondrial biology.

Keywords: mitochondria; fluorescence imaging; fluorescent chemical probes; fluorescent nanosen-
sors; mitochondria-targeting peptides

1. Introduction

Mitochondria play pivotal roles in supplying cellular energy in the form of adenosine
triphosphate (ATP) via oxidative phosphorylation [1]. Recent enthusiastic efforts have
revealed that this ‘powerhouse of the cell’ is indeed the hub of intracellular signaling,
energetics, and redox balance [2–4]. Considering the important role of mitochondria in
calcium homeostasis, fatty acid synthesis, and biogenesis of the heme and iron-sulfur
proteins, the interconnection between mitochondria and cellular signaling is essential [5,6].
Mitochondria provide energy in the form of ATP for cell survival; however, mitochondria
are also actively implicated in apoptosis to promote cell death [7]. Since mitochondria are
key regulators of apoptosis, they participate in developmental processes and aging [8].
Therefore, mitochondrial dysfunction is associated with aging-related phenomena includ-
ing metabolic disorders, cardiomyopathies, and neurodegeneration [9]. Consequently,
there is a high demand for understanding mitochondrial biology as a new frontier in health
and disease.

Mitochondria are double-membraned organelles. The mitochondrial inner membrane
has characteristic folds, called cristae, providing a large amount of surface area for chem-
ical reactions, and it is enclosed by a permeable mitochondrial outer membrane, which
completes the double membrane-bound architecture of mitochondria [10]. Mitochondria
undergo dynamic movement inside cells by fusion and fission and build large intercon-
nected intracellular networks, a process which is called mitochondrial dynamics [11]. It is
generally believed that mitochondrial dynamics allows the cell to respond to cellular envi-
ronmental changes, and results in the cell-type-specific appearance of the mitochondrial
morphology. In addition, recent studies have demonstrated that mitochondrial dynam-
ics is important for understanding multiple biological processes, and dysfunctions of
mitochondrial dynamics could trigger several human diseases [8,12]. Therefore, monitor-
ing mitochondrial morphology could provide a clue to learn many different biological
processes for human diseases.
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Mirroring these important roles of mitochondria in biological systems, there exists
considerable interest in the development of new material for monitoring mitochondrial
structure and function [4,12]. With a high sensitivity and signal-to-noise ratio, simple oper-
ation, practicality, good selectivity, and the capability for real-time detection, fluorescence
has been utilized as a promising technique. From monochromatic fluorescent probes to
ratiometric, multi-photon probes, and target-switchable fluorescent probes, a variety of flu-
orescent chemical probes has been developed [13]. Due to the high extinction coefficients,
quantum yields, and modularity, the engineering of multicolored fluorescent proteins
has enabled the development of various protein sensors [14]. Based on the high loading
capacity and availability in multimodal imaging or sensing, there exists a continually grow-
ing attention for fluorescent nanomaterials in bioimaging [15]. The application of these
fluorescent materials in mitochondrial research has disclosed a new area for monitoring
mitochondrial biology in vitro and in vivo [4,16–19]. For these purposes, versatile fluores-
cent materials such as chemical compounds, peptide-conjugated fluorophores, engineered
fluorescent proteins, and fluorescent nanomaterials have been developed and applied in
monitoring mitochondrial structure and function. In this review, we briefly overview the
various types of fluorescent materials for monitoring mitochondria and their application in
biological phenomena.

2. Fluorescent Chemical-Based Mitochondria Probes

The strategy for the development of fluorescent chemical probes for monitoring
mitochondria-associated biological events is usually presented by conjugation of the
mitochondria-targeting motif with an organic fluorophore using a suitable linker (Figure 1).
As a part of anchoring mitochondria, the lipophilic cation is mainly considered as a key
motif for the accumulation of the chemical in the mitochondrial matrix [20]. A delocalized
cationic character in conjugated systems such as aromatic rings is essential for the accu-
mulation of chemicals in mitochondria [20]. Therefore, the manipulation of the lipophilic
character of chemical probes can affect their ability for targeting efficiency toward mitochon-
dria. Based on structural insights, various kinds of fluorescent probes bearing lipophilic
cations in diverse fluorophores such as boron-dipyrromethene (BODIPY), Rhodamine,
cyanine-based Alexa-fluor, and acedan have been developed and are already commercially
available to monitor mitochondria or membrane potential, e.g., MitoTracker Green, Mi-
toTracker Orange, MitoTracker Red, and MitoTracker Deep Red (Figure 1) [19,21–27]. In
particular, the last three dyes—MitoTracker Orange, Mitotracker Red, and MitoTracker
Deep Red—are available in super-resolution imaging like stochastic optical reconstruction
microscopy (STORM) [19,28].
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The application of fluorogenic organic dyes that induce ‘turn-on’ fluorescence by a spe-
cific event in the case of localization in mitochondria has reduced background fluorescence
and obtained a high signal-to-noise ratio [23,29]. Herein, we introduce interesting examples
for fluorogenic mitochondria chemical probes and systematic studies for the regulation
of hydrophobicity targeting mitochondria. In addition, we focus on the development
of versatile fluorescent chemical probes for monitoring mitochondrial metabolites and
membrane potential.

2.1. Triphenylphosphonium (TPP) Group Embedded Fluorogenic Probes

As a mitochondria-targeting motif, TPP is the most widely used functional group
in the application of chemical probes as well as other fluorescence materials [4,20,34,35].
Due to the critical impact of the fluorogenic approach, we briefly introduce recent studies
in the development of chemical probes using the fluorogenic dye-bearing TPP group.
Fluorogenic properties of the desired probe only induce the enhancement of fluorescent
intensity when the probes are targeting mitochondria; therefore, it is considered as a key
feature of fluorescent technique to enhance resolution and practicality.

Conjugation with aggregation-induced emission luminogens (AIEgen) with TPP
allowed a highly efficient fluorogenic mitochondria-targeting probe (Figure 2A) [29]. Kalei-
dolizine (KIz) as a molecular platform for AIEgen phenomena was reported to increase
fluorescent intensity by over 120-fold when it aggregated [29]. As a versatile tool for
monitoring biological systems, TPP-KIz was designed for bioimaging mitochondria and
successfully visualized mitochondria in live cells within a minute without any additional
washing step [29]. The further application of bioorthogonal chemistry for AIEgen allowed
spatiotemporally controlled-mitochondria visualization with minimal perturbation of
the cellular environment. Using the advantage of fast kinetics and selectivity of the re-
action, the study of inverse electron-demand Diels–Alder (iEDDA) reactions between
trans-cyclooctene (TCO) and tetrazine (Tz) combined with AIEgen-based KIz fluorophores
and mitochondrial targeting TPP groups was reported (Figure 2B) [30]. Without TPP-TCO,
TPP-KIzTz was quenched in a basal state, but iEDDA reactions with TPP-TCO dramatically
increased the fluorescence of the product [30]. Bioorthogonal reactions between TPP-KIzTz
and TPP-TCO suggested extremely specific and hypersensitive washing-free mitochondrial
imaging by two-step mitochondrial targeting and the fluorescent turn-on process [30].

2.2. Hydrophobicity-Driven Accumulation in Mitochondria for Chemical Probes

Hydrophobic regulation of compounds is critical to access mitochondria. Silicon-
rhodamine (SiR) dye has been considered a useful fluorophore due to its cationic charac-
ter [31]. Sung et al. investigated the systematic effect of hydrophobicity with a silicon-
rhodamine fluorescent core skeleton in view of mitochondrial targeting efficiency [31].
By modification of hydrophobic functional groups ranging from 2.29 to 6.33 of cLogP,
mitochondria-targeting efficiency was highly correlated with increasing hydrophobicity
and optimal cLogP in silicon-rhodamine, which was analyzed from 5.50 to 6.33 [31]. Ad-
ditionally, SiR-Mito 8 showing enhanced mitochondrial localization was used to monitor
mitochondrial membrane potential in Hep3B liver cancer cells [31]. Based on this study, a
SiR-Mito 11 bearing n-octyl functional group was further developed with increasing selec-
tivity on brain tumor cells, which further demonstrated a theragnostic effect on glioma cells
of SiR-based mitochondrial fluorescent probes [32]. The polarity-sensitive Near-Infrared
(NIR) fluorescent dye, MCY-BF2, bearing an n-hexadecyl group as a lipophilic cation group
for mitochondria targeting was reported [33]. MCY-BF2 accumulated in mitochondria
interacting with a diphosphatidylglycerol lipid in the inner membrane of the mitochondria
and dramatically increased NIR fluorescence in response to mitochondrial polarity based
on the change in microenvironment dielectric constant [33].
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Figure 2. Washing-free mitochondrial imaging by fluorogenic indolizine mitochondria probes.
(A) Structure of TPP-KIz and time-lapse imaging of TPP-KIz (1 nM) in Chang liver cells. Adapted
with permission from ref. [29]. Copyright 2020 American Chemical Society. (B) Structure of TPP-
KIzTz and fluorogenic imaging of TPP-KIzTz (100 nM) after addition of TPP-TCO (100 nM) in
Chang liver cells. Green and red in structure indicate the fluorophore and mitochondrial-targeting
moiety, respectively. Overexpression of Mito-YFP was compared to evaluate mitochondrial targeting
efficiency in both figures. Adapted with permission from ref. [30]. Copyright 2021 Elsevieer B. V.

2.3. Targeting Metabolites in Mitochondria

Mitochondria are major organelles that regulate various cellular metabolism processes
related to the redox system for regulation of antioxidants, which indicates that numerous
metabolites exist and affect the balance of mitochondria. Therefore, various sensors of
mitochondrial metabolites have been developed (Table 1).

Mitochondria are considered a sink of cellular H2O2 and play a major role in an-
tioxidant defense systems. Mitochondria peroxy yellow 1, MitoPY1, was developed to
visualize mitochondrial H2O2 in live cells [36,37]. MitoPY1 was designed through a bi-
functional fluorescent molecule with boronate as a peroxide-responsive group and TPP
as a mitochondrial-targeting moiety [36]. The boronate of MitoPY1 was deprotected in
response to mitochondrial H2O2, thereby resulting in the oxidized probe, MitoPY1ox,
which increased fluorescent intensity and allowed the efficient visualization of localized
changes in H2O2 in mitochondria [36,37].

Glutathione is the major resource of thiols in biological systems, playing an antioxidant
role in mitochondria as well as the entire organelle. The level of glutathione is highly
associated with cellular dysfunction and disease status. Two-photon probe MT-1 for
detecting mitochondrial thiols was reported based on the fluorescence resonance energy
transfer (FRET) system [38]. MT-1 consisted of biocompatible naphthalimide fluorophores
as FREP donors, cationic rhodamine B fluorophores as FRET accepters/mitochondrial
targeting groups, and a 2,4-dinitrobenzenesulfonyl group for thiol detection, thereby
effectively detecting the mitochondrial thiols represented by glutathione in live cells and
tissue systems [38]. In particular, the photophysical properties of naphthalimide used by
MT-1 exhibited the two-photon excitation around 800 nm and MT-1 was available in the
two-photon imaging technique [38].



Materials 2021, 14, 4180 5 of 12

Table 1. Summary of the chemical probes for targeting various types of mitochondrial metabolites.

Structure 1 Metabolite Ex/Em 2
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Malondialdehyde is one of the products of α,β-unsaturated reactive carbonyl species
and is considered an oxidative stress marker. Mitochondria are major organelles for regulat-
ing oxidative stress and produce a high level of malondialdehyde. Mito-FMP was reported
as a chemical probe for monitoring mitochondrial MDA that conjugated with a hydrazine
moiety as a malondialdehyde recognition site and TPP as a mitochondrial targeting moiety
in benzoxadiazole fluorophores [39]. Mito-FMP was a ‘turn-on’ fluorescent probe triggered
by the production of a cyclized pyrazole in the presence of malondialdehyde and enabled
the visualization of the cellular malondialdehyde in live cells [39].
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Although nitroxyl (HNO) is a signaling agent for nitric oxide and is highly re-
lated to mitochondrial nitric oxide metabolism, direct detection of HNO is challeng-
ing due to its labile property. For detecting mitochondrial HNO in physiological con-
ditions, a NIR chemical probe, MitoHNO, was developed [40]. MitoHNO including a
2-(diphenylphosphino)benzoyl group as the HNO recognition moiety and a merocyanine
fluorophore with a lipophilic indolium as a mitochondria-targeting fluorophore precur-
sor [40]. The reaction between MitoHNO and HNO induced the aza-ylide intermediate,
then subsequently formed NIR fluorophores by Staudinger ligation that successfully con-
firmed the detection of HNO in mitochondria in live cells [40].

2.4. Targeting Mitochondrial Membrane Potential (MMP)

During the process of energy production in mitochondria, the concentration of various
ions including protons is distributed on inner and outer membranes of mitochondria,
which results in mitochondrial membrane potential [13,41]. The integrity of MMP is highly
related to mitochondrial functions and there is a lot of evidence that the abnormality of
MMP is associated with human diseases such as Parkinson’s disease, Alzheimer’s disease,
and cancer [7,9,11,13,42,43]. Therefore, fluorescent probes for detecting MMP provide a
great research tool for mitochondrial biology.

Commercially available MitoTracker Orange and JC-1 are widely used to detect MMP
by an accumulation in membrane potential and are used to visualize mitochondria in the
monochromatic and the ratiometric modes, respectively (Figure 1) [25,44]. In addition,
an AIEgen strategy was applied to develop a fluorescent chemical probe for monitoring
the membrane potential difference. Zhao et al. reported an AIE probe TPE-Ph-In for
monitoring MMP with a tetraphenylethylene (TPE) as an AIE unit and the incorporation
of indolium for targeting mitochondria [45]. TPE-Ph-In enabled the measurement of the
level of MMP from the basal state to an increase or decrease. By oligomycine treatment,
the increased MMP led to accumulation of TPE-Ph-In in mitochondria and induced ag-
gregation and fluorescence, whereas the decreased MMP in response to carbonylcyanide
3-chlorophenylhydrazone treatment reduced the fluorescence of TPE-Ph-In by releasing
from mitochondria to cytosole [45]. With the advantages of enhanced photostability and
avoiding the quenching effect, the red-emitting probe, TPE-Ph-In, suggested the potential
ability for a mitochondria probe [13,45].

3. Peptide- or Protein-Based Mitochondria Probes

Biomaterials such as peptides or proteins are major resources for the development
of imaging tools for mitochondria. We focused on the recent approach for peptide- or
protein-based strategies for mitochondrial visualization and their therapeutic application.

3.1. Application of Mitochondria-Targeting Peptide

Based on the modularity and synthetic utility, peptide-based mitochondrial targeting
motifs including both hydrophobic and cationic amino acids were used for application for
the development of mitochondria probes. The mitochondria-penetrating peptide (MPP)
based on a six-residue combination such as cationic arginine and artificial amino acid,
cyclohexylalanine, was reported as a mitochondria carrier targeting the mitochondrial
matrix (Figure 3) [46].
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Figure 3. The sequence of mitochondria-targeting peptide MPP and CAMP [46,47]. Structures from
references [46,47]. (A) The sequnce of MPP; (B) The sequnce of CAMP.

A systematic study involving modification of hydrophobicity using an artificial amino
acid elucidated that the charge-driven cellular uptake across the plasma and mitochondrial
membrane was important in the localization for mitochondria. The sequence of Fx-r-Fx-K-
Fx-r-Fx-K and Fx-r-Fx-K (Fx and r indicate cyclohexylalanine and d-arginine, respectively)-
linked thiazole orange dye showed a high Pearson’s correlation coefficient, which suggested
the localization of peptide derivatives in mitochondria [46]. Additionally, the fluorescently
labeled mt-Cbl was developed to lead the specific delivery of the DNA alkylating agent,
nitrogenmustard chlorambucil (Cbl) [48]. The MPP peptide, (FxR)3, was conjugated with
chlorambucil to C-terminal Lys residue and thiazole orange as a fluorophore to the N-
terminal [48]. By mitochondria-directed activity, mt-Cbl improved the potency against
various leukemic cells and confirmed apoptotic activity in drug-resistant cells [48].

Another mitochondria-targeting peptide sequence was developed to deliver pro-
tein to mitochondria (Figure 3). By in silico analysis, a novel cell-penetrating artificial
mitochondria-targeting peptide (CAMP) was designed based on the structural insight
between human immunodeficiency virus (HIV-1) trans-activator of transcription (TAT)
peptide and the mitochondria-targeting sequence [47]. The sequence of CAMP is YGRKKR-
RQRRR LLRAALRK_AAL (the underscore indicates the cleavage site predicted by Mi-
toProtII) [47]. The fusion of CAMP with EGFP or hMT1A allowed the delivery of these
cargo proteins to mitochondria, then CAMP was efficiently cleaved by mitochondrial
metalloprotease and released cargo proteins in cellular and in vivo mouse models [47].
These results demonstrate the capability of mitochondria-specific delivery systems using
mitochondrial targeting peptides.

3.2. Protein for Visualization of Mitochondrial Biology

Historically, the engineered fluorescent protein has enabled real-time visualization
for the protein of interest with high resolution and sensitivity. The diverse pH range
of the mitochondria matrix and pH alteration induced by various perturbations such as
breaking of calcium homeostasis or mitophagy have been considered as key events to study
mitochondrial biology.

The mitochondrial alkaline pH indicator, mtAlpHi, which is an engineered green
fluorescent protein with around 8.5 of pKa, selectively targeted mitochondria and changed
fluorescence intensity in response to a pH range of 7–11 [49]. Based on the advantages
of reversible response and lack of toxicity, mtAlpHi allowed monitoring the dynamics of
mitochondrial pH by calcium uptake [49].

Mitophagy is a type of autophagy process that specifically removes the dysfunctional
mitochondria by lysosomal degradation [50]. mt-Keima is the widely used fluorescent
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imaging technique to monitor mitophagy in in vitro and in vivo systems [17]. The character-
istic features of Keima, such as ratiometric pH-sensitive fluorescence, allow the detection of
protein location in the mitochondria (pH ~ 8.0) or the lysosome (pH ~ 4.5) by differentiated
fluorescence for multicolor imaging [51]. Further application of mt-Keima discriminated
whether the mitochondria were in the cytoplasm or in acidic lysosome, which allowed
the monitoring of mitophagy in cells [52]. Moreover, the development of an mt-Keima
transgenic mouse enabled the measurement of mitophagy in an in vivo system [53].

Due to the advantages of fast kinetics and high efficiency, bioorthogonal chemistry
is widely used to label biomolecules mainly using click-chemistry without any inter-
ference in native biological processes [54]. Copper-free click chemistry such as iEDDA
reactions using Tz and TCO disclosed the various applications to visualize biomolecules
with fluorophore-linked Tz or TCO [55]. The incorporation of unnatural amino acids into
the target protein, followed by fluorophore labeling using bioorthogonal reactions, sug-
gested a feasible solution for monitoring mitochondrial protein [56]. By reprogramming
the genetic codon, mitochondrial protein MITRAC12, which is an integral inner membrane
protein, was modified by incorporation of TCO-L-lysine and subjected to iEDDA cycload-
dition with a Star580-tetrazine as a fluorescent tag [57]. With the advantage of TCO-Tz
bioorthogonal reactions like fast reaction kinetics, efficient reaction yield, and feasibility in
physiological conditions, this approach allowed visualization of mitochondrial proteins in
super-resolution imaging with a single cell level.

4. Fluorescent Nanomaterials for Mitochondria

Because of the loading capacity for various materials like drugs, fluorescent dyes,
responsive units for an analyte, or mitochondria-targeting motifs at the same time, nano-
materials are considered valuable tools for theragnostic or dual-sensor systems for multiple
analytes in mitochondria. Considering the regulation of complex biological processes
like bioenergetic functions and redox homeostasis, the development of fluorescent tools
for monitoring multiple functions that occur in mitochondria has been required in the
field of mitochondria [7]. In addition, mitochondria contribute to cancer growth and sur-
vival, thereby they are regarded as a potential therapeutic target for various cancers [7,58].
Moreover, mitochondrial oxidative stress is a major pathological issue in neurodegener-
ative diseases such as Alzheimer’s disease [59]. Therefore, the fluorescent material for
both monitoring and regulating mitochondrial function in parallel is valuable to study
mitochondria-related disease. In this context, various types of nanomaterials have been
developed for monitoring multiple functions of mitochondria and delivery agents to cure
cancer (Figure 4).
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To investigate multiple physiological events in mitochondria, a ratiometric DNA
nanosensor for simultaneous monitoring of both calcium and pH in mitochondria was de-
veloped [60]. A tetrahedron DNA-based nanoprobe was conjugated with four components
including NIR emissive carbon dots bearing a calcium ligand (CD@Cal), pH-responsive
fluorescein, TPP as a mitochondria-targeting motif, and an AF660 as a reference fluorophore
for quantitative analysis [60]. Without any interference, a tetrahedron DNA nanoprobe
measured calcium and pH simultaneously in vitro and quantified mitochondrial calcium
concentration and pH in the neuron by real-time imaging [60]. However, self-assembled
ratiometric fluorescent nanoprobes (SRFNPs) for monitoring mitochondrial pH were re-
ported [61]. The preparation of the probe is based on a self-assembly mechanism by
host-guest interaction between β-cyclodextrin polymer (β-CDP) as the host backbone and
adamantine as the guest molecules [61]. Three different components, including fluores-
cein, rhodamine, and TPP, were introduced to the host backbone via conjugating with
adamantane. Since fluorescein has pH-sensitive fluorescent intensity, the intensity ratio
between fluorescein and rhodamine quantitatively reported the pH of the mitochondria in
a ratiometric way. In this study, adamantane-conjugated TPP was used as a mitochondria
targeting moiety [61]. SRFNP was successfully applied to monitor mitochondrial pH in the
range pH 4.0–8.0 and low toxicity of SRFNP revealed the biocompatibility of the probes for
live cells [61].

A theragnostic approach for tumor targeting, imaging, and drug delivery with
mitochondria-targeting nanoparticles was reported [62]. In this study, the author employed
the AIE approach to display playing multiple roles in selective drug delivery, anticancer
activity, and mitochondria targeting, showing potential ability for theragnostic tools in can-
cer therapy [62]. A self-assembled nanoparticle with cyanostilbene and a long alkyl chain
was designed for targeting mitochondria by incorporation of a TPP moiety and revealed
the accumulation in mitochondria by AIE phenomena [62]. Moreover, encapsulation of
doxorubicin was successfully delivered to mitochondria and induced anti-cancer activity
in both cell-based and in vivo systems [62]. Furthermore, photothermal properties of hy-
drophilic nanoparticles are expected to be a theragnostic approach based on photothermal
therapy and photothermal/photoacoustic imaging [64]. Wang et al., reported Mito-BDP5
nanoparticles based on a purely organic BODIPY core with a modification by TPP and
an ethylene glycol chain which successfully visualized mitochondria in HeLa cells and
tumors in mice by photothermal and photoacoustic imaging with good bioavailability
and enhanced permeability and retention effects [64]. TPP-based mitochondria-targeting
graphene oxide nanocomposites loaded with indocyanin green TPP-PPG@ICG suggested a
new class of fluorescence imaging-guided phototherapy [65]. Due to the preferential accu-
mulation of TPP-PPG@ICG in tumors and availability in NIR light sources, this nanocom-
posite proved a therapeutic potential with enhanced photothermal efficacy and suppressed
ATP production, which led to overcoming drug resistance [65]. Besides cancer therapy,
mitochondria-targeting nanoparticles can be used as theragnostic tools for neurodegenera-
tive disease. Ceria nanoparticles are known for their antioxidant activity by scavenging
reactive oxygen species [59]. Mitochondria-targeting TPP-conjugated ceria nanoparticles
were localized to mitochondria and suppressed neuronal death by regulating reactive
oxygen species of damaged mitochondria in an Alzheimer’s disease mouse model [59].

To improve photostability and reduce photobleaching, CdSe/ZnS-based quantum
dots and iron-oxide-based nanoprobes, which were coated with polyacrylate and cova-
lently linked with TPP, were reported as functionalized nanoprobes for imaging mitochon-
dria [63]. It was confirmed that inorganic nanoparticle quantum dot-TPPs with low surface
charge and high colloidal stability enhanced mitochondrial targeting efficiency with low
nonspecific binding and bypass endosomal trafficking [63].

5. Conclusions

The development of various types of fluorescent materials for targeting mitochondria
has contributed to elucidating mitochondrial biology. The structural insights and system-
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atic studies for targeting mitochondria have revealed that regulation of hydrophobicity
and charge are critical in mitochondrial targeting efficiency in chemical and peptide-based
approaches. The application of mitochondrial targeting probes such as chemicals or nano-
materials has provided a therapeutic potential as a theragnostic tool for cancer treatment.
Versatile mitochondrial probes allow real-time visualization of mitochondria and related
biological processes in in vitro and in vivo systems, which suggests they are useful tools
for mitochondrial biology in health and disease.
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