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Abstract: New engineering materials exhibit a complex internal structure that determines their
properties. For thermal metamaterials, it is essential to shape their thermophysical parameters’
spatial variability to ensure unique properties of heat flux control. Modeling heterogeneous materials
such as thermal metamaterials is a current research problem, and meshless methods are currently
quite popular for simulation. The main problem when using new modeling methods is the selection
of their optimal parameters. The Kansa method is currently a well-established method of solving
problems described by partial differential equations. However, one unsolved problem associated
with this method that hinders its popularization is choosing the optimal shape parameter value of
the radial basis functions. The algorithm proposed by Fasshauer and Zhang is, as of today, one of the
most popular and the best-established algorithms for finding a good shape parameter value for the
Kansa method. However, it turns out that it is not suitable for all classes of computational problems,
e.g., for modeling the 1D heat conduction in non-homogeneous materials, as in the present paper.
The work proposes two new algorithms for finding a good shape parameter value, one based on
the analysis of the condition number of the matrix obtained by performing specific operations on
interpolation matrix and the other being a modification of the Fasshauer algorithm. According to the
error measures used in work, the proposed algorithms for the considered class of problem provide
shape parameter values that lead to better results than the classic Fasshauer algorithm.

Keywords: radial basis functions; Kansa method; shape parameter; multiquadric collocation method;
inhomogeneous material

1. Introduction

The heat equation is one of the most fundamental parabolic partial differential equa-
tions. Therefore, it is often solved in both the world of science and industry. However, it is
usually solved with the assumption of spatially constant thermophysical parameters; this is
probably related to the fact that thermophysical parameters of naturally occurring materials
are usually spatially variable to a small extent, which means that they can be modeled as
spatially constant. Nevertheless, in the recent decades, thermal metamaterials, which may
exhibit spatial variability of thermophysical parameters, have gained considerable popular-
ity in the scientific community [1–4]. Particularly noteworthy is the possibility of creating
a thermal cloak using a material that directs the heat flow [5]. Due to this, modeling and
solving heat flow in metamaterials with spatially variable thermophysical parameters is
becoming an important component of computational mechanics. Numerical solving of the
heat equation is a well-known issue within classical numerical methods, such as the finite
difference method [6] or the finite element method [7]. However, for complicated 2D or
3D geometries of engineering problems, the grid generation process is complex and time-
consuming—it may take more time than solving equations that arise for the considered
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method [8]. Meshless methods, especially the collocation methods, allow to reduce and
even avoid such problems. The considered domain is filled with unconnected points for
such methods, not a mesh, as in the finite element method. One of the meshless methods
is the Kansa method which utilizes the radial basis functions (RBF) for solving partial
differential equations. Of course, thermal metamaterials do not exhaust the spectrum of
applications of Kansa’s method in the numerical modeling of metamaterials. It can be used,
for example, to study radiofrequency metamaterials or microwave metamaterials based on
the reconfigurable structures [9,10].

In this paper, the pseudospectral formulation of the Kansa method was used to
solve the one-dimensional, unsteady initial-boundary value problem of heat conduction
in a non-homogeneous material, which exhibits spatial dependence of thermophysical
parameters. Particular emphasis was placed on finding a good shape parameter value; for
this purpose, two algorithms for finding it were proposed. As can be seen, the problem
under consideration is one-dimensional, in turn, it has been written above that the Kansa
method shows its most significant advantage over classical methods when the problem is
two-dimensional or three-dimensional. However, the algorithms proposed in this work
can be used without any problems in two-dimensional or three-dimensional problems; this
is due to the fact that the formulation of the Kansa method is almost identical for one-, two-
and three-dimensional problems [11].

The Kansa method was introduced in 1990 by E.J. Kansa [12,13]. In the Kansa method,
radial basis functions (RBF) approximate the solution of boundary and initial-value prob-
lems of partial differential equations (PDEs). The Kansa method with multiquadric radial
basis functions can give outstanding accuracy for the solution of PDEs as shown in [14];
moreover, the method is easy to use for a broad range of models considered in science and
engineering. For example, Dubal et al. (1992) [15] used the multiquadric approximation to
solve a three-dimensional elliptic PDE describing the time-evolution of interacting black
holes and gravitational wave production. Moridis and Kansa (1994) [16] performed time-
integration of a certain initial-value problem with the numerical algorithm for inversion of
Laplace transformation; the spatial term has been approximated with an exponentially-
convergent grid-free scheme using multiquadrics. Sharan et al. (1997) [17] also have used
the multiquadric approximation scheme to solve elliptic PDEs with Dirichlet or Neumann
boundary conditions. Despite their excellent results, all previous works are related to intu-
itively applying the Kansa method to solve boundary or initial-value problems of PDEs,
and a formal mathematical proof of the convergence [18] is not included in mentioned
papers. This state has changed with the publication [19], where authors gave a convergence
proof and error bound of the collocation method with radial basis function approximation,
at least for PDEs with constant coefficients. In [19], the analysis is based on the fact that this
approach can be considered as a special case of the general Hermite–Birkhoff interpolation
problem; later, Zerroukat et al. (1998) [20] proposed the scheme with multiquadrics to
solve the heat transfer problem. In [18], the Kansa method was applied to solve linear
advection-diffusion equations by using the thin-plate splines with the stability proof. Dong
and Cheung (2004) [21] utilized the Kansa method to solve elastic inclusion problems.
Chantasiriwan (2006) [22] used the multiquadric collocation method to solve the heat con-
duction problem with stochastic initial and boundary conditions. Zheng and Li (2008) [23]
used the Kansa method to investigate acoustic wave propagation. Chen et al. (2010) [24]
made the first attempt to solve the time-fractional diffusion equations using the Kansa
method with thin-plate splines. Simonenko et al. (2014) [25] used the RBF method to
solve elastostatic problems. Pang et al. (2015) [26] applied the Kansa method to the space-
fractional advection-dispersion equations. Dehghan and Shirzad (2015) [27] proposed two
numerical methods to solve the elliptic stochastic PDEs in two and three dimensions ob-
tained by Gaussian noises using RBFs collocation and pseudospectral collocation methods.
Reutskiy (2016) [28] used a meshless radial basis function method for 2D steady-state heat
conduction problems in anisotropic and inhomogeneous media. Fallah et al. (2019) [29]
used the Kansa approach for solving seepage problems. Haq and Hussain (2019) [30]
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utilized the Kansa method to solve time-fractional higher-order partial differential equa-
tions with constant and variable coefficients. Jankowska and Karageorghis (2019) [31]
used the Kansa approach for the numerical solution of second- and fourth-order nonlinear
boundary-value problems in two dimensions. Liu and Chang (2019) [32] performed energy
regularization of the MQ-RBF method and used the Kansa method for solving the Cauchy
problems of diffusion-convection-reaction equations.

Despite all the advantages of the MQ-RBF Kansa method: the accuracy of calculations,
the ease of implementation, the ability to apply the method to solve various classes of
engineering problems, this method is associated with an unresolved problem that prevents
its application to the challenging real-world problems [33]—the problem of choosing
an optimal (or at least good) value of the shape parameter in the RBF. For this reason,
the problem of choosing the shape parameter has been the subject of great scientific
debate. The first attempts to find a good shape parameter value were made even before
the Kansa method was invented, MQ-RBF were used for interpolation of scattered data.
Hardy (1971) [34] suggested the use of ε = 0.815 dx, where dx is the distance between
equispaced nodes. On the other hand, Franke (1982) [35] recommended ε = 1.25

√
2 dx.

Carlson and Foley (1991) [36] have shown that the shape parameter’s optimal value is
strongly dependent on the interpolated function and essentially independent of the number
and location of the interpolation nodes. They also gave an algorithm that yields an
approximated value of a quasi-optimal shape parameter. Rippa (1999) [37] proposed
a leave-one-out cross-validation (LOOCV) algorithm to estimate the interpolation error
and use it to compute a quasi-optimal value of the shape parameter; this algorithm was a
significant breakthrough; however, it was limited to the problem of interpolation rather than
solving PDE using the Kansa method. Fasshauer and Zhang (2007) [38] adapted Rippa’s
LOOCV algorithm so that it could be used to find the good value of shape parameter
solving PDE problems using the Kansa method together with the multiquadric function.
This algorithm is today one of the most popular and reliable algorithms for finding a good
value of the shape parameter. Huang et al. (2007) [39] experimentally derived a formula
for a good value of the shape parameter ε = log(λ/3a dx), where a and λ are constants that
depend on the problem. Bayona (2011, 2012) [40,41] has attempted to find optimal constant
and variable shape parameters for the multiquadric approximation method combined with
the finite difference method. Tsai et al. (2010) [42] proposed the golden section algorithm,
Esmaeilbeigi and Hosseini (2014) [43] the genetic algorithm, Iurlaro et al. (2014) [44] the
energy-based approach, and Chen et al. (2010) [14] the sample solution approach. Despite
the very intensive development of methods for finding a good value of the shape parameter
in the recent years, the choice of the shape parameter for multiply-connected, complex-
shaped domain problems remains an open problem [14]. This article is a partial answer to
this open problem due to the fact that this publication proposes an algorithm for finding a
good value of the shape parameter for a specific class of problems, the reliability of which
has been proven experimentally on numerical examples.

2. Materials and Methods
2.1. Pseudospectral Formulation of Kansa Method for Initial-Value Problem of Heat Conduction

In the classical Fourier model, the heat flux q passing through a material is proportional
to the thermal conductivity κ and the local gradient of temperature u:

q = −κ∇u. (1)

For heat conduction processes without an internal heat source or sink, the equation
describing the conservation of internal energy is as follows:

γρut +∇ · q = 0, (2)
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where ρ is the density of the medium and γ is the specific heat capacity. After combining
Equations (1) and (2), the general form of the Fourier equation is obtained

γρut = ∇ · (κ∇u), (3)

which in the one-dimensional case is as follows [45]:

γρut = κxux + κuxx. (4)

where κ = κ(x), ρ = ρ(x), and γ = γ(x). Equation (4) is solved in the time domain
t ∈ (0, T〉 and the space domain [x, y] ∈ D ⊂ R2. T is the length of the observation interval.
Since the Fourier model is parabolic, it is necessary to impose one initial condition for the
temperature field:

u(x, t = 0) = g(x) (5)

Three types of boundary conditions were used in the work:

• Dirichlet boundary condition
u(xb, t) = h(xb), (6)

where h is boundary temperature function and xb is the coordinate of the boundary
point;

• Neumann boundary condition

− κ(xb)un(xb, t) = q(xb), (7)

where un is derivative of temperature in the normal direction to the boundary of the
considered domain;

• Robin boundary condition

− κ(xb)un(xb, t) = α[u∞ − u(xb, t)], (8)

where α is heat transfer coefficient and u∞ is a constant ambient temperature.

Equation (4) together with initial condition and boundary conditions create the initial-
boundary value problem which is considered in this work.

The radial basis function is the so-called 2-point real-valued function whose value
at a given point x depends only on the distance from the selected point xj, the so-called
center [11]. Every radial basis function satisfies:

ϕ
(

x, xj
)
= ϕ

(∣∣∣∣x− xj
∣∣∣∣). (9)

In this work, the general multiquadric radial basis function was used [33]:

ϕ
(
x, xj

)
=
((

x− xj
)2

+ ε2
)p

, (10)

where ε is a shape parameter. Commonly used values for p are −1/2 and 1/2 [33]. In the
Kansa collocation method, it is assumed that the unknown field variable, e.g., the field of
temperature, at a given point x can be expressed as a linear combination of the applied
radial basis function [11]:

u(x) =
n

∑
j=1

ϕj
(
x, xj

)
cj (11)

where cj are coefficients in linear combination and n is the number of points in the compu-
tational domain. Writing Equation (11) for all points of the computational domain leads to
a n× n system of linear equations, which can be written in a matrix form:

u = φc, (12)
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where φ, u, c, are the radial basis functions matrix, temperature field (at collocation points)
vector, and coefficients vector, respectively:

φ =


ϕ(x1 − x1) ϕ(x1 − x2) · · · ϕ(x1 − xn)
ϕ(x2 − x1) ϕ(x2 − x2) · · · ϕ(x2 − xn)

...
...

. . .
...

ϕ(xn − x1) ϕ(xn − x2) · · · ϕ(xn − xn)

, (13)

u =


u1
u2
...

un

, (14)

c =


c1
c2
...

cn

. (15)

Differentiating Equation (12) with respect to the x-coordinate, one can obtain:

u = φc
∂

∂x−→
{

ux = φxc
uxx = φxxc

⇒
{

ux = φxφ−1u
uxx = φxxφ−1u

(16)

and substitute the obtained u, ux, uxx into the heat equation (Equation (4)) in a matrix form:

γρut = [κxφx + κφxx]φ
−1u. (17)

It is assumed that the φ matrix is non-singular. The radial basis functions derivatives
matrices are as follows:

φx =


ϕx(x1 − x1) ϕx(x1 − x2) · · · ϕx(x1 − xn)
ϕx(x2 − x1) ϕx(x2 − x2) · · · ϕx(x2 − xn)

...
...

. . .
...

ϕx(xn − x1) ϕx(xn − x2) · · · ϕx(xn − xn)

, (18)

φxx =


ϕxx(x1 − x1) ϕxx(x1 − x2) · · · ϕxx(x1 − xn)
ϕxx(x2 − x1) ϕxx(x2 − x2) · · · ϕxx(x2 − xn)

...
...

. . .
...

ϕxx(xn − x1) ϕxx(xn − x2) · · · ϕxx(xn − xn)

, (19)

and the material properties matrices are as follows:

κ =


κ(x1) 0 · · · 0

0 κ(x2) · · · 0
...

...
. . .

...
0 0 · · · κ(xn)

, (20)

κx =


κx(x1) 0 · · · 0

0 κx(x2) · · · 0
...

...
. . .

...
0 0 · · · κx(xn)

, (21)
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γ =


γ(x1) 0 · · · 0

0 γ(x2) · · · 0
...

...
. . .

...
0 0 · · · γ(xn)

, (22)

ρ =


ρ(x1) 0 · · · 0

0 ρ(x2) · · · 0
...

...
. . .

...
0 0 · · · ρ(xn)

. (23)

The Euler scheme replaced the time derivative in Equation (17) [46]:

ut ≈
uk+1 − uk

∆t
, (24)

which leads to

γρ
uk+1 − uk

∆t
= [κxφx + κφxx]φ

−1u. (25)

The right-hand side of Equation (25) was discretized using the Crank–Nicolson
scheme [47]:

u ≈ (1− σ)uk+1 + σuk. (26)

Naturally, σ ∈ 〈0, 1〉. Substitution of Equation (26) into Equation (25) leads to:

γρ
uk+1 − uk

∆t
= [κxφx + κφxx]φ

−1[(1− σ)uk+1 + σuk], (27)

and after rearrangement to:[
γρ− ∆t(1− σ)

[
[κxφx + κφxx]φ

−1
]]

︸ ︷︷ ︸
A

uk+1 =

[
γρ + ∆tσ

[
[κxφx + κφxx]φ

−1
]]

︸ ︷︷ ︸
B

uk. (28)

Equation (28) is the basic equation solved in this work. Matrices A and B do not
change during time-marching; thus, they will be called time-independent. Equation (28)
can be rewritten in a simpler form:

Auk+1 = Buk. (29)

Solving the transient problem boils down to calculating the consecutive values of uk+1
based on the values of uk from the previous time step using classic time-marching:

uk+1 = A−1Buk. (30)

In Equation (28), boundary conditions are taken into account using the
following expressions:

1. Iu = ub for the Dirichlet boundary condition;
2. φxφ−1u = ±κ−1q for the Neumann boundary condition;
3.

[
±κφxφ−1 + α

]
u = αu∞ for the Robin boundary condition.
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I is the identity matrix, ub is the boundary temperature vector, q is the boundary flux
vector, α is the heat transfer coefficient diagonal matrix, and u∞ is the ambient tempera-
ture vector:

ub =


ub1
0
...

ubn

, (31)

q =


q1
0
...

qn

, (32)

α =


α(x1) 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · α(xn)

, (33)

u∞ =


u∞1

0
...

u∞n

. (34)

± shows that the left and right boundary points have different unit normal vectors. Vectors
(31), (32), and (34) could be written as 2× 1 vectors because in the one-dimensional case,
the boundary has only two collocation points; however, the n× 1 size was kept to keep the
indexation of all matrices consistent.

2.2. The Algorithms for Finding the Good Value of Shape Parameter

The multiquadric shape parameter ε is very important for the Kansa collocation
method in the presented formulation. Its value significantly influences the condition
number of the interpolation matrix and, therefore, the method’s numerical stability and
accuracy. In linear algebra, the condition number is the ratio of the largest singular
value of a matrix to the smallest one [48]. In the Kansa method application context,
recommendations say [39,49,50] that one should use large values of the shape parameter
to obtain more accurate solutions. On the other hand, the shape parameter value cannot
be too large because the condition number of the interpolation matrix also becomes large,
and the accuracy may be lost. Ill-conditioned matrix means a matrix whose condition
number is so high that it leads to an unstable simulation. Despite the knowledge of this
fact, no algorithm based on calculating the condition number of the interpolation matrix
has been proposed so far; it probably results from the fact that the operation of calculating
the condition number is computationally expensive. However, the increasing computing
power of computers makes this problem less and less significant. Consequently, algorithms
for searching for a good shape parameter based on this numerical operation can potentially
be used on a large scale. In the present work, two algorithms for finding a good value of
the shape parameter for the problem of one-dimensional, unsteady heat flow in a material
with spatially variable thermophysical parameters were proposed.

The first algorithm proposed in this paper, called the condition algorithm (CA), uses
the condition number as an indicator of the system behavior; using Equation (28) it could
be defined as follows:

L(ε) = cond
(

A−1B
)

. (35)

It should be emphasized that the typical shape of the function L(ε) for the considered
class of problems is shown in Figure 1. It is possible to find a good value of the shape
parameter εCA using the graph of the condition number. It is assumed that a good value
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of the shape parameter indicates the start of the oscillatory behavior of the L(ε) function,
as shown in Figure 1. The fundamental question is how to detect the onset of an oscillation.
It was proposed to study changes in the monotonicity of the function L(ε). If there are two
monotonicity changes in a row—it is considered that oscillations begin there. Algorithm 1
presents a pseudocode describing the proposed approach.

εCA

ε

L

Figure 1. Example of L(ε) function with marked good value of the shape parameter ε.

Algorithm 1: Pseudocode describing the proposed condition algorithm. X is
the vector of collocation points coordinates, ε is a vector of the shape parameter
values. The range of ε was selected empirically by trial and error.

input : X, ε, γ, ρ, κ, κx, ∆t, σ
output : εCA

1 for e = 1 : length(ε) do
2 [φ, φx, φxx]← RBF (X, ε(e))
3 A =

[
γρ− ∆t(1− σ)

[
[κxφx + κφxx]φ−1]]

4 B =
[
γρ + ∆tσ

[
[κxφx + κφxx]φ−1]]

5 L(ε) = cond
(

A−1B
)

6 if e > 3 then
7 a = L(e− 2)−L(e− 3)
8 b = L(e− 1)−L(e− 2)
9 c = L(e)−L(e− 1)

10 if sign(a) = sign(c) and sign(a) 6= sign(c) then
11 εCA = ε(i− 3)
12 break
13 end
14 end
15 end

The second algorithm, called modified Fasshauer’s algorithm (MFA) combines Fasshauer’s
algorithm (FA) [38] with the approach presented in the condition algorithm. In the Fasshauer
approach, a minimum of the cost function is sought [38], while in the proposed MFA, ε indicating
the oscillatory regime of the graph—similar to the condition algorithm. Figure 2 shows a
comparison of approaches in these two algorithms. Algorithm 2 presents a pseudocode
describing the proposed approach.
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Figure 2. Sample of a graph of the cost function. εFA is equal to the ε for which the cost function
reaches minimum while εMFA is equal to the ε for which the oscillatory behavior begins.

Algorithm 2: Pseudocode describing the proposed modified Fasshauer algo-
rithm. X is the vector of collocation points coordinates, ε is a vector of the shape
parameter values. The range of ε was selected empirically by trial and error.

input : X, ε, γ, ρ, κ, κx
output : εMFA

1 for e = 1 : length(ε) do
2 [φ, φx, φxx]← RBF (X, ε(e))
3 D = [κxφx + κφxx]φ−1

4 Eij =

(
DT)

ij

φii
5 if e > 3 then
6 a = E(e− 2)− E(e− 3)
7 b = E(e− 1)− E(e− 2)
8 c = E(e)− E(e− 1)
9 if sign(a) = sign(c) and sign(a) 6= sign(c) then

10 εMFA = ε(i− 3)
11 break
12 end
13 end
14 end

2.3. Reference Solutions

To investigate the accuracy of the presented methods, the obtained results were
compared with the solutions obtained with two other methods:

• The analytical method for the steady-state;
• The finite difference method for the transient analysis.

If in the heat equation (Equation (4)) it is assumed that the derivative of the tem-
perature with respect to time is equal to zero, then the heat equation is simplified to the
steady-state heat equation:

κxux + κuxx = 0

for which a steady-state analytical solution is known for a certain group of functions
κ(x). This solution can be compared with the solution from the last time step of the
numerical solution.
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In this work, the implicit finite-difference method was used to maintain the stability
of the simulation in small time steps. Central discretization in space and forward-central
discretization in time were used:

γiρi
uk+1

i − uk
i

∆t
= κxi

uk+1
i+1 − uk+1

i−1
2∆x

+ κi
uk+1

i+1 − 2uk+1
i + uk+1

i−1

(∆x)2 (36)

After reorganizing the terms, the equation takes the following form:(
κxi

2∆x
−

κi

(∆x)2

)
uk+1

i−1 +

(
γiρi

∆t
+

2κi

(∆x)2

)
uk+1

i + (
−

κxi

2∆x
−

κi

(∆x)2

)
uk+1

i+1 =
γiρi

∆t
uk

i (37)

The left-hand side contains the unknown values of variables, while the right-hand
side contains the known values from the previous time steps. Equation (37) must be
arranged for each point of the domain, and then, the system of equations needs to be
solved, taking into account the boundary conditions. Figure 3 shows the stencil of the
implicit scheme used.

i− 1 i i + 1

k− 1

k

k + 1

Figure 3. The stencil of the implicit scheme used in this work.

2.4. Error Measures

Three error measures were used in this work:

• Mean percentage error calculated between the last time step solution of the Kansa
method and the analytical steady-state solution

∆AK =

∫ l

0
uA(x)dx−

∫ l

0
uK(x)dx∫ l

0
uA(x)dx

· 100%, (38)

where uA is the steady-state analytical temperature field and uK is the Kansa method
solution temperature field. This measure was used to investigate whether the Kansa
method solution converges to the steady-state analytical solution.
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• Mean percentage error calculated between the Kansa method solution and the finite-
difference method solution

∆FK =
1

m− 1

m−1

∑
k=2

∫ l

0
uF,k(x)dx−

∫ l

0
uK,k(x)dx∫ l

0
uF,k(x)dx

· 100%, (39)

where uF,k is the finite difference method solution temperature field at k-th time step
while uK,k is the Kansa method solution temperature field at k-th time step. This
measure was used to investigate whether the convergence of the Kansa method
solution to the steady-state is correct. The first time step was not taken into account
because the system’s state is then the initial condition.

• Mean percentage error calculated between the finite-difference method solution and
the steady-state analytical solution

∆AF =

∫ l

0
uA(x)dx−

∫ l

0
uF(x)dx∫ l

0
uA(x)dx

· 100%, (40)

where uA is the analytical steady-state solution temperature field and uF is the finite-
difference method solution temperature field. This measure was used to validate the
previous measure by checking if the finite-difference method solution converged to
the analytical steady-state solution.

3. Numerical Results and Discussion
3.1. General Insights about Numerical Setup and Thermal Parameters Distributions

The considered one-dimensional problems were computed in the spatial domain of
x ∈ (0, L). Four distributions of thermophysical parameters were used in the numerical ex-
amples: linear, exponential, harmonic and discontinuous. Figure 4 presents visualizations
of three of them along with equations describing them.
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Harmonic - a cos(kπ x/L) + b

Figure 4. Distribution shapes of thermophysical parameters used in the calculations.

The values of the coefficients appearing in the distributions shown in Figure 4 are
as follows a = 1, b = 1.2, k = 4, L = 2 m. The constants a and b have appropriate units
depending on the physical quantity represented.
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3.2. Discontinuous Distributions of Thermal Parameters, the Influence of Sharpness Parameter

It is often necessary to study the heat flow in a material whose thermal parameter
distributions are spatially variable but discontinuous. In this situation, one can divide the
domain into subdomains in which the distribution of thermal parameters are continuous
functions, then solve the problem for each subdomain, and then connect the solutions.
Unfortunately, in some cases, the approach is not favorable from an implementation point
of view. For this reason, it was decided to use a function that models the jump between
two values, a linear combination of such functions would give the desired discontinuous
distribution. One of the most popular of these generalized functions is the Heaviside
step function:

H(x) =


0 if x < 0
1
2 if x = 0
1 if x > 0

(41)

Unfortunately, the use of the Heaviside step function in its exact form presented in
Equation (41) is quite impractical from the programming point of view because it requires
the use of conditional operators. For this reason, it was decided to use its analytical
approximation, more specifically, the logistic function [51]:

H(x) ≈
1

1 + exp(−2sx)
, (42)

where s is the sharpness parameter specifying how abrupt is the transition between two
values in the analytical approximation of the Heaviside step function. The impact of the s
parameter is shown in Figure 5.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
x/l

Th
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m
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m
et

er

s = 5
s = 10
s = 25
s = 50

Heavyside step function

Figure 5. Discontinuous distribution of thermal parameters modeled using an analytical approximation
of the Heaviside step function in the form of the logistic function for various values of s.

The derivative of the logistic function (Equation (42)) is as follows:

∂H
∂x
≈

2s exp(−2sx)

(1 + exp(−2sx))2. (43)

The graphical interpretation of the function (43) is a Gaussian-like (bell-like) curve
which has properties similar to the normal distribution curve; the higher the value of the s
parameter, the slimmer the bell-like function graph is, as in the normal distribution while
decreasing the value of the standard deviation. Figure 6 presents a graphic interpretation
of the function (43) together with the influence of the s parameter on it.
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Figure 6. Derivative of the logistic function for various values of s.

The selection of the sharpness parameter s generates some problems. At first glance,
it may seem that the higher its value, the higher the accuracy of the method because
of the discontinuities in the distributions of thermal parameters are reproduced more
accurately. This is true, however, the problem lies somewhere else—in the derivative of the
logistic function. As already mentioned, its graphical interpretation is the bell-like curve,
the consequence of which is that it tends to Dirac’s impulse when the sharpness parameter s
tends to infinity. This makes it impossible to increase the value of the s parameter arbitrarily
because, at a sufficiently high value, the curve will be so slender and reach such high values
that the solution obtained will be affected by large inaccuracies originating from the nature
of numerical calculations and the digital systems arithmetic. To answer the question of how
to choose the value of the s parameter, its impact on ∆AK, ∆FK, and ∆AF error measures
was examined. The numerical setup was as follows:

• p = 0.5;
• σ = 0;
• Thermal parameters distribution—discontinuous;
• Number of collocation points—80, 100, and 120;
• Boundary conditions type—Dirichlet & Dirichlet;
• Time step size—1 s;
• Number of time steps—10.

Figure 7 shows the discontinuous distribution of thermal parameters symbolically
that has been approximated. Figures 8–10 show the influence of the sharpness parameter
s on ∆AK, ∆FK, and ∆AF error measures for the number of collocation points equals to
80, 100, and 120, respectively. The value of the shape parameter was selected using the
condition algorithm.
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Figure 7. Discontinuous distribution of thermal parameters that has been approximated.
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Figure 8. The influence of the sharpness parameter s on ∆AK , ∆FK , and ∆AF error measures for 80
collocation points.
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Figure 9. The influence of the sharpness parameter s on the ∆AK , ∆FK , and ∆AF error measures for
100 collocation points.
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Figure 10. The influence of the sharpness parameter s on the ∆AK , ∆FK , and ∆AF error measures for
120 collocation points.

Figures 8–10 confirm the correctness of the above considerations regarding the selec-
tion of the sharpness parameter s—it can not be too small because the discontinuities are
smeared or too large because the derivatives reach tremendous values. It is worth noting
that the optimal value of the sharpness parameter is dependent on the number of colloca-
tion points, the denser the mesh, the higher the optimal value of the sharpness parameter
s—the location of the peak values indicates this in Figures 8–10. This is consistent with the
predictions, the denser the mesh, the more accurately the abrupt changes can be modeled
and, as a consequence, a larger value of sharpness parameter s can be used. Nevertheless,
it is difficult to indicate the clear rule for choosing this value.
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3.3. Influence of σ Coefficient

Since the Crank–Nicolson scheme was considered in this paper, an important question
arises: what should be the percentage shares of the explicit scheme and the implicit scheme
in the Crank–Nicolson scheme to obtain the highest accuracy? In other words, what should
be the value of the σ coefficient? To answer this question, the influence of the σ coefficient
on ∆AK, ∆FK, and ∆AF error measures was examined. The simulations were performed in
the range of 〈0, 0.6〉, for higher values, the simulation was unstable because the numerical
scheme becomes mostly explicit. The numerical setup was as follows:

• p = 0.5;
• thermal parameters distribution—harmonic;
• the number of collocation points n = 100;
• applied boundary conditions: Dirichlet on both boundaries;
• the size of the time step, ∆t = 0.5 s;
• the number of time steps—20.

The shape parameter was selected using the condition algorithm for each value of σ.
Figure 11 shows the influence of the σ coefficient on the ∆AK and ∆FK error measures.

0 0.1 0.2 0.3 0.4 0.5 0.610−2

10−1

100

101

102

σ

[%
]

∆AK
∆FK

Figure 11. The influence of σ coefficient on ∆AK , ∆FK error measures.

The results presented in Figure 11 lead to several interesting conclusions. The function
∆FK(σ) is monotonically increasing in the whole considered range, while the function
∆AK(σ) has a minimum. On this basis, the value σ = 0 is recommended. There are three
reasons for this:

• The measure ∆FK(σ) is more important because it describes the quality of the solution
in the transient state and not only at the last time step;

• The difference between ∆AK(0) and ∆AK(σMIN) = min(∆AK) is small while the differ-
ence between ∆FK(0) and ∆FK(σMIN) is significant;

• The value of σMIN depends on the numerical setup while σ = 0 does not.

3.4. The Algorithms for Finding the Good Value of the Shape Parameter

To examine the quality of the proposed algorithms, four test cases were simulated.
Table 1 shows their numerical setups. The length of the time steps was selected arbitrarily
in such a way as to show the effectiveness of the algorithms for different sizes of the time
step. The same approach was used for the p parameter. In all cases, σ = 0.

Figures 12–15 show a summary of good shape parameter values obtained with various
algorithms and error norms for simulations carried out with these shape parameter values.
Figures 16–19 show the graphs of the function L(ε) and the cost function with good
shape parameter values marked on them determined using the condition algorithm (εCA),
Fasshauer’s algorithm (εFA), and modified Fasshauer’s algorithm (εMFA).
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Table 1. Data of numerical examples.

Test Case 1 2 3 4

p 0.5 0.4 0.3 −0.5
Parameters distribution Discontinuous Harmonic Exponential Linear

Collocation points number 240 200 160 120
BC at left edge Robin Neumann Dirichlet Neumann

BC at right edge Robin Robin Robin Dirichlet
Time step size 0.1 s 0.5 s 1 s 2 s

ε ∆AK ∆FK

0

1

2

3

0.0799 0.0681 0.20070.0267

3.2078

2.5829

0.0584 0.2055 0.2043

[−
]

(f
or

ε)
/
[%

]
(f

or
∆

A
K

,∆
FK

)

CA
FA

MFA

Figure 12. Comparison of shape parameters and error measures obtained using different algorithms
for finding a good value of the shape parameter for test case 1, ∆AF = 0.0674%.
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0.0
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0.1054

0.2879

0.0842
0.1279
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0.0640.0901

0.6246

0.3086

[−
]

(f
or

ε)
/
[%

]
(f

or
∆
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K

,∆
FK

)
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FA

MFA

Figure 13. Comparison of shape parameters and error measures obtained using different algorithms
for finding a good value of the shape parameter for test case 2, ∆AF = 0.1469%.

ε ∆AK ∆FK

0.00
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0.0236 0.0136

0.1799

∞ ∞

0.1718

0.0987
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[−
]
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/
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]
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,∆
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)
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Figure 14. Comparison of shape parameters and error measures obtained using different algorithms
for finding a good value of the shape parameter for test case 3, ∆AF = 0.0082%. The value of ∞ means
that the given algorithm led to an ill-conditioned interpolation matrix making the simulation unstable.
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Figure 15. Comparison of shape parameters and error measures obtained using different algorithms
for finding a good value of the shape parameter for test case 4, ∆AF = 0.0224%. The value of ∞ means
that the given algorithm led to an ill-conditioned interpolation matrix making the simulation unstable.
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Figure 16. Graphs of the function L(ε) and the cost function for test case 1.

The data presented in Figures 12–19 lead to several conclusions. In this discussion,
the statement that the algorithm is accurate/precise should be understood that the al-
gorithm gives a shape parameter value that gives accurate/precise results from of the
error measures presented earlier. In turn, reliability should be understood as the ability
of the algorithm to give such a shape parameter value that will most likely not lead to an
ill-conditioned interpolation matrix. The most important conclusion is that the proposed
condition algorithm is both precise and reliable. In all considered test cases, the values
of error norms did not exceed 0.3% when using it. In some cases, the other algorithm
gave better results, but the differences were insignificant, for example, in test case 2, the re-
sults of which are shown in Figure 13. However, more important is reliability; in none
of the considered test cases, the shape parameter value was high enough to make the
interpolation matrix ill-conditioned, which indicates a high reliability of the algorithm.
This fact is a significant issue because for this class of problems, Fasshauer’s algorithm
did not provide reliability; in two cases, the obtained shape parameter value caused that
the interpolation matrix was ill-conditioned. It is worth noting that it is difficult to state
which numerical setup parameter has the most significant impact on the ill-condition of
the interpolation matrix; it is probably the effect of the combined parameters. It should be
emphasized once again that the condition algorithm is definitely more computationally
expensive than Fasshauer’s algorithm due to the fact that it requires repeated calculation
of the conditioning number, which in itself is a costly operation. As for the modified
Fasshauer algorithm, the quality of its results is somewhat between the previous two
algorithms. It is slightly more reliable than Fasshauer’s algorithm because only for test
case 4 it gave an ill-conditioned interpolation matrix. As for the values of error measures,
they were in all test cases larger than for the condition algorithm; however, they were
usually at a reasonable level not exceeding 0.63%. It is worth noting that both Fasshauer’s
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algorithm and modified Fasshauer’s algorithm work much better when the cost function
has an apparent minimum.
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Figure 17. Graphs of the function L(ε) and the cost function for test case 2.
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Figure 18. Graphs of the function L(ε) and the cost function for test case 3.
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Figure 19. Graphs of the function L(ε) and the cost function for test case 4.

4. Conclusions

The discussion carried out in the previous section allowed us to formulate the follow-
ing conclusions:

• The condition algorithm proposed in this work is a very reliable and precise algorithm
for choosing a good shape parameter value for the considered class of problems.
Particularly noteworthy is its ability to give shape parameter values that do not
cause the interpolation matrix to be ill-conditioned. It is worth mentioning that the
algorithm is more computationally expensive than classic algorithms such as the
Fasshauer algorithm.
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• The modified Fasshauer algorithm is an interesting alternative to the classic Fasshauer
algorithm. It gives slightly greater reliability than Fasshauer’s algorithm; however,
not as good as the condition algorithm. The accuracy of simulation results using it is
slightly worse than using Fasshauer’s algorithm and the condition algorithm.

Recommendations based on the preliminary results:

• The suggested value of σ for the considered class of problems due to the error measures
∆AK and ∆FK is 0;

• The selection of the optimal value of the sharpness parameter s is problematic. Based
on the performed study, it is not possible to formulate a general selection rule, but some
recommendations may be mentioned. The s value should be chosen so that the ∂H/∂x
does not reach a tremendous value. It is worth noting that the higher the number of
collocation points, the higher the optimal value of s.
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