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Abstract: In this paper, we propose a new method based on active infrared thermography (IRT)
applied to assess the state of 3D-printed structures. The technique utilized here—active IRT—assumes
the use of an external energy source to heat the tested material and to create a temperature difference
between undamaged and defective areas, and this temperature difference is possible to observe
with a thermal imaging camera. In the case of materials with a low value of thermal conductivity,
such as the acrylonitrile butadiene styrene (ABS) plastic printout tested in the presented work, the
obtained temperature differences are hardly measurable. Hence, the proposed novel IRT method is
complemented by a dedicated algorithm for signal analysis and a multi-label classifier based on a
deep convolutional neural network (DCNN). For the initial testing of the presented methodology, a
3D printout made in the shape of a cuboid was prepared. One type of defect was tested—surface
breaking holes of various depths and diameters that were produced artificially by inclusion in the
printout. As a result of examining the sample via the IRT method, a sequence of thermograms was
obtained, which enabled the examination of the temporal representation of temperature variation
over the examined region of the material. First, the obtained signals were analysed using a new
algorithm to enhance the contrast between the background and the defect areas in the 3D print. In the
second step, the DCNN was utilised to identify the chosen defect parameters. The experimental
results show the high effectiveness of the proposed hybrid signal analysis method to visualise the
inner structure of the sample and to determine the defect and size, including the depth and diameter.

Keywords: active thermography; deep learning; convolutional neural networks; 3D-Printed struc-
ture quality

1. Introduction

Three-dimensional (3D) printing, also known as additive manufacturing (AM) is
defined as the fabrication of a 3D object from a non-physical concept, usually layer by
layer. This approach was first described in Hull [1]. Currently, 3D printing has become
widely embraced for different industrial applications. In AM technology, there is a trade-
off between the high cost of the equipment and the quality, i.e., complex-shaped and
high-quality products can be fabricated, although they are usually costly and require
relatively longer production times [2]. There is a critical need to develop printable polymer
composites with high performances owing to the intrinsically limited mechanical properties
and functionalities of printed pure polymer parts.

Despite these problems, 3D printing has been broadly used for product design in
several industries, including, but not limited to, the medical (for building blood vessels or
low-cost prosthetic parts), architectural, and automotive industries. This vast utilisation is
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consequent to the numerous advantages of 3D printing in the fabrication of composites,
i.e., high precision, cost-effectiveness, and customised geometry manufacturing possibili-
ties [3,4].

In the last decade, there have been considerable efforts to evaluate the quality of mate-
rials produced using AM, and various techniques have been introduced. Non-destructive
testing (NDT) methods are one of the most important approaches. Notably, NDT methods
are employed to identify and characterise the surface and internal damage of a material
without any physical interactions, such as cutting or altering. In addition to these advan-
tages, NDT methods are designed to be a cost-effective means of system quality control [5,6].
Generally, NDT methods can be divided into contact and non-contact techniques.

Both approaches are utilised in specific applications for testing and evaluating a
variety of materials, including 3D prints [7–12]. The choice of the NDT method applied for
AM purposes depends on the type of filament used for printing, the inspection stage, and
its scope. Process control in AM is possible at all its stages—preparatory (examination of
the quality of the feedstock material), print stage (control of the printing process), and the
final evaluation of the finished product. Herein, we focus on quality control in the final
stage of 3D printing production.

Non-destructive analyses of finished AM products entail dimensional accuracy and
surface finish assessment, internal structure evaluation, and defect detection. Vision [13],
microscopy [14,15], and laser profilometry [16] are among the methods most frequently
used to assess the surface quality of printed products. The examination of the internal
structure of 3D prints, including the detection of subsurface defects, is conducted mainly
with the use of computed tomography [17–20] and ultrasounds [21–23]. Active infrared
thermography (IRT), as proposed herein, is relatively rarely used in AM; however, the
initial studies are promising [24,25].

Recently, the rapid development of IRT techniques has been observed. These methods
are relatively cheap and fast, allowing the examination of bulky batches of a given product
or large areas of the structure under the test, requiring neither any special preparation
of personnel nor the use of exceptional security sources [26]. Thermography enables the
observation of temperature distribution at the examined material surface using sensitive
equipment, such as a thermovision camera [27].

Notably, with this technique, the thermal image sequence can be recorded, thereby,
allowing the analysis of the temperature variation in the time domain [28]. Therefore, the
images and time-dependent signals recorded for each measuring point (image pixel) may
be used for further study. Furthermore, IRT techniques can be classified as passive and
active methods [29,30].

Here, the active approach is considered. In the active mode, the energy is delivered
to the examined system (in contrast to passive methods, which do not assume the use of
external energy sources), which has previously been in a thermal equilibrium state. The
needed temperature variance can be induced in the examined structure using various
devices, including conventional heaters (halogen or flash lamps, IR heaters), microwaves
generators, hot air, etc. [31]. As a consequence, the internal defects cause changes in the heat
transfer within the material, resulting in measurable differences in temperature between
sound and defected areas [27].

The key element influencing the effectiveness of the method is the need to create such
a temperature contrast in the tested element that will enable the registration of the material
anomaly. Popular filaments used in AM can be classified as good thermal insulators.
In the case of materials with a low value of thermal conductivity, such as the acrylonitrile
butadiene styrene (ABS) plastic printout tested in the presented work, the heat conduction
process is relatively slow, and the observed temperature differences between the healthy
areas and the defected ones are hardly measurable, especially in the case of damages, such
as very narrow defects or micro cracks [32].

Moreover the quality of signals obtained for these materials is generally very sensitive
to heating inhomogeneities, local changes in material density, and proximity to the material
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edges. Therefore, it is extremely important to define the limits of defect sizes that can be
detected and, further, to introduce algorithms for processing measurement data, enable
to extract even extremely fine anomalies observed in the temperature distribution at the
sample surface. To process the thermographic data obtained during the material quality
assessment, numerous techniques are applicable.

Various algorithms have been developed for different experimental techniques; there-
fore, their effectiveness critically depends on the excitation method used in active ther-
mography. The most frequently utilised image and signal processing procedures can be
generally divided into those that require a reference point or area and non-reference ones.
Among the reference-based contrast methods, which require the use of the temperature in
a sound area, the absolute, running, normal, and standard contrast enhancement can be
listed [27,33].

The selection of an undamaged region requires the operator to have a priori knowledge
of the tested material, which complicates the automation of the process. Undamaged area
selection techniques are also sensitive to heating heterogeneity and other disturbances
that often appear in the experimental IRT. Due to these problems, non-reference methods
have been developed, which do not require knowledge of the material and indication of
the undamaged area but, instead, implement a certain (automatic) procedure that enables
reference generation based on the given data set.

Among these methods, we can distinguish non-reference techniques for improving
the image contrast based on the analytical solution of the diffusion equation, such as
differentiated absolute contrast [34,35], and those based on its numerical solution, i.e.,
3D finite difference thermal contrast [36]. In addition, there are techniques based on the
statistical analysis of the tested signal, e.g., principal component thermography [28,37,38],
and those based on advanced approximation methods: thermographic signal reconstruction
(TSR) [39,40] and the gapped smoothing algorithm [41].

Most of the aforementioned methods have been developed for pulse thermography
(whereby energy is delivered to the system in the form of an ultra-short pulse, e.g., by
means of a flash lamp). Evidently, they are also rather effective in other experimental
regimes, but there is no doubt that there is a need to develop new, effective methods of
signal analysis that can be used for materials, especially those that are difficult to study,
whereby the heat transfer process is relatively slow and limited. The sample analysed in
this paper, printed using ABS filament, is a good example of such a material. Our study is
aimed to prove that, even in this case, the IRT can be considered as an effective method.

In addition to the task of enhancing the contrast, which can be used to locate defects
in the material and the initial assessment of their size, there is a need for highly accurate
decision-making algorithms for quantitative evaluation of the examined materials, includ-
ing their internal structure reconstruction. Therefore, new research methods dedicated to
machine learning techniques, such as K-nearest neighbours (based on finding the distances
between a query and all the exemplary data points, selecting the specified number of
points K closest to the query, and then votes for the most frequent label), decision trees
(graph-based classifier that labels input observations by splitting them at different levels
through a threshold mechanism), decision forest (ensemble of decision trees in order to
achieve less overfitting capabilities), different colour spaces, and the histogram of oriented
gradients (HOG—this technique counts occurrences of gradient orientation in localized
portions of an signal/image; used as a feature descriptor) [42,43], have been developed.

Many machine learning methods are based on feature extraction by specialists. Thus,
the effectiveness of classification or clustering algorithms largely depends on the quality
of the features (of the described phenomenon or characteristics) stored in the database,
making the extraction process critical. Following these expectations based on machine
learning techniques, the recent rapid development of complex multi-layered artificial
neural networks (ANNs) can be observed. In general, ANNs try to imitate the human
learning process to independently learn features. Thus, in these methods, there is no need
for human-based feature extraction. A branch of ANNs, convolutional neural networks
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(CNNs), uses the convolution function to predict the class of the input. This approach is
unique for image and video analyses.

These networks have proven their merits in different cases of computer vision tasks,
such as image classification [44], object detection or recognition [45], anomaly detection [46],
and video analysis [47]. Furthermore, CNNs have been applied in thermography and other
NDT techniques.

Promising defect detection results and quantitative evaluation based on CNNs were
recently reported for a variety of materials and methods of examination, including IRT in
carbon fibre reinforced polymer analyses [48,49], ground penetrating radar in asphalt pave-
ment examination [50], X-ray computed tomography for medical image evaluation [51],
visual methods for defect size recognition in steel elements [52], as well as rails [53], and
multi-sensor magnetic field measurements for steel defect evaluation [54].

Herein, we propose a 3D-printed structure (characterized by a low value of thermal
conductivity) evaluation scheme using active thermography with halogen lamp excitation
in a long pulse regime, and dedicated data processing algorithms. The aim of the work was
to conduct a procedure enabling an assessment of the possibility of effective extraction of
information about even small defects while maintaining short inspection times. Therefore,
two areas of using the obtained data should be distinguished in the presented work.

The first is related to the image processing procedure using the data acquired during
full testing period. It allows the enhancement of the contrast between the defect and sound
areas and verification of the location of defects in recorded images. The designed exper-
imental sequences of thermograms were first processed using the developed algorithm
based on the curve-fitting procedure applied to pixel-wise time domain temperature distri-
butions. Padé approximants [55] of logarithmic functions were used as a basis of the fitted
curve, and a cross-correlation procedure was used to obtain the final contrasted signals.
This step was utilised for high-accuracy defect localisation in the whole sample but was not
a component of final defect identification procedure. Nevertheless, the correct indication
of areas is important for database preparation and final evaluation of performance of the
proposed procedure.

The second area covered in this paper concerns the final deep CNN-based procedure
allowing efficient detection and identification of defect parameters based on the short-term
part of the whole acquisition period. In this step, the CNN undertakes three tasks: defect
detection (in terms of automatic distinction between the defect and sound areas), defect
diameter, and (separately) depth classification on a single recorded frame. In order to
maximize the efficiency, three deep convolutional networks, separate for each task, were
proposed, and supervised learning was utilised.

2. Experiment

In this study, active thermography with halogen lamp excitation was used to examine
the 3D-printed sample with a set of artificial defects. Halogen lamps allow for continuous
radiation heating of the sample surface, and thereafter, the heat is distributed within the
sample by conduction. The conduction rate is highly correlated with material properties
(such as the density, heat capacity, or thermal conductivity) and is strongly affected by
the defects present in the material. Depending on the experimental mode—reflection or
transmission—the heated or opposite side of the sample is observed using a sensitive
thermovision camera. Defects can be located and evaluated by analysing the time-varying
temperature distributions recorded during the experiments. Moreover, the flaw type might
be exhibited as a hot or cold spot in the observed distribution. The temperature contrast
between the defect and the surrounding sound area depends on the flaw properties.

The polymer materials used in AM are thermal insulators. Therefore, they can gen-
erally be characterised by the high values of heat capacity and low thermal conductivity.
Owing to this phenomenon, these materials should be heated in a long step in a continuous
manner to obtain a visible temperature contrast between the defect and non-defect areas.
Consequently, the halogen lamp or infrared heater appears to be the most effective source
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for active thermography in AM, especially when the task is to detect and evaluate the
internal defects of the material.

2.1. Experimental Setup and Utilised Sample

The utilised sample was prepared with an acrylonitrile butadiene styrene (ABS)
polymer (Table 1 presents its thermal properties [56]). As previously mentioned, this
material is considered to be a thermal insulator; therefore, its heating is a relatively longer
process. The printed sample was produced with 100% infill density (using parallel lines
pattern). The object is composed of 80 layers—layers 1 and 80 are 0.35 mm thick, whereas
internal layers—0.25 mm. The width of the outer tracks was set at 0.4mm, and the rest—
0.56 mm. The printing temperature was 195 degC.

Table 1. Thermal properties of acrylonitrile butadiene styrene (ABS).

Density Thermal Conductivity Specific Heat Capacity
(kg/m3) (W/(m·K)) (J/(kg·K))

900–1530 0.15–0.2 1500–1510

Figures 1 and 2 show the geometry of the sample. The sample was printed as an
80 × 65 × 20 mm slab with nine holes of different diameters (φ) (1 mm (Figure 2c), 4 mm
(Figure 2d), and 7 mm (Figure 2e)) and depths (D) (9, 13, and 18 mm). The holes might be
considered as print defects, as well as the planned structure of the manufactured part.

Such low diameter defects located within a thick, thermal insulating material can be
considered as extremely hard to detect using IRT. Nevertheless, it will be shown that the
IRT can be considered as a suitable method of 3D-print evaluation when it is supported
by advanced signal processing and appropriate decision-making algorithms. Our goal
was to evaluate the sample in terms of detecting and reconstructing the holes and their
geometrical properties.

Figure 1. CAD model of the sample.
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(a) (b)

(c) (d) (e)

Figure 2. Photos of both sides of the sample (a,b), close-up of the defects with different diameters
(mm): φ1 (c), φ4 (d), and φ7 (e).

The experimental setup consisted of a halogen lamp with adjustable power up to
1000 W and a FLIR A325 infrared camera with a close-up lens (Figure 3).

Figure 3. Scheme of the experimental setup; and DS: defect side, DFS: defect-free side.

2.2. Methodology of the Experiment

In this study, the transmission mode was used (a schematic illustration of the setup is
presented in Figure 3). The rear side (defect side—DS (Figure 2a)) of the sample was heated
continuously with halogen lamps operating at a power of 500 W, placed approximately
10 cm from the sample, and simultaneously observed using an infrared camera from the
opposite side (defect free side—DFS (Figure 2b)).

In this experiment, we decided to use the close-up lens, while significantly decreas-
ing the instantaneous field of view (defined as the angle subtended by the geometrical
projection of single detector element to the target surface)—IFOV (100 µm at a distance
of 0.07 m), at the cost of decreasing the field of view (determined by the angle of view
from the lens out to the scene)—FOV. Consequently, one can record the smaller parts of
the sample at high resolution. It is noteworthy that the experiment was repeated for each
defect separately. The duration of the heating (in the form of a long pulse) was 60 s.

Subsequently, the heating source was turned off, and the sample was observed for
300 s under natural (convective) cooling. For thermal insulators, the observable changes
in temperature are not rapid. Therefore, it was sufficient to record one thermogram per
second. As a result, for each defect, 361 thermograms (60 for heating and 301 for cooling)
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were ready for further processing. To establish the exact region where the defect may be
observed, tin foil markers, visible in Figure 2b, were used. These markers were used to
divide the whole sample area into small regions that could be observed with a camera
equipped with a macro lens.

3. Signal Enhancement Algorithm

In our study, the localisation of the defect is critical to correctly assign the description
of the defect-free region in the obtained thermograms and to prepare the correct database
of the images used as an input of the constructed neural network.

To localise the defect area, many image and data processing techniques can be utilised.
As mentioned earlier, the evaluated sample should be considered as a good thermal
insulator; as a consequence, the indication of material inhomogeneity is rather weak as
the process dynamics are low. Furthermore, a small defect size (φ = 1), inhomogeneous
sample thickness, near-edge defect localisation, and no uniform heating were important
factors hindering the detection of defects. Therefore, we, herein, present a new algorithm
that improves the visibility of defects based on curve fitting, which may be used in the
evaluation of difficult-to-assess materials.

The developed thermal contrast enhancement algorithm is based on analysing the
sequence of thermograms pixel-by-pixel to obtain the time–domain temperature curves.
It is important to note that, in general, a set of orthogonal logarithmic functions may be
used to properly fit the one-dimensional temperature evolution in time (this property
is used in the classic TSR method [57]). In most cases, the application of the following
polynomial provides excellent agreement with the experimental data:

ln(T(t)) =
N

∑
n=1

anln(t)n, (1)

where T(t) is the time evolution of the temperature, n denotes the order of the polynomial,
and an are the polynomial coefficients. The N value was adjusted experimentally to fit
the data. This approach was originally used for pulsed thermography; however, it was
established that it could also be used in other thermography regimes [40]. Therefore, the
goal is to use a set of orthogonal functions that fit the temperature curves for the pixels in
the sound area with the highest possible rate and have the lowest goodness of fit for the
pixels in the defect area.

As the long pulse heating was used, both the heating and cooling phases were used
for curve fitting. The idea was to replace the logarithmic functions with their Padé ap-
proximants, which were derived by expanding a function as a ratio of two power series of
orders n and m, as well as determining both the numerator and denominator coefficients.
Here, the third order logarithmic polynomial was replaced by three Padé approximants of
the form [55]:

ln(x) ≈ 2x − 2
x + 1

= PA1(x) (2)

ln(x)2 ≈ (x − 1)2

x
= PA2(x) (3)

ln(x)3 ≈ 2(x − 1)3

3x − 1
= PA3(x) (4)

This approach gives a better agreement with the sound area data (correlation coeffi-
cient R2 equal to 0.91) compared to the third degree logarithmic polynomial (R2 = 0.78), as
shown in Figure 4. Meanwhile, owing to the use of the Padé approximant, we obtain the
desired effect of a low correlation coefficient for data from the defect area (R2 = 0.55). The
curve mismatch is especially visible within the heating time, i.e., where the impact of the
defect on the shape of the function is the most significant.
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The correlation coefficient for fitting the third order polynomial is lower in the case
of a defect area (R2 = 0.27), but the shape of the curve does not reflect the shape of the
original function as much as the curve obtained using the Padé approximant (Figure 4a),
which results in poorer selectivity. Figure 4b shows a similar comparison of these two
approximation curves with the experimental data obtained for the selected pixel from the
area without a defect.

Again, we see a better fit of the Padé approximant curve to the experimental data. The
maps of the R2 coefficient for all the pixels are shown in Figure 4c,d. Despite the lower
values of the correlation coefficient in the defect area for the third degree logarithmic poly-
nomial, R2 in the sound area is significantly lower than in the case of the Padé approximant.
For our purpose, obtaining R2 ≈ 1 in the sound area was the most important goal.

(a) (b)

(c) (d)

Figure 4. The results of the curve-fitting approach obtained for exemplary defect (having φ of 4 mm
and D of 18 mm): comparison of the fitting curves obtained using orthogonal logarithmic functions
(red line) a Padé approximants (yellow line) for defect (a) and sound (b) areas; map of the correlation
coefficient value obtained for the orthogonal logarithmic functions fit (c) and Padé approximants (d).

Using the described approach, by providing the possible best fit for the sound area
and possible worst fit for the defect area simultaneously, the background temperature
distribution may be retrieved. Therefore, to obtain the visible defect, it should be sufficient
to subtract the fitted sequence from the original data. This operation is presented for an
exemplary thermogram in Figure 5. It is evident that, in the thermogram reconstructed
from the fitted data, the defect signature is not visible—Figure 5b (compared with the
original data (Figure 5a)).

The plot along the indicated in Figure 5a,b line, crossing the defect, shows the dif-
ference between the original and fitted data in the defect area (Figure 5c. It is important
to notice the good compatibility between functions in the sound region. For small and
deeper located defects, the obtained differences are small; therefore, their detection is
hindered owing to the low signal-to-noise ratio. Thus, the resulting differential sequence
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was integrated to amplify these small differences. The cumulative integral was used to
obtain the sequence of integrals corresponding to the sequence of differential images:

AI(tn) =
∫ tn

t0

(T(t)− Tfit(t))dt (5)

where T(t) is the original time–domain function of temperature and Tfit(t) is the fitted
function, while tn denotes the nth time step in the sequence.

The image sequence obtained in the process of fitting the approximated curve is, as
mentioned earlier, a reconstruction of the background temperature distribution, wherein
non-uniformity is associated with uneven heating, proximity of the edges, and differences
in material thickness. Therefore, the reconstructed sequence reproduces the background
and excludes the defect. Therefore, its analysis can also provide information on the flaw
location. It is natural that, in the curve-fitting process, we obtain the low-pass filtration of
the original data. Good results, isolating the defect and reducing background noise, can be
obtained by analysing the time derivatives of the approximated signal:

AD(t) =
dTfit(t)

dt
(6)

(a) (b)

(c)

Figure 5. The results of the defect visibility enhancement procedure for the exemplary thermogram
registered for defects having φ of 4 mm and D of 18 mm for t = 60 s: The original thermogram (a) and
corresponding 2D distribution of the curve-fitting procedure (b); (c) presentation of the original
and approximated 1D distribution along the lines depicted in (a,b)—the coloured area marks the
difference between the data in the defect zone. The dashed lines depicting the defect area correspond
to the real localization of defects in the examined sample.

The result of using the procedures described above, i.e., the sequences AI(tn) and
AD(tn) for exemplary experimental data (i.e., thermograms for defect φ 4 D 18), are shown
in Figure 6. In both sequences, the defect is visible. However, in the case of the se-
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quence AI(tn), the signal-to-noise ratio is low, and the flaw is visible to a fairly low degree
(Figure 6a).

In the case of the sequence AD(tn), the background is not completely levelled (Figure 6b).
The improvement of the result quality is possible here by applying a cross-correlation
procedure. This operation allows us to compare two time signals and to obtain a signal
indicating similarities between the input data. First, the sequences AI(tn) and AD(tn) were
normalised, and then the following operation was applied [58]:

ARes(x) = (AI × AD)(x) = ∑
t

AI(t)AD(x + t) (7)

The resulting sequence is presented in Figure 6c. To demonstrate the effectiveness
of this procedure, a comparison of the measured values on the line running through the
defect centre for selected images from all sequences is visualised. In Figure 6d, the results
for the sequences AI and AD are superimposed, and Figure 6e shows the result of the
cross-correlation application. The resulting curve evidently reveals the defect, and the
background temperature fluctuations are levelled.

(a) (b) (c)

(d) (e)

Figure 6. The results of the process of fitting the approximation curves obtained for the chosen defect
(φ of 4 mm and D of 18 mm): set of the resulting sequences for the defect: (a) AI (b), AD (c) ARes;
comparison of distribution of values along the line crossing the defect obtained for corresponding
images in a sequences of: (d) AI (red line), AD (black line), and (e) ARes.

The dashed lines depicting the defect area correspond to the real localization of defects
in the examined sample.

Figures 7–9 show the results for all the cases. Noticeably, for the smallest defects (φ1,
presented in Figure 7a–c) the defect visualisation algorithm was successful only in the case
of deepest flaw (φ 1 D18), which is visible in Figure 7c, thereby, showing the best result
from the ARes sequence. For the φ4 defects (presented in Figure 8a–c, the localisation of the
flaw was impossible only in the case of the shallowest defect (φ4 D9—Figure 8a).

For the φ7 defects ((presented in Figure 9a–c)), in all cases, the defect visualisation
was successful.

Figure 10 shows the results for the entire sample. A photo of the back of the sample
was overlaid on the top of a photo of its front to indicate the relative location of the defects
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using markers. The best results from the sequence ARes were selected for each defect. The
resulting signal amplitude distribution was plotted on the original image to show how the
result coincided with the actual size and location of the defect (Figure 10b).

Figure 7. The results of defect visualisation for defects φ1 and different D values: 1—raw thermogram
(captured after the heating phase t = 60 s), 2—chosen result from sequence AI, 3—chosen result from
sequence AD, and 4—chosen result from sequence ARes.

(a) φ1 D9

(b) φ1 D13

(c) φ1 D18

Figure 8. The results of defect visualisation for defects φ4 and different D values: 1—raw thermogram
(captured after the heating phase t = 60 s), 2—chosen result from sequence AI, 3—chosen result from
sequence AD, and 4—chosen result from sequence ARes.
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(a) φ1 D9

(b) φ1 D13

(c) φ1 D18

Figure 9. The results of defect visualisation for defects φ7 and different D values: 1—raw thermogram
(captured after the heating phase t = 60 s), 2—chosen result from sequence AI, 3—chosen result from
sequence AD, and 4—chosen result from sequence ARes.

(a)

φ1 D18 φ1 D13 φ1 D9

φ4 D18 φ4 D13 φ4 D9

φ7 D18 φ7 D13 φ7 D9

(b)

Figure 10. The results of the defect visualisation algorithm presented for the whole sample. (a)—the
overlaid photos of the front and back of the sample, showing the exact positions of the defects against
the position of corresponding markers. (b)—chosen best images from the ARes sequence overlaid on
the top of the original photo of the sample.

4. Material State Identification Process

The main idea of the paper was to conduct research enabling the assessment of the
possibility of effective extraction of information about even small defects while main-
taining short inspection times. Therefore, the aim was to develop an algorithm enabling
the recognition of heterogeneity in the examined object based on short-term vector rep-
resentations of the obtained images. As was described in previous sections, the process
of heat transformation in dielectric structures due to their low thermal conductivity is
relatively slow.

Therefore, the task of the developed solution based on deep convolutional networks
was to search for and recognize even small differences in images. In such an approach, it is
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not necessary to record the entire complete heating and cooling process and to conduct the
assessment, it is enough to acquire several image frames of the material under study.

In this section, we initially describe the preprocessing of the database for the neural
network. Thereafter, the system framework is presented in detail, and the concept of a
deep neural network and the architecture of the three designed networks are discussed.

4.1. Database Preprocessing

The first step of the identification process is database preparation, which contains
inputs to feed the deep neural networks. To prepare the set of source data, we used the
vectors of 361 original thermal images (acquired during the whole test period) registered
for each defect area. By assumption, each frame of the acquired infrared data vector can
contain some specific and complex, but partially implicit, information about the defect.
Therefore, all the images obtained during the registration of the heating and cooling phases
of the tested material were taken for analysis.

Next, for each defect, its location was indicated. The procedure of defect indication
was based on the algorithm of flaw visualisation described in detail in the previous section.
As mentioned earlier, in most cases, it was possible to locate the defect with fairly good
precision; it was, therefore, possible to extract the defect and sound areas from the original
images. Figure 11a shows an exemplary single frame of a thermographic image with the
defect location depicted by a red circle.

Upon detecting the flaw location, two areas were cropped from each frame of the
infrared images: one representing the defect-free part of the composite, i.e., the defect area
marked by a red rectangle and named as class “1”, and one of the sound area, which was
marked by a blue rectangle and named as class “0” (as shown in Figure 11b). We did not
limit the defect area to the actual defect location, and we selected a sound margin around
it. Next, to unify the frame sizes representing both areas in the database, all images were
resized (the image size was not considered an effective parameter of the classification).

Furthermore, the normalisation procedure to the [−1, 1] range was also carried out,
where −1 referred to the darkest pixel and 1 to the brightest one. Consequently, for each of
the nine artificial defects in the sample, two sub-vectors of 361 frames representing both
classes were obtained, which resulted in a total number of 6498 images in the database.
A schematic of the procedure is also presented in Figure 12. Additionally, considering the
presence of defects of different diameters and depths in the tested sample, two series of
subsets were defined within the part of the database related to class 1 (defect presence).
The first refers to three possible diameters (1, 4, and 7 mm), while the second indicates
three depths (9, 13, and 18 mm) of the observed defects. Consequently, this enabled the
achievement of 1083 images per each single case in each subset.

(a) (b)

Figure 11. Exemplary results of infrared inspection: (a) indication of a defect response, and (b) defi-
nition of defected and sound areas.
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Figure 12. The architecture of the designed system.

4.2. DCNN Based Multi-Label Classification of 3D-Printed Defects

Notably, DCNNs are a branch of classical CNNs with a series of one or more hidden
layers that are frequently applied to image processing. Such a deep multi-layered structure
is highly efficient and can even generalize very complex problems that they have been
trained to solve. The cost of obtaining high application performance is a wide base
of possible cases necessary to carry out the proper process of weight optimisation of
the ANN. Generally, this consists of three basic components that can be combined into
repeating longer sequences, i.e., the convolution, activation function, and subsampling
(pooling) layers.

Depending on the target application, there is often an additional fully connected layer
and final classification layer as well. The convolutional layers of a DCNN divide an input
image into smaller sections and convolve them using a filtering mask to define feature
maps, allowing the extraction of critical information. Next, the nonlinear transformation is
usually applied by an activation function, such as a hyperbolic tangent or rectified linear
unit (ReLu) function, to introduce nonlinearity into the CNN.

Further pooling layers are used, which pool out the most critical information provided
by convolutional layers through the implementation of local maximum or average opera-
tions. Next, the flattened layer reshapes the data from the two-dimensional feature matrix
to the vector, which can be further fed into a fully connected neural network classifier for
the final prediction.

In this study, three different architectures were used to enable implementation of
the multi-label classification process for the purpose of evaluating the state of the tested
material and identifying the occurrence of a defect, its diameter, and depth. Dividing
the identification problem into three dedicated structures for a separate task enables a
more complete use of the database and maximisation of the accuracy of the classification
process. A general diagram of the evaluation process is presented in Figure 12. Evidently,
the procedure is designed as a general black-box with cropped images as input and
detection/classification results as output. The first step is defect detection: if the image
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is categorised as non-defect, the process is stopped. Otherwise, it undergoes further
processing for diameter and depth classification.

The general structure of the utilised construction of a DCNN is presented in Figure 13.
This structure consists of subsets of convolutional, activation function, pooling layers, and
fully connected layers. The structure of the network depends on the number of classes, data
size, and features. Considering these characteristics, the structure of the three networks
varies partly. The detailed configurations of all three DCNNs are given in Tables 2 and 3.
For the first stage of our system, a deep neural network with two possible classes (defect
and non-defect states) was designed.

This network was named the defect detection deep convolutional neural network
(3D-CNN), which consisted of two convolution layers with 2D filters of 3 × 3 kernel size,
and the maximum operation was used for the pooling layer with a kernel size of 2 × 2.
In all the layers, except the last one, the ReLu-type activation function was used. This
function stresses the role of nonlinearity, which mostly affects the information content of
analysed problems. In the last layer, the sigmoid function was utilised, as this function can
be used for binary or multiple classification.

Additionally, the dropout layers were applied only during the training process. This
operation prevents neurons in the structure from being conditioned by the output of
a particular neuron in the previous layer, by cutting connections between neurons in
successive layers (ignoring neurons). Its role is to prevent overfitting of the neural network.
The rate parameter given in the tables above refers to the overall scale of connections being
deactivated during each iteration, where 1 means 100%.

Furthermore, the classification unit contains two DCNNs: one to establish the detected
defect diameter (diameter deep convolutional neural network (DID-CNN)) and one for
defect depth estimation (depth deep convolutional neural network (DED-CNN)). The
structural difference between 3D-CNN and DID-CNN is based on the filter size of the
sigmoid function, as the classification problem refers to three cases. Extracting the depth
features is more elaborate than the diameter ones. Hence, we only used two dropout layers
in the architecture of the DED-CNN during its training process.
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Figure 13. CNN sequence to classify thermal images

Table 2. Proposed networks for defect detection (3D-CNN) and diameter classification (DID-CNN)

Operation
Layer

Layer Name Filter Size Number of Fil-
ters

Number of
parameters to
learn

Input Image Input
Layer

Size= 224 × 224
× 3

— —

Convolutional
Layer

Convolution
2D

3 × 3 32 896

Convolutional
Layer

Convolution
2D

3 × 3 24 48408

Pooling Layer Maxpooling 2D 2 × 2 1 0
Dropout Dropout Rate= 0.25 1 0
Inner Layer Fully Con-

nected Layer
1 × 39960 1 20460032

Dropout Dropout Rate= 0.5 1 0
Inner Layer Fully Con-

nected Layer
1 × 512 1 1026

Dropout Dropout Rate= 0.5 1 0

Activation Sigmoid 2 (3D-CNN) — —3 (DID-CNN)

Figure 13. The CNN sequence to classify thermal images.
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Table 2. The proposed networks for defect detection (3D-CNN) and diameter classification (DID-CNN).

Operation Layer Layer Name Filter Size Number
of Filters

Number of Param-
eters to Learn

Input Image Input Layer Size = 224 × 224 × 3 — —
Convolutional Layer Convolution 2D 3 × 3 32 896
Convolutional Layer Convolution 2D 3 × 3 24 48,408
Pooling Layer Maxpooling 2D 2 × 2 1 0
Dropout Dropout Rate = 0.25 1 0
Inner Layer Fully Connected Layer 1 × 39,960 1 20,460,032
Dropout Dropout Rate = 0.5 1 0
Inner Layer Fully Connected Layer 1 × 512 1 1026
Dropout Dropout Rate = 0.5 1 0

Activation Sigmoid 2 (3D-CNN) — —3 (DID-CNN)

Table 3. The proposed networks for depth classification (DED-CNN).

Operation Layer Layer Name Filter Size Number
of Filters

Number of Param-
eters to Learn

Input Image Input Layer Size = 224 × 224 × 3 — —
Convolutional Layer Convolution 2D 3 × 3 32 896
Convolutional Layer Convolution 2D 3 × 3 24 48,408
Pooling Layer Maxpooling 2D 2 × 2 1 0
Dropout Dropout Rate = 0.25 1 0
Inner Layer Fully Connected Layer 1 × 39,960 1 20,460,032
Dropout Dropout Rate = 0.5 1 0
Activation Sigmoid 3 — —

5. Results of the Defect Evaluation and Performance Assessment

In this research, we applied codes on Windows 10, and the programming language was
Python, Version 3.7. on the Anaconda platform. We used TensorFlow [59] and Keras [60]
as our machine learning libraries. Keras is a deep learning API written in Python, running
on top of the machine learning platform—TensorFlow. In the designed networks (3D-
CNN, DID-CNN, and DED-CNN), 60%, 16%, and 24% of the dataset images were used for
training, validation, and testing, respectively. We selected a number of test data larger than
the validation data for two main reasons.

First, to have a valid and reliable evaluation of unseen data performance. Second,
according to dataset size and features, 16% of the data is adequate for the network to
modify its weight to reach an acceptable accuracy, precision, and recall. In Table 4, the
total number of images in each category for all networks is shown. In the process of the
neural network structure optimization, a stochastic gradient decent, a iterative method
with suitable smoothness properties basing on gradient estimation on randomly selected
subsets of data, was utilized [61].

In the procedure, a cross entropy was applied as a loss function. One of the challenges
in the optimization process is the adjustment of the learning rate, a parameter that is
responsible for definition of the response to the estimated error rate during the update of
the model’s weights and affecting the overall convergence. The underestimated learning
rate can lead to relatively slow convergence rate and, consequently, to a significant increase
in the training time.

At the same time, the overestimated learning rate may result in significant fluctuations
of the convergence (too wide update steps). Based on preliminary tests, for this study, the
learning rate of 0.001 was chosen, which allowed avoiding fluctuations and having logical
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convergence. Similarly, the number of training epochs was chosen experimentally and set
to be equal 50 for all three networks.

Table 4. The number of training, validation and test images in the presented networks.

Network Total number Training Validation Test

3D-CNN 361 × 9 × 2 = 6498 3898 1040 1560
DID-CNN and DED-CNN 361 × 9 = 3249 1949 520 780

Performance Evaluation

To verify the trained DCNN structures, the classification was run over the testing set.
The confusion matrices of all three networks are presented in Tables 5 and 6. Based on
the obtained results, very high levels of correct classification by individual networks were
found, which proves the significant potential of the approach. As a result of the obtained
results, it is possible to define a number of parameters supporting the assessment process.
Furthermore, to evaluate the performance and robustness of the detection and classification
networks, the following parameters were considered:

• True Positive (TP): expresses all the positive cases that were correctly classified as a
positive class in binary classification.

• False Positive (FP): expresses all the non-positive cases that were incorrectly classified
as a positive class in binary classification.

• True Negative (TN): expresses all the negative cases that were correctly classified as a
negative class in binary classification.

• False Negative (FN): expresses all the non-negative cases that were incorrectly classi-
fied as a negative class in binary classification.

• Accuracy: refers to the correctly classified cases among all the examined cases; the
accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: refers to the proportion of TP to all cases that the network classified as the
positive class; the precision is defined as:

Precision =
TP

TP + FP

• Recall: refers to the proportion of TP to all positive cases; the recall is defined as:

Recall =
TP

TP + FN

• Area Under Curve (AUC): measures the area underneath a plot with two parameters:
the TP rate (as vertical coordinate) and FP rate (as horizontal coordinate), and provides
an aggregate measure of performance across all possible classification thresholds.
Since the TP and FP rates ranges are between 0 and 1, AUC value is also in the
same range and reports the probability that the network correctly classified its input.
AUC = 1 (or 100%) means that, with 100% probability, the network will classify the
input as the correct class.

In Table 7, the accuracy and the AUC for all proposed networks are shown. Accuracies
of 99.42% for the validation set and 99.20% for the test set were reached. This negligible
difference between the validation and test shows that the network accurately classified
unseen data. In DID-CNN, the accuracies for the validation and test were 99.82% and
98.97%, respectively. For the third network, these numbers were 99.80% and 99.41%.
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In the case of the AUC for 3D-CNN, we obtained 99.6% for validation and 99.3% for
test data. The AUC values for DID-CNN and DED-CNN were 99.8% and 99.7% for the
validation and test data, respectively. The precision and recall of the 3D-CNN are reported
in Table 8. The 3D-CNN reached 91.32% for the recall and 96.71% in terms of precision for
the validation data, and 91.48% for recall and 96.35% for precision in the test dataset. The
results show that all the proposed networks were reliable not only in terms of accuracy but
also based on precision and recall.

Table 5. Confusion matrix for DID-CNN.

Validation Set Predicted 1 mm Predicted 4 mm Predicted 7 mm

Actual 1 mm 165 1 5
Actual 4 mm 0 165 0
Actual 7 mm 0 0 184

Test Set Predicted 1 mm Predicted 4 mm Predicted 7 mm

Actual 1 mm 256 4 12
Actual 4 mm 0 255 0
Actual 7 mm 4 0 249

Table 6. Confusion matrix for DED-CNN.

Validation Set Predicted 9 mm Predicted 13 mm Predicted 18 mm

Actual 9 mm 261 0 2
Actual 13 mm 0 269 0
Actual 18 mm 0 0 248

Test Set Predicted 9 mm Predicted 13 mm Predicted 18 mm

Actual 9 mm 373 0 1
Actual 13 mm 0 381 0
Actual 18 mm 0 0 415

Concerning the performance evaluation results, an additional test was performed.
Additive noise in thermal images is quite prevalent, and one of the most critical challenges
of the network is to classify an image when it contains noise. Hence, we evaluated the
network performance using images with added noise. The 3D-CNN was trained with a
lack of noise images, and then we added noise to the test data and predicted the test data
class. Gaussian noise and salt-and-pepper noise were selected as the most practical noise
types in thermal images.

In Figure 14, we report the accuracy changes while the characteristics of Gaussian and
salt-and-pepper noises change. In Figure 14a, the results of the mean accuracy changes can
be observed as the variance size is changed. In Figure 14b, the influence of salt-and-pepper
noise is reported. The proportion of salt to pepper is 1, and the proportion of noise to pixels
is the variable, named density. It can be inferred that the network is persistent against
noise. As evident, the 3D-CNN is more vulnerable in the case of salt-and-pepper noise
than with Gaussian.

Table 7. The accuracy and AUC of the three proposed networks.

Network Validation Accu-
racy (%)

Test Accuracy
(%)

Validation AUC
(%) Test AUC (%)

3D-CNN 99.42 99.20 99.6 99.3
DID-CNN 99.82 98.97 99.8 99.7
DED-CNN 99.80 99.41 99.8 99.7
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Table 8. The precision and recall of 3D-CNN.

Label TP FP TN FN Precision Recall

Validation 442 15 425 42 96.71% 91.32%
Test 634 24 670 59 96.35% 91.48%

(a) Gaussian noise, mean of noise = 0 (b) Salt-and-pepper noise

Figure 14. 3D-CNN accuracy variation in the noise-added test data.

6. Conclusions

Defect detection plays a vital role with respect to product control in the 3D printing
industry, and is one of the key elements of the final print evaluation. Herein, we proposed a
new scheme for defect detection and its chosen parameter classification in ABS 3D printing.
The experimental results presented in this study show that active IRT is an adequate tool
for evaluating the inner flaws in materials commonly used in AM, and it is envisaged that
this method will become one of the techniques commonly used in the non-destructive
evaluation of printed materials on an industrial scale.

The main idea of the paper was to conduct research enabling the assessment of the
possibility of effective extraction of information about even small defects while maintaining
short inspection times. The observation of relatively large areas of the examined object
at one time speeds up the inspection but results in a lack of sensitivity to small defects
occurring in the examined structure. On the other hand, the use of optical focusing systems
(a macro system) allows increasing the local sensitivity but, at the same time, increases the
number of required inspections (smaller area of single inspections).

Therefore, the aim was to propose the whole testing procedure enabling both the
resolution enhancing macro-lens based data recording and recognition of heterogeneity
in the examined object using a short-term vector representations of the obtained images
as well. For this purpose, two areas of data processing were presented in this paper. First,
a new algorithm of contrast enhancement, based on the curve-fitting and cross-correlation
procedure, was presented. The obtained results are promising, and this tool might be useful
in the process of analysing experimental data that are characterised by high distortions,
which are typically obtained as a result of the thermographic examination of materials with
low thermal conductivity.

The proposed signal processing technique is a non-reference method, which increases
its versatility and ease of application for various types of experimental data. Contrast
enhancement was the first step of the presented study. In the second step, the goal was to
evaluate the sample quantitatively, thereby, allowing 3D reconstruction of the examined
material. Three separate CNN networks were designed and trained to differentiate between
defect and sound areas, as well as to classify the diameters and depths of the detected flaws
using only single thermographic image frames of the material under study.

The analysis was based on primary assumptions: the shape and known a priori classes
of the defect dimensions. The designed networks were applied to experimental data, and
their high accuracy was proven. Moreover, the final performance evaluation procedure,
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using standard measures, was conducted, indicating over 90% accuracy, precision, and
recall for all cases. The last analysis demonstrated the proposed network’s significant
immunity to added noise.

The obtained results confirm the possibility of a more effective implementation of the
3D printout state evaluation algorithm on the basis of even short-term inspections (possible
for even several frames of thermographic images). The applied deep convolutional network
structures confirmed the high potential for detecting even relatively small differences in
the registered thermograms. We stress that it is possible to further develop the proposed
inspection procedure and extend the scope of the assessment to the identification of
different kinds of flaws as well—for example, internal defects.

The thermal signatures of internal defects are significantly different from those ob-
tained for holes. Due to the transmission technique used, the holes were visible on the
thermogram as warmer areas, and the internal defects (which are simply an air inclusion
in the material) should be visible as cooler areas, as these provide additional insulation for
the free flow of heat inside the tested object. Therefore, the difference in thermal signatures
will not only allow the detection of the defect using an appropriate neural network but
also the classification, i.e., distinguishing the hole from the hidden defect and, thus, the
quantitative characterization of the tested object.

Through consideration of the regression problem instead of the classification one
in the deep neural network structure, the identification procedure can be extended to
defects of any sizes—not only referring to those well defined in the analysed database.
Additionally, in order to develop a procedure for an indication of the exact location of
defects and to increase the resolution of their localization, we plan to study the possibility
of using the time vector representation of temperature distributions at individual points in
the studied area as an neural network input. The obtained results will be presented in the
future publications.
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