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Abstract: We studied the morphology, structure, and magnetic properties of Fe nanowires that were
electrodeposited as a function of the electrolyte temperature. The nucleation mechanism followed
instantaneous growth. At low temperatures, we observed an increase of the total charge reduced
into the templates, thus suggesting a significant increase in the degree of pore filling. Scanning elec-
tron microscopy images revealed smooth nanowires without any characteristic features that would
differentiate their morphology as a function of the electrolyte temperature. X-ray photoelectron
spectroscopy studies indicated the presence of a polycarbonate coating that covered the nanowires
and protected them against oxidation. The X-ray diffraction measurements showed peaks coming
from the polycrystalline Fe bcc structure without any traces of the oxide phases. The crystallite
size decreased with an increasing electrolyte temperature. The transmission electron microscopy
measurements proved the fine-crystalline structure and revealed elongated crystallite shapes with a
columnar arrangement along the nanowire. Mössbauer studies indicated a deviation in the magneti-
zation vector from the normal direction, which agrees with the SQUID measurements. An increase in
the electrolyte temperature caused a rise in the out of the membrane plane coercivity. The studies
showed the oxidation resistance of the Fe nanowires deposited at elevated electrolyte temperatures.

Keywords: Fe nanowires; template-assisted electrodeposition; magnetic properties; polycarbon-
ate membranes

1. Introduction

Materials of a size that is comparable to the electron mean free path, i.e., with limited di-
mensions, have attracted much attention from the technological, engineering, and scientific
points of view in recent years. One-dimensional nanostructures such as nanowires, because
of their remarkable size- and shape-dependent, magnetic, optical, and electrical properties,
are especially attractive materials that could have a wide range of potential applications in
different fields such as biomedicine [1–3], spintronics [4,5], environmental protection [6,7],
and consumer electronics [8–13]. Because of their large aspect ratio, defined as the ratio be-
tween the nanowire length and the diameter (L/φ), nanowires exhibit magnetic anisotropy,
which makes them better candidates for MRI (magnetic resonance imaging) contrast agents,
electrochemical water splitting, hyperthermia, or targeted drug delivery [3,14–20] than
their spherical nanoparticle counterparts. The nanowire matrix, which has a surface-to-
volume ratio, enables the development of corrosion, flow, acoustic, and pressure sensors
that have a significant efficiency enhancement [21–26]. When nanowires are embedded in
polycarbonate membranes, they can serve as flexible permanent magnets [26–30], but when
they are released from the template, they may act as responsive magnetic sensors [31,32].
The arrays of non-interactive magnetic nanowires that have a perpendicular anisotropy are
being studied for use as materials for high-density magnetic recording media of several
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dozen terabits per square inch in the near future [33–35]. The variety of parameters that
influence nanowire morphology, structure, and magnetic properties makes them attrac-
tive materials for fundamental studies. Developments in understanding the elementary
principles of nanowire growth mechanisms enable researchers to precisely control their
properties, thus creating characteristics that are superior to those of planar structures [36].

There are many different methods for producing metallic nanowires, including a
broad spectrum of lithography techniques [37,38], direct evaporation [39,40] or simple and
low-cost electrochemical deposition [41,42]. This last technique is becoming an increasingly
attractive method of nanostructure synthesis. Its versatility and suitability for large-scale
production because of its well-defined shape and crystalline characteristics are greatly
needed for nanowire applications.

The template-assisted method combined with the electrochemical technique is a gen-
eral approach for preparing the desired material into a matrix of cylindrical pores. The
porous membranes enable the production nanowires with a monodispersed diameter and
a readily controlled length during unidirectional growth. The most popular alumina tem-
plates, which have hexagonally arranged high-density porous structures, are characterized
by a small distance between pores, which together with their regular ordering, results in a
strong dipolar interaction between the nanowires [20,43–48]. The small interpore distance
is also the main cause of difficulties in contacting a single wire for use in GMR spin-valve
devices [5] or studies of their mechanical properties such as strength measurements. In
contrast, the track-etched polycarbonate membranes, which have a low pore density, enable
the creation of quasi-separated nanowires with low or neglected dipolar interaction [41,49]
and easy top-contacted wires for electrical and strength measurements [5]. Moreover, poly-
carbonate membranes are available in a wide range of thicknesses, pore sizes, and densities
as low as a single pore per membrane. Additionally, nanowires that are embedded in these
membranes are promising materials for flexible electronic applications.

Because of their biocompatibility, neutrality, and easy intracellular digestion [50],
unlike Ni- and Co-containing nanostructures, iron nanowires are attractive materials
for chemical and biomedical applications [17]. The crucial problem during nanowire
deposition is the pore filling efficiency, which can be controlled by chemical agents, the
electrodeposition rate, or other electrodeposition parameters such as pH, temperature,
electrolyte composition, values of cathodic potential, or current [51–53]. In the presence
of air, iron nanowires naturally develop an oxide layer on their surface, which makes
them biocompatible and biodegradable, but that results in limitations in their sensor-
like applications; thus, preventing the uncontrollable oxidation of nanowires is another
challenge in the production of Fe nanowires [26].

Here, we report on the fabrication of iron nanowires via template-assisted electrode-
position in polycarbonate membranes. The growth mechanism of the nanowires and their
morphology, structure, magnetic properties, and pore-filling ratio were studied as a func-
tion of the electrolyte temperature. Furthermore, the Fe nanowire oxidation resistance was
also analyzed to determine the chemical stability of Fe nanowires deposited at an elevated
electrolyte temperature.

2. Materials and Methods

Iron nanowires were deposited in polycarbonate membranes that were purchased from
the Sterlitech Corporation (Kent, Ohio, USA). The electrodeposition process was performed
in an electrochemical cell (Figure 1) in a three-electrode system with a platinum sheet
and Ag/AgCl, which served as the counter (3) and reference electrodes (2), respectively.
The working electrode (1) was prepared before the nanowires were grown by sputtering
a thin copper contact layer (4) on one side of the membranes (5). The electrodeposition
process was controlled by the AUTOLAB PGSTAT302N potentiostat (Metrohm Autolab B.V.,
Utrecht, The Netherlands) operating in the potentiostatic mode at the cathodic potential
of −1.1 V vs. Ag/AgCl. The membranes that were used in the experiment showed
inhomogeneous pore distribution [41] with a pore diameter of 100 nm, a pore density
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equal to 4 × 108 pors/cm2, a porosity of 3.1%, and a nominal membrane thickness of 6 µm.
The chemicals, which were of analytical grade at concentrations of 0.4 M FeSO4 × 7H2O,
0.7M H3BO3, and 1 g/L C6H8O6 and deionized water (resistivity >18 M·Ω·cm) from the
Millipore system, were used to prepare the electrolytes. The pH was adjusted to 2.7 using
2M NaOH. The electrodeposition process was performed at electrolyte temperatures that
ranged from 15 ◦C to 40 ◦C.
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(MPMS, Quantum Design, San Diego, California, USA) by applying an external field of 
up to 4 T in the plane and out of the plane of the membrane. The diamagnetic signal of 
the sample holder and the polycarbonate membrane was subtracted from the hysteresis 
loops. In addition, the oxidation state of the Fe nanowires was analyzed using X-ray pho-
toelectron spectroscopy (XPS) and Mössbauer spectroscopy. The XPS measurements were 
performed in a vacuum system workshop (with a residual pressure below 5 × 10−8 mbar 
during analyses), operating at Mg Kα radiation of energy 1253.6 eV. A concentric hemi-
spherical electron analyzer worked in a fixed analyzer transmission mode with a constant 
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and the direction of the γ-ray propagation was perpendicular to the sample surface. The 

Figure 1. The electrochemical cell with a three-electrode system: 1—working electrode (cathode),
2—reference electrode, 3—counter electrode, 4—copper contact layer, 5—membrane.

The pore-filling and morphology of the nanowires were observed using a scanning
electron microscope (SEM) (Tescan Vega 3, Tescan Orsay Holding, a.s., Brno, Chech Re-
public) before and after a membrane dissolution in dichloromethane. The structure of
the nanowires embedded in the polycarbonate membrane was investigated by means of
X-ray diffraction (XRD) using a X’Pert MRD Pro diffractometer (Malvern Panalytical Ltd,
Malvern, UK) with Cu Kα radiation operating at 40 kV and 30 mA in θ–2θ geometry. Ad-
ditionally, the microstructure of the nanowires was examined with a transmission electron
microscope (TEM) using the FEI Tecnai G2 20 X-TWIN electron microscope (FEI, Hillsboro,
Oregon, USA) that was equipped with a LaB6 emission source. The indexing of the electron
diffraction patterns was performed with the use of JEMS software (version 4.4131U2016)
by P. Stadelmann (JEMS-SWISS, Jongny, Switzerland).

The magnetic properties of as-prepared nanowires were measured at room tempera-
ture using a superconducting quantum interference device (SQUID) magnetometer (MPMS,
Quantum Design, San Diego, California, USA) by applying an external field of up to 4 T
in the plane and out of the plane of the membrane. The diamagnetic signal of the sample
holder and the polycarbonate membrane was subtracted from the hysteresis loops. In
addition, the oxidation state of the Fe nanowires was analyzed using X-ray photoelectron
spectroscopy (XPS) and Mössbauer spectroscopy. The XPS measurements were performed
in a vacuum system workshop (with a residual pressure below 5 × 10−8 mbar during
analyses), operating at Mg Kα radiation of energy 1253.6 eV. A concentric hemispherical
electron analyzer worked in a fixed analyzer transmission mode with a constant pass
energy of electrons set at 22.5 eV. The binding energy scale was calibrated by fixing the
position of the dominant C1s peak of the adventitious carbon to 284.6 eV. The Mössbauer
studies were conducted in transmission geometry using a 100 mCi 57Co(Rh) source and
a He–10% CH4 gas flow counter. The measurements were taken at room temperature,
and the direction of the γ-ray propagation was perpendicular to the sample surface. The
Mössbauer spectra were fitted as the sum of the Lorentzian sites using Recoil software, ver.
1.03a (D. G. Rancourt, Ottawa, ON, Canada).
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3. Results and Discussion

The experimental conditions of the electrochemical process, such as the current den-
sity, potential, electrolyte composition, and temperature, had significant effects on the
morphology and properties of electrodeposited materials. They are, therefore, crucial
points in order to understand and control these properties [54].

3.1. Electrochemical Analysis

We followed the deposition process by monitoring the cathodic current (Figure 2)
and electrical charge transients (Figure 3) that were registered at different electrolyte
temperatures as a function of time. In the current transient, which was measured during
the pore-filling process, four different zones could be distinguished. When the potential
was applied, the high current values (with a sharp decrease) at the very beginning were
linked to a large number of ions in the close vicinity of the cathode surface before double
layer formation. After that, there was a sharp increase in the current (first zone) associated
with the charging of the electrical double layer. A reduction of the Fe2+ located directly
at the cathode surface then occurred, which was connected to the decrease of the current.
A concentration gradient that resulted in a flux of ions toward the cathode is responsible
for the formation of the diffusion layer. In the second zone, in which the current nearly
remained constant, electrodeposition into the pores took place. When the nanowires
reached the membrane surface, there was an increase in the current (third zone), and
the caps started to grow on the polycarbonate [41,52,55]. The further continuation of the
electrodeposition process could result in the expansion of the caps on the membrane surface
and the creation of the continuous layer (fourth zone), which would be indicated by a
nearly constant current value. This last zone could not be seen because the deposition
process was stopped when an increase in the current provided information regarding the
filling of the pores and the beginning of the formation of the over-deposited caps (see
Section 3.2.)
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Figure 3. The electrical charge that was reduced into the porous membranes versus the time measured
during the deposition of the Fe nanowires that were prepared at different electrolyte temperatures.
The inset shows the growth rate as a function of the electrolyte temperature.

A decrease in the electrolyte temperature significantly extended the electrodeposition
time and caused a reduction of the cathodic current (in the absolute value). At higher
temperatures, the conductivity of the solution increased due to an increasing ion activity,
which resulted in a lower required overpotential, which, at the same value of the applied
potential, caused an increase of the cathodic current. A higher overvoltage can favor the
side reaction as hydrogen evolution [55].

The electrolyte temperature affects the diffusion of metal ions and, together with
migration, which is controlled by the overpotential, results in a variation of the electrode-
position rate [42]. The growth rate that was calculated as a function of the electrolyte
temperature is shown in the inset in Figure 3.

At the same time, the electrical charge, which was reduced into the pores, was also
registered (Figure 3). The total charge measured during the processes conducted at the
medium temperatures (20–35 ◦C) had nearly the same values, while at the extreme tem-
peratures, it differed significantly (0.52 C). A high value of the reduced charge during a
slow electrodeposition process might be caused by an increased pore filling degree and a
less porous morphology of nanowires due to a lower hydrogen evolution [51]. Moreover,
by lowering the electrolyte temperature, in addition to an enhancement of the pore-filling
degree, a large-scale uniformity in length can simultaneously be achieved [52]. On the
other hand, a high temperature promotes hydrogen evolution, which inhibits the metal
ion reduction and results in an inhomogeneous deposition [56–59]. A decrease of the
pore-filling degree and a strong hydrogen bubble evolution that blocked the pores when
the electrolyte temperature was increased were also reported by Azevedo et al. [51].

During electrodeposition, two processes occur: nucleation, which is followed by the
formation of new grains, and the growth of existing nuclei. Because the nucleation process
is dependent on the deposition temperature [52], it would be worth analyzing.

As was mentioned above, the sharp peaks (indicated by arrows in Figure 2) that
correspond to double-layer charging were followed by a decrease in the current due to
the diffusion-limited process. At this electrodeposition step, a linear diffusion inside the
pores is achieved [60]. Moreover, the mass transport within the nanopores is limited by
the diffusion along the whole channel length [52,61]. A diffusion-controlled process is
also observed during the spherical diffusion in the fourth stage of electrodeposition, in
which the overdeposition occurs. This conclusion is based on the observation that at the
fourth step (creation of the continuous layer on the membrane surface), the current merely
doubled, although the surface area increased several dozen times [41,62].

These peaks (Figure 2), which were converted to the dimensionless plot that is shown
in the inset as the relationship between (i/imax)2 and (t/tmax), enabled the dominant nu-
cleation mechanism to be identified. The values of the imax and tmax are the maximal
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cathodic current and the time at which it was reached, respectively. The nucleation process
is characterized by the frequency of nuclei appearance and the corresponding rate at which
active sites are depleted. When the nuclei are formed at a very early stage, the nucleation
is classified as instantaneous. In contrast, when the nuclei are formed continuously during
crystallite growth, the nucleation mechanism is classified as progressive [53,63,64]. In the
case of instantaneous nucleation, the relationship between (i/imax)2 and (t/tmax) follows the
equation [65,66]:

(i/imax)
2 = 1.9542(t/tmax)

−1(1 − exp[−1.2564 (t/tmax)])
2 (1)

and is graphically presented as a dashed curve in the inset in Figure 1. The progressive
nucleation according to Equation (2) is shown as a dotted line [65,66].

(i/imax)
2 = 1.2254(t/tmax)

−1
(

1 − exp[−2.3367(t/tmax)
2
]
)2 (2)

It is evident that the curves that were obtained for the nanowires deposited at 20 ◦C
and 35 ◦C follow the response that is predicted for instantaneous nucleation (the nucleation
is fast and occurs on a relatively small number of active sites that are exhausted at an early
stage of the process [65]) precisely, although other experimental data also agreed quite well.
This type of nucleation process was expected because of the limitations that were connected
with the small open area of the polycarbonate membranes and the long nanochannels,
which might result in a small number of active sites. From the kinetic analysis, it was
also possible to obtain information concerning the diffusion coefficient (D) according to
Equation (3) [65,66]:

imax
2tmax = 0.1629(zFc)2D (3)

where: z—the number of exchanged electrons, F—the Faraday constant, c—the ion concentration.
The values of the diffusion coefficient calculated based on Equation (3) were presented

as a function of the electrolyte temperature in Figure 4 together with the line taken from
the Arrhenius equation, which describes the temperature dependence of the diffusion
coefficient (D = D0 exp(−EA/RT). This equation enables the determination of the activa-
tion energy and pre-exponential factor (diffusion coefficient at an infinite temperature).
The assumed surface in the current density value corresponded to the open area of the
membrane and did not take into account the difference in the pore-filling degree.
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Figure 4. The temperature dependence of the calculated diffusion coefficient with the activation
energy and pre-exponential factor values that were estimated from the Arrhenius equation.

An increase in the electrolyte temperature resulted in a rise in the diffusion coefficient
in accordance with the Arrhenius equation (Figure 4). The activation energy is close to the
value for iron oxidation process in a sulfuric acid solution [67,68] or ferrous diffusion in
chloride [69]. The obtained value is also close to the activation energy of silver diffusion in
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ferric sulfate [70] and ferric diffusion in various sulfate solutions [71]. This value is typical
of a reaction whose kinetics are diffusion-controlled processes [70]. A relatively small value
of the activation energy increases the diffusion coefficient because less thermal energy is
required to overcome the smaller activation energy barrier [72].

The diffusion coefficient values were higher than the value that was calculated for the
Fe2+ ions in water at 25 ◦C, which was equal to 7.19 × 10−6 cm2/s [73], and the diffusion
coefficient that was measured for ferrous sulfate using a different gel type that varied
between 1.9 × 10−7 and 6.1 × 10−6 cm2/s [74]. The diffusion coefficient values were
one order larger than the values that were estimated using the Einstein–Smoluchowski
equation [75] or that were calculated in chloride at a high temperature [69]. On the other
hand, the values were very close to the diffusion coefficient that was obtained by Pruna et al.
for zinc oxide nanowires that had been electrodeposited in polycarbonate membranes [76]
and by Manzano [60] in a diluted electrolyte in alumina membranes. These high values
could be connected to hydrogen evolution, which showed a larger diffusion coefficient
than Fe ions [75]. The decreased diffusion coefficient and the ion concentration gradient
due to the lower deposition temperature effectively reduces ion diffusion rate, thereby
favoring uniform growth [52]. This is in accordance with the large value of electrical charge
that was reduced into the nanochannels at the lowest electrolyte temperature. Moreover,
not only was the diffusion coefficient decreased, but the thickness of the diffusion layer
also elongated as the temperature was decreased [52].

3.2. Structure and Morphology

As mentioned above, the electrodeposition processes were stopped when the nanowires
reached the membrane surface (Figure 5a). The arrows indicate the nanowires that reached
the membrane surface. The others are close to the surface and are observed as a white back-
ground around the pores. The specially prepared, additional sample with over-deposited
caps did not reveal any features that could identify the nanowire structure [15,77] due to
the presence of an oxide layer [3] that completely covered the caps (Figure 5b).
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created a uniform nanowire matrix. In all of the cases, densely packed nanostructures 
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Figure 5. Scanning electron microscopy images of the membrane surface with a Fe nanowire
deposition that stopped when the nanowires reached the membrane surface (a) and then continued
up to the formation of the over-deposited caps (b). The arrows indicate the nanowires which reached
the membrane surface. The scheme shows nanowires in the membrane, standing on the copper
contact layer.

The morphology of the nanowires that was observed after membrane dissolution
is shown on the SEM images in Figure 6. The nanowires did not reveal any significant
changes as a function of the electrolyte temperature. The vertically oriented nanowires
created a uniform nanowire matrix. In all of the cases, densely packed nanostructures
were shown, which confirmed the complete filling of the membranes independent of the
electrodeposition rate or hydrogen evolution. The nanowires that were observed at a
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higher magnification had a continuous structure with a smooth, at this scale, lateral surface
with a narrow diameter distribution without any trace of porosity.
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Figure 6. Scanning electron microscopy images of the Fe nanowires observed after membrane dissolution and measured for
the nanowires that were deposited at the different electrolyte temperatures: 15 ◦C (b), 25 ◦C (a,c), and 40 ◦C (d).

The morphology of the nanowires that were observed on the SEM images after mem-
brane dissolution did not show any trace of oxide formation, but the diameter of the
nanowires, which was estimated based on the SEM patterns, was a few tens of nanometers
larger than the pore size. This suggests a presence of a coating that had formed on the
nanowire surface. To identify its chemical composition, X-ray photoelectron spectroscopy
measurements were taken (Figure 7a).

The XPS spectrum showed peaks that were not characteristic for either Fe oxide
or metallic Fe (inset Figure 7a), which, taking into account the surface sensitivity of this
method, proves the presence of a thin iron-free layer on the nanowire surface. The registered
elements, especially the high-intensity carbon peak (which at this amount could not be
assigned to a surface impurity), indicate a layer of polycarbonate that had covered the
nanowires during the dissolving process. The appearance of the small intensity sodium
peak, which is a characteristic of membrane contamination that is introduced during
the etching of the latent ion tracks, was an additional confirmation of the presence of
a polycarbonate coating. The significant background under the peaks was caused by
inelastically scattered electrons. A rough estimation of the thickness of the polycarbonate
coating, which was performed based on the SEM image and the XPS sensitivity, indicated a
layer of 20–30 nm. This coating protected the Fe nanowires against oxidation in contrast to
the over-deposited caps that had been extended on the membrane surface that, when kept
at ambient atmosphere, were immediately covered by an oxide layer that can be seen on
the SEM image (Figure 5b). The XPS analysis that was conducted on this surface revealed
a high-spin multiplet-split Fe2p spectrum (Figure 7b). The peaks at binding energies of
710.9 eV and 724.6 eV corresponded to the Fe2p3/2 and Fe2p1/2 photoelectron states, which,
together with the shake-up satellite of Fe2p3/2, confirmed the presence of iron in oxidation
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state +3 (Fe2O3) [78,79]. The absence of metallic Fe suggests that the thickness of the oxide
layer exceeded 10 nm.
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Figure 7. The XPS spectra of the Fe nanowires were measured after membrane dissolution (a), and
on the over-deposited caps formed on the membrane surface—(b). The insets show the detail (a) and
survey scans (b). The arrows indicate the positions of the Fe2p1/2 and Fe 2p3/2 peaks.

The presence of this thin coating, according to our knowledge, was not reported by
other groups. Obviously, it can be observed only in nanowires produced in polycarbonate
membranes and is connected to the membrane dissolution procedure.

The microstructure of the Fe nanowires was investigated using transmission electron
microscopy (TEM). Figure 8a shows an overview of the TEM image of the nanowires
with a uniform diameter of about 140 nm. On the lateral surface of a nanowire, a thin
amorphous layer (identified as a polycarbonate by XPS) with a 10–15 nm thickness is
visible (Figure 8b). The bright-field TEM image revealed a fine-crystalline structure with
crystallite sizes from a few to 30 nm (Figure 8d–f) and shapes that varied from elongated
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to equiaxial. The fine crystallites grew in a columnar direction along the nanowire axis
(Figure 8d,f). The diffraction patterns consisted of semicontinuous rings and elongated
spots, which confirmed the polycrystalline bcc Fe structure of the nanowires (Figure 8c).
The samples did not have any significant differences in their microstructure as a function
of the electrolyte temperature.
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Figure 8. TEM images of Fe nanowires in bright-field mode with diffraction pattern (c) indexed with the lattice parameters
of bcc Fe structure (a) 35 ◦C, (b) 25 ◦C, (c) 20 ◦C, (d) 40 ◦C, (e,f) 15 ◦C.

The structure of the nanowires was also analyzed based on X-ray diffraction. In
Figure 9, the XRD spectra of the nanowires that were deposited at the lowest, medium,
and highest electrolyte temperatures together with the reference sample are presented.
The most intensive narrow, non-indexed peaks resulted from the copper contact layer
that was sputtered on one side of the membrane. The indexed peaks correspond to the
polycrystalline Fe in the bcc structure and appeared in all of the spectra with only a slight
difference in their intensity and widths. The relative peak intensities that correlate with a
powder sample (reference code 03-065-4899 NIST Database) suggest a slight texture that
prefers the growth of (211) planes. Moreover, the calculations of the texture coefficient,
which was determined using the Harris formula [80], indicated that this preferential
orientation attenuates with increasing temperature, and for the highest temperature, the
crystallite growth became almost isotropic.
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Figure 9. X-ray diffraction patterns measured for the Fe nanowires embedded in the polycarbonate
membranes. The indexed peaks corresponded to the bcc Fe powder sample (reference code: 03-
065-4899 NIST Database), while the peaks, which are not described, correspond to the copper
contact layer.

A slight broadening of the peaks with an increasing electrolyte temperature was
observed for the most intensive (110) and (211) reflections, which suggests a decrease
of the crystallite size at higher temperatures. The results of the calculation that were
performed based using Scherrer’s equation are shown in Figure 10. The mean values of the
crystallite sizes, estimated with an error of ±1 nm, were equal to approximately 25 nm at
the lower electrolyte temperatures and about 20 nm at the higher temperatures (along the
nanowire axis). This reveals a clear tendency to reduce the crystallite size with an increasing
electrolyte temperature. In the case of the potentiostatic mode of the electrodeposition,
the increase in the electrolyte temperatures is associated with an increase in the current
density. It is the main reason for the rise in deposition rate, which causes the reduction in
crystalline size. Additionally, higher temperatures promote hydrogen evolution, which
could also block crystalline growth. The mean crystallite size is consistent with the values
that were estimated based on the TEM images.
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A similar observation was made by Azevedo et al. [51], who reported a decrease in
grain size at a higher electrolyte temperature and explained it as a local increase of current
density. Based on XRD results, Shin et al. [52] reported that the electrolyte temperature did
not cause any significant crystallinity changes; however, the diffraction pattern (TEM stud-
ies) indicated a rise in crystallite size at higher temperatures. An increase in the crystallite
size with an increasing electrolyte temperature was also observed by Saeki et al. [42]. It
was elucidated as the rise in the surface diffusion that favors the growth of the preexisting
nuclei that were established during the first stages of the electrochemical process.

3.3. Mössbauer Measurements

The phase composition of the nanowires was studied using Mössbauer spectroscopy
measurements. This technique enables iron as well as iron-based compounds (especially
iron oxide) to be detected. The Mössbauer spectra, which were measured at room tem-
perature for the nanowires embedded in the polycarbonate membranes, are presented
in Figure 11. All of the spectra were fitted with two components that were described by
hyperfine parameters, which are listed in Table 1.

Table 1. The hyperfine parameters of the spectra that were measured for the nanowires deposited at different
electrolyte temperatures.

Electrolyte
Temperature Subspectra IS

[mm/s]
QS

[mm/s]
Bhf
[T] A2/A3 θ

Relative
Contribution

15 ◦C
doublet 0.31 0.63 – – – 16

sextet −0.10 −0.01 32.97 0.7 33 84

20 ◦C
doublet 0.26 0.65 – – – 23

sextet −0.10 0.00 32.98 0.6 30 77

25 ◦C
doublet 0.37 0.65 – – – 16

sextet −0.13 0.00 32.94 0.6 30 84

35 ◦C
doublet 0.06 0.46 – – – 13

sextet −0.11 −0.01 32.93 0.7 33 87

40 ◦C
doublet 0.06 0.46 – – – 14

sextet −0.10 0.00 32.96 0.70 33 86
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Figure 11. Mössbauer spectra measured at room temperature for the nanowires embedded in the
polycarbonate membranes shown along with fitted components: doublet (QS) and sextet (33T).

The dominant component of the spectra was a sextet with a relative contribution of
about 80%. This component was characterized by a hyperfine magnetic field that was
equal to approximately 33 T, an isomer shift (IS) close to −0.10 mm/s, and nearly 0 vales
of quadrupole splitting (QS), which together are typical for bulk-like Fe atoms [81,82].
The contribution to this component came from the Fe nucleus surrounded by Fe atoms
that were arranged in a regular structure. The 0 value of quadrupole splitting especially
suggests rather relatively large grains with a well-ordered cubic structure. The second-
and third-line intensity ratio (A2/A3), which is shown in Table 1, provides information
regarding the relationship between the γ-ray propagation and the magnetization vector
orientation (θ). The estimated value of θ varied from 30◦ to 33◦, which indicated the
deviation of the magnetization vector from the normal direction.

The second component of the spectrum was a doublet with a relative contribution
of about 20%. This component was defined by an isomer shift and quadrupole splitting.
The doublet indicated Fe atoms in a paramagnetic or superparamagnetic state. While the
sextets were assigned to Fe atoms inside the nanowires, the doublets could be associated
with the Fe atoms at the edges or in the voids, in which there were a limited number of Fe
atoms in a ferromagnetic state in the close neighborhood of the nucleus.

Because of the difficulties in measuring the Fe nanowires connected with the very
small amount of Mössbauer isotope, which was caused by the low abundance of 57Fe in the
natural iron (2%) and a low membrane porosity (3%), we did not observe a close correlation
between hyperfine parameters and the electrolyte temperature. However, these studies,
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together with the XRD measurements, indicated that the nanowires were composed of iron
without any iron oxide contamination independent of the electrolyte temperature.

3.4. Magnetic Properties

The magnetic measurements of the Fe nanowires embedded in the polycarbonate
were performed at room temperature with the magnetic field applied out of the membrane
plane and in the membrane plane. The hysteresis loops of the Fe nanowires deposited at
the lowest, medium, and highest electrolyte temperatures are presented in Figure 12.
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Figure 12. Hysteresis loops measured at room temperature in the membrane plane and out of the
membrane plane. The magnetization (M) value was normalized to the saturation magnetization (MS).

All of the measured samples exhibited magnetic anisotropy that had an easy axis
of magnetization close to the nanowire axis. Generally, the effective anisotropy, in this
case, was a result of the magnetocrystalline and shape anisotropy [41,83]. Because of the
polycrystalline structure of the Fe nanowires and the slight crystallographic texture, which
did not correlate to magnetic properties, we can conclude that the shape anisotropy is a
dominant factor that determines the observed preferred orientation of the magnetization
vector [84]. The tilting of the hysteresis loops, which was measured in the easy direction,
suggests a deviation of the magnetization vector from the normal direction or a significant
contribution of the dipolar interaction in the magnetic behavior of the Fe nanowire ma-
trix [44]. However, the non-regular distribution of the nanowires and the relatively large
average nanowire distance that was connected to the low membrane porosity (the dipole
interaction decrease with a power of 3 of the nanowire distance) indicated a relatively
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minor impact of dipolar interaction. Taking the results of the Mössbauer measurements
into account, we can conclude that the observed tilting was mainly related to the deviation
of the nanowire axis from the normal direction that was caused by the imperfect orientation
of nanochannels, which resulted in a tilted magnetic easy axis. Such a deviation could be
the reason for the open hysteresis curves that were observed in both directions. The only
exception of the curve that was measured in the membrane plane for the nanowires that
were deposited at the lowest electrolyte temperature was that it indicated a really hard
direction of magnetization in which the magnetization rotated coherently towards the field
direction [61].

The magnetic measurements with the field applied out of the membrane plane indi-
cated low coercivity values. Coercivity is significantly affected by the aspect ratio, which
for values above 28, results in a significant reduction of the coercivity [61] and drops twice
in the range of 30–120 [41]. Thus, the aspect ratio of L/Φ= 60 was the main factor that was
responsible for a low value of the coercive field.

The coercivity values (Figure 13) increased with electrolyte temperature. The elevated
electrolyte temperature was associated with higher hydrogen evolution, which was respon-
sible for a larger number of defects. The more defected nanowire structure at elevated
temperatures may be a reason for the larger coercivity because of the pinning of the domain
walls caused by defects. Similarly, Schlörb et al. observed an increase in the coercivity
for irregularly shaped nanowires compared to the low values for the smooth nanowires
prepared under optimized conditions [61].
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Figure 13. Coercivity values versus electrolyte temperature measured for the Fe nanowires with the
magnetic field applied out of the membrane plane.

4. Conclusions

We studied Fe nanowires deposited at various electrolyte temperatures. A cathodic
current analysis indicated an instantaneous nucleation model. The calculated values of
the diffusion coefficients followed the Arrhenius plot. The electrical charge reduced into
the channels increased at the lowest electrolyte temperature, which suggested a higher
pore-filling degree. The Fe nanowires grew in a polycrystalline bcc structure with a slight
texture along the [211] direction and the crystallite size decreasing at higher temperatures.
All of the nanowires exhibited a magnetic anisotropy with an easy axis that deviated from
the normal direction and a small value of coercivity that increased as a function of the
electrolyte temperature. The nanowires were spontaneously covered by a polycarbonate
coating during membrane dissolution that protected them against oxidation, which opens
up new application possibilities.
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