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Abstract: Cracks typically develop in concrete due to shrinkage, loading actions, and weather
conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-
healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete
matrix. It is imperative to investigate the healing performance that autogenous healing concrete
possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of
self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass
of instances may be needed to explore reliable concrete design. This study is thus the world’s first
to establish six types of machine learning algorithms, which are capable of predicting the healing
performance (HP) of self-healing concrete. These algorithms involve an artificial neural network
(ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression
(DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are
tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance
indicated by coefficient of determination (R?) and root mean square error (RMSE) measures of these
algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show
that GSA-GBR performs higher prediction performance (R>gsa.gpr = 0.958) and stronger robustness
(RMSEGsa-GBr = 0.202) than the other five types of algorithms employed to predict the healing
performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing
performance and efficient assistance on the design of autogenous healing concrete can be achieved.

Keywords: machine learning; autogenous healing concrete; self-healing concrete; enhanced autoge-
nous healing concrete; hyperparameters tuning; genetic algorithm

1. Introduction

Concrete is a commonly used material for construction and aesthetic purposes. It is
estimated that about three tons of concrete are used per person per year, with that amount
doubled when other materials are added for construction [1]. Concrete can be classified into
various types, obtained by varying the mix proportions and cement type to achieve different
qualities for the intended purposes. Because of its dire importance, its properties are always
under investigation and testing to make it more efficient and last longer. Concrete cracking
is one of the main problems with the material for the possible seeping of harmful substances
and internal damage to the structural members’ components. The formation of fractures in
this material is a foreseeable outcome, but precautions may be carried out to minimise its
adverse effects on the structures [2]. The most commonly occurring and threatening form of
reinforced concrete deterioration is pitting corrosion [3]. The presence of three substances is
responsible for the electromechanical process resulting in corrosion—a conductive medium,
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such as steel from the reinforcement, a source of moisture and, finally, oxygen. The process
may be as indicated by the reaction in Equation (1) [4].

4Fe + 30, + 2nH;O = 2Fe;0g5 - nHZO(L) 1

The extent of corrosion was investigated that manifests different cracking widths in the
reinforced concrete. Corrosion was observed on the rebars of test specimens with varying
crack thicknesses. It was found that corrosion did occur in the reinforcement of samples
with 400 uM crack girths. No corrosion was detected in concrete attaining a maximum
crack width of 100 uM, even after 365 days have elapsed from the commencement of
the trials [5]. Cathodic protection may be employed to protect the inner materials from
this destructive reaction. The method and effects of inserting rods within the concrete
structure are studied, which are composed of more reactive materials, such as Zinc or
Magnesium acting as sacrifices by attracting the reactive ions and diverting the corrosive
response away from the reinforcement. Moreover, it was proven that the absence of any
of the three components is satisfactory for preventing the rust from eating away at the
reinforcement [6]. Knowing this promoted the exploration of means to minimise the
exposure to air—the main cause of cracks. A guaranteed, albeit expensive, provision is
coating the reinforcement with protective films. Costs may be reduced by investigating
which surfaces are most likely to be exposed to moisture or air. The rods anticipated to
be placed in close vicinity to said surfaces would be engulfed with the water-repelling
material prior to casting the concrete [7]. Painting the of structural members after being
cast is another route followed when maintaining their integrity. The coating acts as a shield
preventing moisture and water from seeping into the load bearing materials. However,
this requires constant maintenance to ensure that intended performance is preserved.
Numerous other measures have been instituted to reduce the adverse effects of fissures and
corrosion on reinforced concrete [8]. It can be concluded that limiting the oxygen supply
to the other components halts the corrosion. Additionally, it is considered relatively less
costly to install precautionary measures and control the presence of cracks before casting
as compared with maintaining and fixing the damaged members after time has elapsed [3].

Concrete has been found to have self-healing capacities that seal microcracks depend-
ing on various testing conditions and concrete mix proportions [9]. Self-healing concrete
is classified into two categories, autogenous healing concrete and agent-based healing
concrete. The naturally occurring ability which heals cracks on the basis of ingredients
in concrete matrix is referred to as autogenous healing. Therefore, autogenous healing
concrete consists of intrinsic healing concrete and enhanced autogenous healing concrete.
On the other hand, agent-based healing concrete indicates the healing concrete based on
employing healing agents, such as polymer or bacteria.

1.1. Intrinsic Healing Concrete

The mechanisms of autogenous healing concrete can be concluded as follows, shown
in Figure 1. Firstly, calcium carbonate crystals form after the CO, reacts with calcium
ions (white precipitation), exhibited in Figure la. Secondly, impurities or debris from
water may act as a wall to prevent harmful substances from penetrating the concrete and
affecting its structural integrity, shown in Figure 1b. Thirdly, cement that has not hydrated
during the mixing and setting of the concrete may hydrate after it has hardened, shown
in Figure 1c. Fly ash and slag may also ‘bloom late’, i.e., hydrate at a late stage of the
concrete curing period. Finally, aggregate silicate reaction (ASR) causes the swelling of
the concrete, indicated in Figure 1d. The growth may progress into the cracks and seal
them. The member’s ingress may be averted by forming a barrier between the offensive
materials and the concrete within the structural member. The processes and the reasons of
the substance formed by the mechanisms aforementioned are explained as three aspects
below [10,11].
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Figure 1. Illustration of the four reactions aiding in self-healing of concrete: (a) white precipitation
formation; (b) loose particles blockage; (c) rehydration of unreacted cement particles; (d) swelling
particles blockage by ASR.

1.1.1. Precipitate Formation

A combination of Ca(HCO3), crystals that come from water and Ca(OH), particles
from concrete (calcium hydrogen carbonate and calcium hydroxide, respectively) react with
one another upon contact [12], triggering this interaction that forms calcium carbonate com-
pound (CaCOs), which is the white precipitate that is illustrated in Figure 1a. The chemical
reactions are presented in the chemical reactions denoted as Equations (2)—(5) [13,14]. The
formed crystalline substance protects the structural members from harmful elements by
coating the microcracks. This prevents elements that may have otherwise been able to
trickle through the cracks and cause ingress to the structural members.

CO;, + Hy0 4 HyCO5 @)

H,CO; + Ca(OH), = CaCO; | +H,0 ®)
H,CO; + CaCO; +» Ca(HCO3), )
Ca(HCO3), + Ca(OH), = 2CaCOs | +2H,0 ®)

1.1.2. Continued Hydration

The hydration of previously un-hydrated cement particles present in the mixture
aids in sealing the small cracks. Continuous hydration autogenous healing utilises the
reaction between the cement and the water, producing a gel that swells and blocks the
narrow pathway paved by fissures, thus reducing the flow rate within the sample [15,16].
The related reactions are exhibited in Equations (6)—(9). It has been proven that younger
concrete possesses more self-healing capacity than the old due to the continued hydration
occurrence.

C3S 4 6H,0 — C3S; - 3H,0 + 3Ca(OH), 6)

C,S + 4H,0 — C3S; - 3H,0 + 3Ca(OH), @)

C3A + 6H,O — C3A - 6H,O ®)

4C4AF + 2Ca(OH), + 10H,0 — C3A - 6H,0 + C3F - 6H,0 )

1.1.3. ASR

ASR generally has destructive repercussions. The internal effect of the interaction
between alkali, found in sand or gravel used in the mixture, and cement produces an
expansive gel that swells within the member [17,18]. Building on the expansion ability of
aggregates, if the ASR reaction is monitored and limited, future cracking can be prevented
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by transforming the distressing reaction into one that results in another type of sealant by
ASR [19].

1.2. Enhanced Autogenous Healing Concrete
1.2.1. Mineral Additions

Incorporating mineral additions with cementitious materials is an effective method of
improving HP of self-healing concrete, and the most commonly employed minerals are fly
ash, blast furnace slag and silica fume [16,20]. The healing ability of enhanced autogenous
healing concrete is attributed to the pozzolanic reaction between mineral additions and
cementitious materials because the pozzolanic reaction can stimulate the hydration of
cementitious materials to form C-S-H for healing cracks.

1.2.2. Crystalline Admixtures

Crystalline admixtures are commercial types of healing materials whose ingredients
are confidential. According to open literature, sulphur trioxide and sodium oxide are
revealed as constituents of crystalline admixtures [21,22]. The healing mechanism of
crystalline admixtures can be concluded as such Ca ions from crystalline admixtures react
with CO%f and HCOj existing in cracks, producing calcium carbonate for healing cracks,
as given by Equations (2)—(5).

1.2.3. SAP

Superabsorbent polymers (SAP) are white powder or scale-like ranging from mi-cros
to millimetres. The healing steps of concrete with SAP can be concluded as follows. Firstly,
the water inside SAP is released into concrete matrix to promote further hydration of
cementitious materials. As a result, C-S-H, which is able to heal cracks, can be formed
during the further hydration of cementitious materials. Secondly, SAP particles can expand
to seal cracks when water penetrates concrete through cracks [23-26].

1.2.4. Fibre

Concrete containing fibre has been paid more attention to because of its excellent
ability to crack resistance. The healing mechanisms of concrete with fibre can be drawn
as follows. Firstly, fibre can effectively limit the crack width of concrete matrix under
varying conditions and offer the bridging force to enhance the healing ability of concrete
with fibre. Secondly, fibre can be the cores of precipitations to stimulate the formation
of healing products. The results of published articles related to fibre healing concrete
demonstrated that various types of fibre, different geometry including diameter, length
and tensile strength of fibre exhibited a significant influence on the healing performance of
concrete [27,28].

1.3. Agent-Based Healing Concrete

Healing methods involving external interference, namely agent-based healing con-
crete, were investigated. According to the research on agent-based healing concrete, calcium
carbonate for healing cracks was induced by applying bacteria, such as ureolytic bacteria,
aerobic bacteria and nitrifying bacteria, and their nutrients onto the test specimen. The
general mechanism of agent-based healing concrete can be attributed to the following steps.
Firstly, capsules containing healing agents are incorporated into the mixture and spread
throughout the cast concrete samples. Secondly, when cracks are formed, the damage
would cause the aforementioned capsules to release the entrained substances within them,
thus healing the cracks [29-31].

However, better healing performance of agent-based healing concrete is mentioned.
Up to 970 uM wide of cracks were reported to be healed by employing agent-based healing
concrete [30]. Two main drawbacks of agent-based healing concrete are noted. Firstly,
using capsules as carriers with non-biodegradable materials such as plastics and other
synthetics to distribute healing agents, such as polymers or bacteria, is less environmentally
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friendly [32]. Secondly, utilising agent-based healing method to heal cracks is dramatically
more costly than autogenous healing concrete. Considering the two inevitable disadvan-
tages, autogenous healing concrete is studied in this paper.

Machine learning (ML) has been broadly utilised to solve regression, clustering and
classification problems according to the information dug out from massive data sets. The
reason why ML has the ability to figure out these problems can be attributed to ML being
able to obtain new knowledge by means of learning from existing information imitating
human learning behaviour. To date, two studies attempted to predict HP of self-healing
concrete. One study carried out by Ramadan and Nehdi was involved in predicting HP of
intrinsic healing concrete employing ANN whose parameters were optimised by GA [33].
In a study of conducted by Zhuang and Zhou, it was shown that HP of healing concrete
containing non-ureolytic bacteria can be accurately predicted by the GBR ML model [34].
In both studies, the initial cracking time, the initial cracking width and healing materials
information are recognised as inputs. However, due to complicated healing mechanisms of
self-healing concrete, it is necessary to consider all influencing factors of HP of self-healing
concrete.

In this paper, 16 influencing factors are utilised for the first time to predict HP of
autogenous healing concrete. Firstly, 1417 experimental data sets in total of autogenous
healing concrete are collected from eight open literature. Then, 16 variables are set as
the inputs, and the healing performance of autogenous healing concrete is recognised as
the sole output. Subsequently, unprecedented six ML algorithms are employed to build
various ML models, and two types of hyperparameters optimisation methods are applied
to tune the parameters of each ML algorithm. After that, the prediction performance and
the prediction accuracy of each ML model are demonstrated and then compared using R?
and RMSE. Finally, sensitive analysis on the optimal ML model is conducted.

2. Materials and Methods
2.1. Data Collection

In this study, 1417 experimental data sets related to HP of autogenous healing concrete
are collected from eight open literature published from 2000 to 2020 shown in Table 1.
A total of 1417 data sets in this research are randomly split into two data sets with a ratio at
8:2. 80% data sets are randomly selected and employed to train machine learning models,
and the rest of the data sets are utilised as the testing data sets to inspect the generalisation
capacity of the machine leaning methods. In order to input collected data sets in ML models,
the representation numbers of healing materials, cement types and healing conditions are
listed in Table 2. In order to accurately predict HP of autogenous healing concrete, all
influencing factors regarding HP of autogenous healing highlighted by several academic
literature are calculated as inputs in this study [35]. Concerning the inputs, five of them
explain the influencing factors of healing materials while others describe the influencing
factors related to cementitious materials displayed in Table 3. Therefore, the influencing
factors of healing materials include types of healing materials (HM), dosages of healing
materials (DOHM), fibre diameters (FD), fibre length (FL), fibre tensile strength (FTS), the
initial cracking data (CD), the time for healing (TH), the healing condition (HC) and the
initial cracking width (CW), and the influencing factors of cementitious materials are the
amount of cement (CM), cement types (CT), the amount of superplasticizer (S), the amount
of fine aggregates (FA), the water-binder ratio (WB), the amount of fly ash (FAS) and the
amount of slag (SG). Besides, HP of various types of autogenous healing concrete calculated
by changes in the crack width and the resonance frequency is treated as the output.
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Table 1. Experimental data source.

Data Source

Numbers of Data

Gagne and Argouges, [36]
Homma et al., [37]
Homma et al., [27]

Sisomphone et al., [21]
Tittelboom et al., [20]
Ozbay et al., [38]

Yang et al., [39]

Kan and Shi, [28]

60
22
12
462
343
67
51
400

Table 2. The representation of numbers of healing materials, the cement type and healing conditions.

Number

Representation

DB O0®ONOU R WN RO

None
Calcium sulfoaluminate based expansive additive-o (CSA-o)

Crystalline additive

Calcium sulfoaluminate based expansive additive- (CSA-f)
PVA fibre

Polyethene fibre

Steel cord

Portland Cement of Grade 42.5
Portland Cement of Grade 52.5
Ambient water condition
Ambient air condition
Wet-dry cycles

Table 3. The range of the 16 inputs and the output.

Variables Unit Minimum Maximum
CM (%) 0.1070 0.7140
CT - 1.0000 2.0000

S (%) 0.0000 0.0450
FA (%) 0.0000 0.4420
WB - 0.2500 0.6030
FAS (%) 0.0000 0.6590
SG (%) 0.0000 0.6071
HM - 0.0000 6.0000
DOHM (%) 0.0000 0.0310
FD um 0.0000 400.0000
FL um 0.0000 32000.0000
FTS MPa 0.0000 2850.0000
CD days 3.0000 180.0000
TH days 0.0000 150.0000
HC - 1.0000 3.0000
CW um 0.0000 402.0000
HP (%) 0.0000 100.0000

2.2. Data Normalisation

It is essential to normalise data for improving the working efficiency and the prediction
performance of machine learning models. Therefore, the data are normalised between [0,1]
before inputting data into machine learning models by employing Equation (10) [40].

Yn

_ Y — Ymin

Ymax — Ymin

(10)

where Yn is the normalised data, y represents the data before normalisation, and v,,;, and
Ymax are the minimum and maximum data before normalisation.
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2.3. Types of ML Algorithms

In this section, six ML algorithms are introduced from articles related to concrete prop-
erties prediction to predict HP of autogenous healing concrete. Therefore, ANN, kNN, DTR,
SVM are classified as the single ML algorithms. GBR and RF are recognised as ensemble
ML algorithms by employing bagging or boosting strategy to improve the prediction per-
formance and overcome the overfitting problem. Detailed information of these algorithms
can be accessed in other open literature [41-48]. These types of algorithms were utilised for
predicting concrete properties. For instance, ANN models demonstrated talented ability
(R? = 0.9185) for predicting the compressive strength of concrete with recycled aggregate.
Furthermore, DTR and GBR models were employed to predict the mechanical properties
of hydraulic concrete. The results showed that GBR models demonstrated better prediction
performance than DTR models. The R? of GBR models for predicting the compressive
strength, ultimate tensile strain, elastic modulus, dry shrinkage rate and splitting tensile
strength were 0.951, 0.858, 0.934, 0.922 and 0.929 respectively.

2.4. Hyperparameters Tuning
241.GA

GA is a probabilistic searching algorithm and an intelligence solution inspired by bio-
logical evolution processes. Each individual of a population in GA is called a chromosome.
A certain proportion of chromosome among a population is selected as the next generation
to continuously iterate until the global optimal chromosome is found in accordance with
the fitness degree of each chromosome [49,50].

2.4.2. GSA
GSA is an optimisation method to analyse all possible cases in the constraint range.
The processes to conduct GSA can be concluded as follows [51,52]:

The searching scope and length are confirmed, and then, the searching grid is generated.
The node in the searching grid with the highest accuracy and the lowest coefficient
penalty calculated by K-fold validation is defined as the node which can output the
best parameter value.

Characteristics of GA and GSA are summarised in Table 4 [53,54].

Table 4. Characteristics of GA and GSA.

Optimisation Algorithms

Drawbacks Advantages

GA

GSA

GA has good robustness in searching for the
optimal solution.
Massive parameters of GA are essential GA performs an excellent ability on
to be controlled. parallel computing.
GA can increase the flexibility of searching for the
optimal solution.
GSA is easy coding.
It is affirmed that GSA can find the optimal solution.

GA requires sophisticated coding.

GA is a time-consuming algorithm.

GSA is a time-consuming algorithm.

2.5. Prediction Performance Evaluation

RMSE shown in Equation (11) is elected as the governing factor in determining the
accuracy of the predictive models as it calculates the square root of the error between the
predicted and observed values for all the values. The lower the RMSE, the better the fit
and the more accurate the predictions [55]. R? calculated by Equation (12) has also been
noted to evaluate the prediction performance of ML models. Its output ranges from zero to
one, one indicating a perfect model [56].

Yioq(yi— Yi)z

n

RMSE = (11)
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Predicted selfhealing perform ance ( % )

=)

2
B Yo vi—v)
2
X1 (yi—y)
where n indicates the number of samples, while the differences in predicted and experi-
mental values are demonstrated as y| — y;.

3. Results and Discussion
3.1. R? and RMSE of ML Models

The prediction performance and the prediction accuracy of six machine algorithms
with two hyperparameters optimisation methods are indicated by R?> and RMSE value
shown in Figures 2 and 3. As demonstrated in Figures 2 and 3, the vertical axis represents
the predicted self-healing performance in % output from the machine learning models,
while the horizontal axis represents the experimental self-healing performance in % of
1417 test data instances collected from the open literature. Each red point shown in
Figures 2 and 3 stands for the predicted and the experimental self-healing performance of
each specific test instance. Moreover, parameters of ML models tuned by GA and GSA
are exhibited in Table 5. The model with the highest R? value and the lowest RMSE value
is recognised as the best ML model for predicting HP of autogenous healing concrete.
What can be clearly seen in Figure 4 is the GBR model whose parameters are tuned by
employing GSA (GSA-GBR), showing higher R? (0.958) and lower RMSE (0.202) than other
types of ML algorithms. As is shown in Figure 4, the R? and RMSE values of the GA-GBR
model are 0.955 and 0.210, respectively which are similar to those of GSA-GBR. The R?
and RMSE of GSA-RF and GA-RF are (0.932, 0.256) and (0.929, 0.273) accordingly, which
indicate a slight low prediction performance and prediction accuracy than those of GSA-
GBR and GA-GBR. In addition, GSA-DTR, GA-DTR, GSA-ANN, GA-ANN, GSA-kNN and
GA-kNN models demonstrate fluctuation of R? and RMSE values around (0.900, 0.300)
which are (0.905, 0.302), (0.907, 0.303), (0.911, 0.307), (0.924, 0.291), (0.886, 0.338) and (0.900,
0.314), respectively. What is striking in Figure 4 is the dramatical drop in R?> and RMSE
of GSA-SVR and GA-SVR. The R? and RMSE values of GSA-SVR and GA-SVR are (0.553,
0.758) and (0.748, 0.504) accordingly. GA performs the better optimisation ability than
GSA to enhance the prediction performance of SVR in this paper. To sum up, GSA-GBR is
defined as the optimal algorithm to explain the relationship between 16 variables and HP
of autogenous healing concrete.

100

©
=3
1

GSA-DTR
R?=0.905
904 |RMSE=0.302

Predicted selfhealing perform ance ( % )
T

| 0 1 1 1 1 1 | 1 1 1 |

Experin entalselfhealing perform ance (% )

50 60 70 80 90 100 110 0 10 20 30 40 50 60 70 80 90 100 110

Experin entalselfhealng perform ance ( % )

() (b)
Figure 2. Cont.
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Figure 3. R? and RMSE value of ML models with (a) GBR; (b) DTR; (c) RF; (d) SVR; (e) kNN; (f) ANN, tuned by GA.
Table 5. Tuned parameters of six types of ML models utilising GSA and GA.
Algorithms Parameters GA GSA
Hidden layers 3 3
ANN Hidden neurons 20-10-5 20-10-5
Learning rate 0.0663 0.1001
Depthmax 86 920
GBR Splitmin 0.0001 0.01
Learning rate 0.0947 0.4000
Leafyin 57 21
Depthmax 12 45
Splitmin 9 16
DIR Leaf, 9 1
Gaingin 0.0775 0.3950
Cpenalty 25.9007 0.0001
SVR Epsilon 0.5621 0.0001
Gamma 9.1228 10000.0000
Depthmax 86 64
RE Splitmin 23 0.01
Leafin 57 17
Gaingin 56.4671 0.3950
kNN k 4 11

Additional display of the predicted HP against the individual experimental samples
for the GSA-GBR model is exhibited in Figure 5. The presented plots in Figure 5 demon-
strate the comparison of the experimental HP and the predicted HP of each sample. The
slight differences between the predicted and experimental HP of the GSA-GBR model are
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shown in Figure 5. The GSA-GBR model performs reasonable prediction results for most
samples, excluding few samples with relatively significant deviations (i.e., the worst pre-
dicted sample shown in Figure 5 is the sample 1295 with 0.12 of the deviation). Overall, the
GSA-GBR model is emphasised as a good fit for the HP prediction of autogenous healing
concrete. The reasons to explain why GSA-GBR has better prediction performance and
accuracy than other types of ML algorithms with various types of optimisation methods
can be summarised in two aspects. Firstly, GBR is an ensemble algorithm based on boosting
strategy and DTR. Therefore, DTR has an excellent prediction performance for predicting
HP of autogenous healing concrete. The overfitting problem of GBR is evitable because
multiple decision trees are combined by employing the gradient boosting method to reduce
the variance of decision trees. Secondly, although GSA is a time-consuming optimisation
algorithm, it can find the optimal global solution.

R? of models with different algorithms optimised by GA
- ¥ - R? of models with different algorithms optimised by GSA

1. 0 —|-'®-RMSE of models with different algorithms optimised by GA
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Figure 4. The differences of R?> and RMSE value of six types of ML models tuned by GSA and GA.
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Figure 5. The differences of the predicted and experimental self-healing performance of the GSA-GBR
model.
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3.2. Sensitive Analysis

Sensitive analysis is a type of uncertainty analysis employed to explain the results
of ML according to the analysis of the impact of changed inputs on the outputs. It is
significant for sensitive analysis to explore the relationship between the changes in the
number of inputs and the output [57]. In this paper, the impact of 16 inputs on HP is
analysed utilising ML models with GSA-GBR. Fourteen combinations of ML models with
GBR are evaluated and displayed in Table 6 and Figure 6. Therefore, GBR1 represents the
basic components of cementitious materials, such as the amount of cement and cement
types. In GBR models 2-13, each new input is progressively counted into for analysing the
influence. Therefore, GBR14 contains 14 inputs.

Table 6. Fourteen types of GSA-GBR models with various numbers of inputs.

Inputs GSA-GBRs
CM, FA,CT, W GBR1
CM, FA, CT, W, WB GBR2
CM, FA, CT, W, WB, S GBR3
CM, FA, CT, W, WB, S, FAS GBR4
CM, FA, CT, W, WB, S, FAS, SG GBR5
CM, FA, CT, W, WB, S, FAS, SG, HM GBR6
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM GBR7
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD GBR8
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, ED, FL GBR9
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS GBR10
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC GBR11
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC, CW GBR12
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC, CW, CD GBR13
CM, FA, CT, W, WB, S, FAS, SG, HM, DOHM, FD, FL, FTS, HC, CW, CD, TH GBR14
1.0 [~m—RMSE of GBR models
-- W~ R? of GBR models
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Figure 6. R? and RMSE of GSA-GBR models (1-14).

Figure 6 demonstrates the prediction performance and the prediction accuracy of ML
models with GBR containing changed numbers of inputs. Importantly, the results shown
by GBR 14 demonstrate the highest prediction performance, because GBR14 consists of all
inputs. GBR1 performs the lowest prediction performance whose measures are 0.672. It is
noticeable that no significant differences of the prediction performance are found between
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GBR models from 1 to 11. The prediction performance and the prediction accuracy of GBR
models keep constant at 0.672 and 0.573, respectively, following the increasing number of
inputs, as displayed by R? and RMSE of GBR models 1-11. The R? value of GBR models
11 and 12 increases from 0.672 to 0.704, while a decline of the RMSE from 0.573 to 0.528 is
exhibited between GBR model 11 and GBR model 12. Subsequently, the R? value of GBR13
rises moderately from 0.704 to 0.783. At the same time, a lesser decline of RMSE from 0.528
to 0.481 of GBR13 is demonstrated. Finally, what stands out is the rapid growth of R? value
of GBR14, which soars from 0.783 to 0.958. Meanwhile, the RMSE of GBR14 plummets from
0.481 to 0.202. In summary, CW, CD and TH have higher influence on HP of autogenous
healing concrete, which means that they are the most significant inputs that should be paid
more attention to in ML models to achieve higher prediction performance. Therefore, TH
is the input which has the highest impact on HP of autogenous healing concrete.

4. Conclusions

This study is the world’s first to predict HP of autogenous healing concrete employing
ML models using six kinds of advanced algorithms. ML models are employed to explain
the relationship between 16 inputs and HP. Meanwhile, GSA and GA hyperparameter
tuning methods are utilised to optimise the parameters of the ML models.

With regards to the R?> and RMSE values of ML models, obvious findings to emerge
from this paper can be concluded as follows.

e  This paper identifies that the GSA-GBR ML model has the best performance to predict
HP of autogenous healing concrete, as indicated by the R? value and the RMSE value
(0.958 and 0.202, respectively) of GSA-GBR model. On the basis of the R? value and
the RMSE value, it can be attributed that the GSA-GBR ML model has an excellent
ability for predicting HP of autogenous healing concrete using the 16 inputs.

e  The R? and the RMSE values of other ML models with five types of algorithms (SVR,
RF, ANN, kNN and DTR) optimised by two kinds of hyperparameter tuning methods
(GA and GSA) are compared with that of GSA-GBR. The results reveal that GSA has a
better optimisation ability than GA on ML models based on DTR.

e  The results of the sensitive analysis indicate that CW, CD and TH demonstrate stronger
correlation of HP prediction of autogenous healing concrete than other inputs. Most
importantly, CW, CD and TH have higher impact on HP prediction of autogenous
healing concrete than healing materials characteristics.

e  With respect to the future work, the healing performance of agent-based healing
concrete can be investigated employing the latest and promising machine learning
algorithms.
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Abbreviations Definition

ASR Aggregate Silicate Reaction
DTR Decision Tree Regression
GBR Gradient Boosting Regression
GSA Grid Search Algorithm

GA Genetic Algorithm

HP Healing Performance

kNN k-Nearest Neighbours

ML Machine Learning

RF Random Forest

R2 Coefficient of Determination
RMSE Root Mean Square Error
SAP Superabsorbent Polymers
SVR Support Vector Regression
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