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Abstract: The work is devoted to the development of a model for calculating transient quasiperiodic
temperature fields arising in the direct deposition process of thin walls with various configurations.
The model allows calculating the temperature field, thermal cycles, temperature gradients, and the
cooling rate in the wall during the direct deposition process at any time. The temperature field
in the deposited wall is determined based on the analytical solution of the non-stationary heat
conduction equation for a moving heat source, taking into account heat transfer to the environment.
Heat accumulation and temperature change are calculated based on the superposition principle of
transient temperature fields resulting from the heat source action at each pass. The proposed method
for calculating temperature fields describes the heat-transfer process and heat accumulation in the
wall with satisfactory accuracy. This was confirmed by comparisons with experimental thermocouple
data. It takes into account the size of the wall and the substrate, the change in power from layer to
layer, the pause time between passes, and the heat-source trajectory. In addition, this calculation
method is easy to adapt to various additive manufacturing processes that use both laser and arc
heat sources.

Keywords: additive manufacturing; direct metal deposition; analytical modeling; non-stationary
temperature field

1. Introduction

Additive technologies, in particular direct energy deposition (DED) technologies, are
actively developing and are already used in modern production in the manufacture of
metal parts and repair and restoration work [1–5]. Laser, electron beam, plasma, and arc
are used as the main heat source, and the filler material can be used both in the form of
powder and in the form of wire. A wide range of materials can be used: steel, titanium,
aluminum, nickel alloys, and composites [6–11].

A characteristic feature of the direct deposition process is that the material undergoes
multiple heating and cooling processes, including partial remelting of already-formed
layers. Such a complex temperature field, which changes both in space and in time,
significantly affects the local microstructure and its evolution, residual stresses, and defor-
mations, as well as the distribution of defects, which can significantly affect the mechanical
properties, and hence the entire product’s reliability.

The problem of determining transient temperature fields can be investigated using
experiments and mathematical modeling. Experimental determination is time-consuming
and costly due to the large number of the process operating parameters. Typically, ther-
mocouples and infrared thermography are used to determine temperature fields [12–16].
However, it is not possible to directly measure the object temperature using thermography.
The accuracy of determining the surface temperature is limited by the unknown emis-
sivity ε. In addition, emissivity can change during additive manufacturing (AM), as it
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depends on material, temperature, viewing angle, surface roughness, and presence of oxide
films [17,18]. As a consequence, the instrument-calibration process is extremely difficult.
The use of thermocouples makes it possible to determine the transient temperature much
more accurately; however, thermocouples must be thin enough, and at the same time they
only allow measuring the temperature locally, even if there are several of them.

Various methods of mathematical modeling are used to determine the three-dimensional
temperature fields. Currently, one of the most common methods for calculating transient
temperature fields in the AM process is the finite element method [19–21]. The objective of
such calculations is usually to determine the temperature field evolution, temperature gradi-
ents, and their effect on residual stresses, which is related to a thermomechanical problem.

The main difficulty of modeling DED processes for large products is associated with
the large temporal and spatial domain of the calculation. To determine the most accurate
transient temperature fields, the time step should be microseconds, while the total depo-
sition time is many hours. The melt pool has a characteristic size of the order of a few
millimeters, while the model of the entire product is usually on a meter or sub-meter scale.
As a consequence, such calculations require enormous computing power and time.

There are several approaches to solve such problems. The first approach assumes
minimal time steps and a fine mesh of the part, which leads to fairly accurate temperature
values, but the time spent on computations can be huge [22,23]. The second approach
assumes a scheme according to which the material is added either in parts of a layer
(a hatch-by-hatch), or in whole layers at once (layer-by-layer), or in several layers at
once [21,24]. In this case, the deposited energy for a period of time corresponding to the
trajectory traversed is distributed throughout the added material. Thus, the simulation
time can be significantly reduced. As a result, only the history of the average temperature
is recorded, but not the local thermal history.

In some works, the finite volume method is used to determine transient temperature
fields, which also takes into account convective heat transfer. Due to the complexity of
such calculations, the simulated samples are bodies with characteristic dimensions of the
order of several tens of millimeters [25–27]. As already mentioned, real products have
dimensions of the order of a meter, which ensures that the process conditions are different
from the simulated ones, in particular, the temperature, cooling rates, and temperature
gradients will differ.

In comparison with the above models, the peculiarity of this work is to provide a
fast, simple, and universal, but at the same time reliable, analytical method for calculating
transient temperature fields in the AM process. Maintaining stable temperatures and melt-
pool sizes is one of the key means of controlling the process stability. Then, as a result of
using this calculation method, it becomes possible to theoretically determine the influence
of the mode parameters on the formation of the deposited layers, as well as to select stable
process modes. In addition, the application of this method will make it possible to study
the degree of influence of local quasiperiodic temperature fields, which always accompany
direct deposition processes, on structural phase transformations.

2. Model and Methods Description
2.1. Problem Statement

The following physical assumptions were made:

• The physical properties of the substrate and the filler material (specific heat capacity c,
density ρ, thermal conductivity λ, thermal diffusivity a) are temperature-independent.

• The effect of convection of liquid metal is not considered.
• Heat flux distribution of the heat source qh is presented as a surface normally dis-

tributed heat source.
• Heat transfer occurs according to Newton’s law.
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In order to obtain the temperature field in the substrate and the deposited layers, it
is necessary to solve the following linear non-stationary heat-conduction problem in a
Cartesian coordinate system x, y, z:

λ

cρ

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
=

∂T
∂t

, (1)

where λ—thermal conductivity of the material, c—specific heat capacity, and ρ—density.
The initial temperature of the substrate is equal to the ambient temperature:

T(x, y, z, t)|t=0 = T0. (2)

Boundary conditions on the front surface of the computational domain:

− λ
∂T
∂n

= qh(x, y), (3)

where qh (x, y) is the heat flux density.
The adiabatic boundary is set on other surfaces where there are no heat sources.
Heating of a product in the AM process is described as the action of a surface elliptical

heat source with a power density qh (x, y). In the x0y plane, the power-density distribution
is described by the Gaussian function:

qh(x, y) =
Qh · η
π · R2

H
sin β · exp

(
− (x sin β)2 + y2

R2
H

)
, (4)

where Qh—heat-source power, η—heat efficiency, RH—effective radius of the heat source,
and β—tilt angle.

2.2. Analytical Model of Non-Stationary Heat Transfer

The temperature increment at an arbitrary point with coordinates x, y, z (in a fixed
coordinate system) at any time t from an elementary point source that acted at time t’ on
the surface of a semi-infinite body is known and is equal to dT [28]:

dT(x, y, z, t, t′) =
2 q dt′

cρ[4πa(t− t′)]3/2 exp

(
− [x− vt′]2 + y2 + z2

4a(t− t′)

)
, (5)

where q—point heat-source power, v—heat-source moving speed (cladding speed), and
a—thermal diffusivity, equal to a = λ/(c·ρ).

When calculating the repeated heating and cooling process of thin-walled products, it
is impossible to neglect heat transfer to the environment, since it leads to a noticeable error
in determining the temperature. The smaller the deposited wall thickness, the greater the
heat-transfer effect to the environment. Considering the above, it is necessary to obtain a
non-stationary equation for the heat-propagation process, taking into account heat transfer
to the air.

Let it be supposed that the heat transfer occurs according to Newton’s law, but the
temperature along the thickness is equalized instantly. Then the heat transfer from the wall
side surfaces is taken into account by introducing the multiplier e−b(t−t′) into Equation (5).
It means only a decrease in the average temperature in the section, but does not consider
the temperature unevenness along the wall thickness. Thus, heat transfer is equivalent to a
volumetric heat sink, while the condition of the adiabatic boundary is still satisfied. Then
Equation (5) takes the form:

dT(x, y, z, t, t′) =
2 q dt′

cρ[4πa(t− t′)]3/2 exp

(
− [x− vt′]2 + y2 + z2

4a(t− t′)
− b(t− t′)

)
, (6)
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where b = 2α
cρh —coefficient of heat loss, α—coefficients of surface heat transfer, and h—wall

thickness.
A moving heat source can be represented as elementary instantaneous sources acting

sequentially and displaced relative to each other. Let us sum up the temperature increments
from all elementary sources that acted in the general case during the time from t1 to t2 and
make elementary transformations:

∆T(x, y, z, t, t1, t2) =
2 q

cρ(4πa)3/2 exp
(
−v(x− vt)

2a

) t2∫
t1

exp

(
−
[

v2

4a
+ b
]
(t− t′)− R(x, y, z)2

4a(t− t′)

)
dt′

(t− t′)3/2 , (7)

where R(x, y, z) =
√
(x− νt)2 + y2 + z2—distance from the heat source to the considered

point of the body, t—considered the moment in time, t1—the start time of the source action,
t2—the time when the source ends its action, and t > t2 ≥ t1 ≥0.

A sufficient condition for determining the temperature field when the source has not
yet stopped its action (when t = t2) is the difference between t and t2 by an infinitesimal
value o(t).

To obtain the temperature field at any time ∆T (x, y, z, t, t1, t2), it is necessary to
calculate the integral in Equation (7) with the limits of integration t1 and t2. For this, the
integral in Equation (7) is represented as the difference of two integrals. Then the solution
for a moving point source can be obtained using the substitution u2 = 1/

√
t− t′ and the

known integral 1.3.3.20 [29]:

∆T(x, y, z, t, t1, t2) =
2 q

4πλR
1
2 exp

(
− v(x−vt)

2a

)
·

·
{ [

exp
(
− RvB

2a

)
·Φ∗

(
−R

2
√

a(t−t2)
+

vB
√

(t−t2)

2
√

a

)
− exp

(
RvB
2a

)
Φ∗
(

R
2
√

a(t−t2)
+

vB
√

(t−t2)

2
√

a

)]
−

−
[
exp

(
− RvB

2a

)
·Φ∗

(
−R

2
√

a(t−t1)
+

vB
√

(t−t1)

2
√

a

)
− exp

(
RvB
2a

)
Φ∗
(

R
2
√

a(t−t1)
+

vB
√

(t−t1)

2
√

a

)] }
,

(8)

where R =
√
(x− v t)2 + y2 + z2, B =

√
1 + 4ba

v2 , Φ∗(u) = 1− 2√
π

u∫
0

e−u2
du.

Let us now consider the effect of the limited wall size under the assumption that its
boundaries are adiabatic. This assumption allows the use of the method of images. To
do this, it is necessary to mirror the actual heat source and each mirrored source from the
planes x = 0, x = L*, where L* is the wall length, from the planes z = 0 and z = H, where H is
the wall height (H = Hs + Hw), and also from the side wall boundaries y = W/2, y = −W/2,
where W is the wall width. As a result, we obtain a system of an infinite number of heat
sources. A cylindrical wall (generally a closed wall) can be represented as a single wall by
unwrapping the wall around one of its generatrices (Figure 1). Figures 2 and 3 show the
schematic of the reflection of sources along the x-axis for a single wall and a closed single
wall, respectively. The red color denotes imaginary sources for which k = 1, and the blue
color denotes that k = 1. The temperature field is calculated at an arbitrary point p.
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Then, the temperature field in a bounded wall is determined by the following sum of
the corresponding solutions for an unbounded semi-infinite body:

dT(x, y, z, t , t1 , t2 ) =
+∞
∑

p=−∞

+∞
∑

j=−∞

+∞
∑

n=−∞
∑
k

t2∫
t1

2 q dt′

cρ[4πa(t−t′)]3/2 ·

· exp
(
− [X−vt′ ]2+(y+jW)2+(z+2pH)2

4a(t−t′) − b(t− t′)
)

,

(9)

where X = k(x − 2nL∗)—for the case of a single wall; X = k(x − nL∗)—for the case of
a closed wall; k = −1, 1—for the case of a single wall; k = 1—for the case of a closed
wall; L* = L—for the case of a single wall and L* = 2πRw—for the case of a closed wall.
Summation over k and n considers the limited length; while for summation over j and p,
over width and height, respectively.

Let us integrate Equation (9) from t1 to t2, repeating all the steps that have been done
to obtain Equation (8) and take into account that the source can be distributed over the
surface of the computational domain. The result is the equation:
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dT(x, y, z, xs, ys, t, t1, t2) =
+∞
∑

p=−∞

+∞
∑

j=−∞

+∞
∑

n=−∞
∑
k

2 q(xs,ys)dxs dys
4πλR

1
2 exp

(
− v(X−vt−xs)

2a

)
·

·
{ [

exp
(
− RvB

2a

)
·Φ∗

(
−R

2
√

a(t−t2)
+

vB
√

(t−t2)

2
√

a

)
− exp

(
RvB
2a

)
·Φ∗

(
R

2
√

a(t−t2)
+

vB
√

(t−t2)

2
√

a

)]
−

−
[
exp

(
− RvB

2a

)
·Φ∗

(
−R

2
√

a(t−t1)
+

vB
√

(t−t1)

2
√

a

)
− exp

(
RvB
2a

)
·Φ∗

(
R

2
√

a(t−t1)
+

vB
√

(t−t1)

2
√

a

)] }
,

(10)

where R =
√
(X− vt− xs)2 + (y + jW − ys)2 + (z + 2pH)2; and xs, ys are the x, y coor-

dinates, respectively, of the point source in the coordinate system associated with the
source.

By shifting the origin for each pass in the AM process, it is possible to set the times t1

and t2 in such a way that t1 = 0 always, and t2 =

{
t− o(t), i f t ≤ L∗

v ;
L∗
v , i f t > L∗

v ;
. In this case, t1

and t2 are not arguments to the dT function.
When using a distributed heat source, it is necessary to integrate Equation (10) over

the source area (the area radius is equal to Rb). Then the heating temperature ∆Tpreh (x, y, z,
t, t1, t2) can be obtained as:

∆Tpreh(x, y, z, t, t1, t2) =

+W/2∫
−W/2

+Rb∫
−Rb

dT(x, y, z, xs, ys, t, t1, t2). (11)

The function series in Equation (10) generally converge rapidly, so in practice, it is
possible to limit the series to the first few terms. However, the longer the considered heating
or cooling time t and/or thermal diffusivity a, the greater the number of series terms must
be considered. In other words, the number of series terms is directly proportional to

√
4at.

The criterion for choosing the number of series terms is the fact that the tangent of the slope
of the tangent line to the temperature-distribution curve along the normal to the surfaces is
equal to 0 at the adiabatic boundary, which corresponds to an angle of 0◦.

It should be noted that the practical application of Equation (10) is not conve-
nient, since R can have a large value in absolute value, then in the product exp

(
RvB
2a

)
·

Φ∗
(

R
2
√

a(t−t1,2)
+

vB
√

t−t1,2

2
√

a

)
, the multiplier exp

(
RvB
2a

)
tends toward a large value, which

is taken as infinity (infinitely large value) when using mathematical and computational

software. The multiplier Φ∗
(

R
2
√

a(t−t1,2)
+

vB
√

t−t1,2

2
√

a

)
tends toward 0 (infinitesimal value).

Consequently, an indeterminate form of the type (0 × ∞) arises in Equation (10).
For the evaluation of the indeterminate form, let us use, for example, the known

approximation of the error function erf (x) using elementary functions 7.1.26 [30]:

erf(x) = 1−
(

a1k + a2k2 + . . . + a5k5
)

e−x2
+ ε(x), (12)

where k = 1
1+px , |ε(x)| ≤ 1.5 · 10−7, x = R

2
√

a(t−t1,2)
+

vB
√

t−t1,2

2
√

a , p = 0.3275911, a1 =

0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, and a5 = 1.061405429.
Using Equations (10) and (12) and performing elementary transformations, it is easy

to get rid of the indeterminate form.

2.3. Influence of the Substrate on the Temperature Field

The next step is to consider the effect of the substrate and the wall height on the
deposited wall temperature. The conditions for the formation of the layers differ as to their
number increases. It is primarily due to the different heat-removal conditions caused by
the heat accumulation in the wall and substrate during the initial deposition period and by
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an increase in the wall temperature. Upon reaching a steady state of the deposition process,
the wall temperature stops rising.

It is convenient to use Green’s function method to calculate the temperature field
for bodies with a simple geometric shape. The cross-section of the wall deposited on the
substrate has a T-shape, which complicates the use of this method.

In this regard, an equivalent computation scheme for calculating temperature fields
was considered. Imagine a wall on a substrate as just a wall, removing the side parts of
the substrate (Figure 4). To take into account the removed mass of the substrate, let us
introduce heat sinks with certain energy equal to that accumulated in the substrate during
deposition. These fixed sinks are activated as the real heat source moves, thereby the
introduced sinks simulate the presence of a substrate.
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The temperature increment in the equilibrium state after the next pass is:

∆T =
Q
cm

=
Qh η L∗

v
cρVs + cρVw

, (13)

where Vs—the substrate volume, and Vw—the wall volume.
To find the energy of the sinks, it is necessary that the increment in the wall temper-

ature in the absence of a substrate corresponds to the increment in the wall temperature
in the presence of a substrate. Thus, the total energy of the sinks in the nth passage is
determined from the expression:

En = Qh η
L∗

v

(
1− cρVs

′ + cρVw(n)
cρVs + cρVw(n)

)
, (14)

where Vs
′—truncated substrate volume, and Vw (n)—wall volume on the nth passage.

To find the power of each fixed sink, it is necessary to know the time of their action tsn
and the total energy of all sinks En, which is already known. The action time of the sinks is
proportional to the distribution time of uneven temperature; that is, tsn ∼ Rn

2

4a , where Rn
is the characteristic size of the deposition wall after n passes. So, the power of each sink is:

qn
s =

En

2 ·
m−1
∑

i=0

(
tsn − i

m
L∗
v

) , (15)

where m—number of sinks.
The total energy of the sinks decreases with an increase in the number of layers, and

the action time increases, which indicates a decrease in the influence of the substrate as the
wall height increases.

To take into account the inertia of the heat-propagation process, the sinks act with a

delay ∆tsn relative to the real heat-source action (see Figure 4), while ∆tsn ∼ H2
n

4a .
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The equation describing the temperature field created by fixed-point sinks on the
surface of a semi-infinite body can be obtained by setting v = 0 in Equation (8). Then, the
equation describing heat propagation, considering the limited wall size, has the form:

∆Tsk(x, y, z, t) = ∑
u=−1,1

+∞
∑

p=−∞

+∞
∑

j=−∞

+∞
∑

n=−∞
∑
k

m−1
∑

i=0

2 q
4πλR

1
2 ·

·
{ [

exp
(
− R
√

b√
a

)
·Φ∗

(
−R+

√
4ba(t−ti

2)

2
√

a(t−ti
2)

)
− exp

(
R
√

b√
a

)
Φ∗
(

R+
√

4ba(t−ti
2)

2
√

a(t−ti
2)

)]
−

−
[
exp

(
− R
√

b√
a

)
·Φ∗

(
−R+

√
4ba(t−ti

1)

2
√

a(t−ti
1)

)
− exp

(
R
√

b√
a

)
Φ∗
(

R+
√

4ba(t−ti
1)

2
√

a(t−ti
1)

)] }
,

(16)

where R =

√(
k(x− 2nL∗)−

[
i
m L∗

])2
+ (y− W

2 + jW)
2
+ (z− u

(
H − Hs

2

)
+ 2pH)

2
,

ti
1 =

{
t− o(t), i f t ≤ i

m
L∗
v + ∆ts;

i
m

L∗
v + ∆ts, i f t > i

m
L∗
v + ∆ts;

ti
2 =

{
t− o(t), i f t ≤ ts + ∆ts;
ts + ∆ts, i f t > ts + ∆ts;

In Equation (16), the summation over i is additionally introduced, which considers
the action of each activated sink at the considered moment of time.

Taking into account the linearity of the thermal problem, the temperature field of
heating on the nth layer Tn is presented as the sum of the temperature fields as a result of
the heat-source action and the heat-sink action at each pass.

In this work, the temperature field Tn after the deposition of the nth number of layers,
taking into account the linearity of the thermal problem, is represented as a temperature
field as a result of the heat-source action depositing the nth layer, in front of which are
n−1 heat sources, and also the action of sinks. These heat sources and sinks have equal
or different power and operate at equal or different intervals of time, depending on the
deposition strategy or scheme. Then, the heating temperature can be calculated using the
following equation:

Tn(x, y, z, t) = T0 +
n−1

∑
i=0

[
∆Tpreh

(
x, y, z, t + i

[
L∗

v
+ tpause

])
− ∆Tsk

(
x, y, z, t + i

[
L∗

v
+ tpause

]) ]
, (17)

where tpause—the pause time between passes, index i = 0 corresponds to the last pass, and
index i = n − 1 corresponds to the first pass.

3. Results and Discussions

To verify the developed non-stationary heat-transfer model, two deposition processes
were chosen and simulated. The first process was the DLD (direct laser deposition) process
of a thin wall using Ti-6Al-4V powder [31], and the second process was the WAAM (wire arc
additive manufacturing) process of a cylindrical thin wall using H08Mn2Si steel wire [32].
Type K thermocouples were used to measure the temperature. In the case of the DLD,
the thermocouple was located on the substrate surface opposite the center of the wall
at a distance of 0.5 mm. In the case of WAAM, the thermocouple was located on the
substrate surface at a distance of 3 mm from the cylindrical wall. Both experiments were
accompanied by calculations using numerical methods. The parameters of the modes
are presented in Table 1. Details of the conditions for setting up experiments, placement
of thermocouples, simulation parameters, and the values of thermophysical properties
are described in detail in the corresponding works. It is worth mentioning that in the
simulation in this work, the values of properties were adopted as constant, and averaged
in the temperature interval between the ambient temperature and the melting point.
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Table 1. Deposition-mode parameters.

Process Heat Source Power (W) Cladding Speed
(mm·s−1)

Heat Convection
(W·K−1·m−2) Heat Efficiency Pause Time(s)

DLD laser 600 6 20 0.35 0
WAAM arc 2850 5 5.7 0.85 33

Figure 5 shows the compared results of the experimental data of temperature, as well
as the data obtained using numerical methods with the calculations performed according
to this work. Figure 6 shows the calculated temperature distribution in the deposited wall
in its longitudinal section when the 20th layer was cladded. Figure 7 shows the comparing
results of the experimental data of cylindrical wall temperature, as well as the data obtained
using numerical methods with the calculations made according to this work.
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The calculated transient temperature fields agreed satisfactorily with the experimental
results both in the heating phase and in the free-cooling phase. In Figure 5, the calculated
curve shows an increased temperature-change amplitude in comparison with the exper-
imental data after 75 s. This can be explained by the fact that the experimental sample
had a more complex cross-sectional shape, which allowed the heat flux to diverge in all
directions at the junction of the wall and the substrate. Thus, it led to a decrease in the
temperature change amplitude in the region below the plane of junction between the wall
and the substrate. When measuring the wall temperature directly, this effect did not appear.
It is worth mentioning that the calculations were performed under cardinally different
conditions; namely, the heat sources, the process parameters, the movement trajectory, and
the pause time were different. This fact suggests that the developed model made it possible
to reproduce temperature fields in a wide range of technological process parameters and for
various product configurations. Ignoring heat transfer to the environment greatly distorts
the temperature, and given the specificity of additive manufacturing technologies in the
form of multiple heating and cooling processes, it leads to a significant error. In addition,
this method made it possible to calculate temperature fields in times in the order of several
minutes using a personal computer. For this reason, this calculation method can be used to
predict the temperature of large parts.

4. Conclusions

The three-dimensional, non-stationary heat-transfer model was developed for the
direct deposition processes of thin-walled parts with various configurations. The calculated
transient temperature fields obtained using the developed model agreed satisfactorily with
the experimental results, both in the heating phase and in the free-cooling phase. At the
same time, the presented calculations were performed with cardinally different input
parameters of the model; namely, the types of heat sources, the process technological
parameters, thermophysical properties of materials, movement trajectories, and pause
times were different. These facts suggest that the model allowed reproducing three-
dimensional temperature fields in a wide range of technological process parameters and
for various product configurations.

To develop the model, a three-dimensional analytical solution of the non-stationary
heat-conduction equation for a moving distributed heat source was obtained, taking into
account heat transfer to the environment. The model made it possible to calculate all the
temperature field characteristics; in particular, thermal cycles, temperature gradients, and
the cooling rate in a path during the deposition process at any time. In this case, the wall
and the substrate sizes, the change in power from layer to layer, the pause time between
passes, and the trajectory of the heat source were taken into account.
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Thus, the developed model can be used to predict temperature fields, as well as to
study the degree of influence of local quasiperiodic temperature fields, which always
accompany direct deposition processes, on structural phase transformations.

The proposed calculation scheme applies to thin-walled products; however, it can
be extended for the case of multi-pass thick walls. In addition, this model can be easily
adapted to various direct deposition technologies that use a laser, electron beam, plasma,
or arc as the main heat source.

Author Contributions: Conceptualization, G.T.; methodology, D.M. and E.V.; validation, D.M., G.T.
and E.V.; formal analysis, D.M. and E.V.; investigation, D.M., G.T. and E.V.; writing—original draft
preparation, D.M.; writing—review and editing, D.M. and E.V.; visualization, D.M.; supervision,
G.T.; project administration, E.V.; funding acquisition, G.T. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was partially funded by the Ministry of Science and Higher Education of
the Russian Federation as part of the World-Class Research Center program: Advanced Digital
Technologies (contract no. 075-15-2020-903 dated 16 November 2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Uriondo, A.; Esperon-Miguez, M.; Perinpanayagam, S. The present and future of additive manufacturing in the aerospace sector:

A review of important aspects. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2015, 229, 2132–2147. [CrossRef]
2. Gisario, A.; Kazarian, M.; Martina, F.; Mehrpouya, M. Metal additive manufacturing in the commercial aviation industry: A

review. J. Manuf. Syst. 2019, 53, 124–149. [CrossRef]
3. Ahn, D.-G. Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. Int.

J. Precis. Eng. Manuf. Technol. 2016, 3, 381–395. [CrossRef]
4. Busachi, A.; Erkoyuncu, J.A.; Colegrove, P.; Martina, F.; Watts, C.; Drake, R. A review of Additive Manufacturing technology and

Cost Estimation techniques for the defence sector. CIRP J. Manuf. Sci. Technol. 2017, 19, 117–128. [CrossRef]
5. Korsmik, R.; Tsybulskiy, I.; Rodionov, A.; Klimova-Korsmik, O.; Gogolukhina, M.; Ivanov, S.; Zadykyan, G.; Mendagaliev, R. The

approaches to design and manufacturing of large-sized marine machinery parts by direct laser deposition. Procedia CIRP 2020,
94, 298–303. [CrossRef]

6. Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [CrossRef]
7. Babkin, K.D.; Cheverikin, V.V.; Klimova-Korsmik, O.G.; Sklyar, M.O.; Stankevich, S.; Turichin, G.A.; Travyanov, A.Y.; Valdaytseva,

E.A.; Zemlyakov, E.V. High-Speed Laser Direct Deposition Technology: Theoretical Aspects, Experimental Researches, Analysis of
Structure, and Properties of Metallic Products. In Proceedings of the Scientific-Practical Conference “Research and Development—
2016”, Moscow, Russia, 14–15 December 2016; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017;
pp. 501–509.

8. Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [CrossRef]
9. Klimova-Korsmik, O.; Turichin, G.; Zemlyakov, E.; Babkin, K.; Petrovskiy, P.; Travyanov, A. Technology of High-speed Direct

Laser Deposition from Ni-based Superalloys. Phys. Procedia 2016, 83, 716–722. [CrossRef]
10. Hu, Y.; Cong, W. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites.

Ceram. Int. 2018, 44, 20599–20612. [CrossRef]
11. Promakhov, V.; Zhukov, A.; Ziatdinov, M.; Zhukov, I.; Schulz, N.; Kovalchuk, S.; Dubkova, Y.; Korsmik, R.; Klimova-Korsmik, O.;

Turichin, G.; et al. Inconel 625/TiB2 Metal Matrix Composites by Direct Laser Deposition. Metals 2019, 9, 141. [CrossRef]
12. Heigel, J.; Michaleris, P.; Reutzel, E. Thermo-mechanical model development and validation of directed energy deposition

additive manufacturing of Ti–6Al–4V. Addit. Manuf. 2015, 5, 9–19. [CrossRef]
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