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Abstract: The remarkable properties of shape memory alloys (SMA) are attracting significant tech-
nological interest in many fields of science and engineering. In this paper, a nonlinear dynamic
analytical model is developed for a laminated beam with a shape memory alloy layer. The model
is derived based on Falk’s polynomial model for SMAs combined with Timoshenko beam theory.
In addition, axial velocity, axial pressure, temperature, and complex boundary conditions are also
parameters that have been taken into account in the creation of the SMA dynamical equation. The
nonlinear vibration characteristics of SMA laminated beams under 1:3 internal resonance are studied.
The multi-scale method is used to solve the discretized modal equation system, the characteristic
equation of vibration modes coupled to each other in the case of internal resonance, as well as the
time-history and phase diagrams of the common resonance amplitude in the system are obtained.
The effects of axial velocity and initial conditions on the nonlinear internal resonance characteristics
of the system were also studied.

Keywords: shape memory alloy; axially moving laminated beam; 1:3 internal resonance; nonlin-
ear dynamic

1. Introduction

Shape memory alloy (SMA) is widely used in machinery, electronics, aerospace, civil
engineering, energy, and medicine. With special shape memory and pseudo-elasticity, it is
more sensitive to stress and temperature changes and more deformable and resilient than
its ordinary metal counterparts. In practical applications, SMA particles, wires, or strips
are often inserted into other matrix materials, or an SMA membrane is applied over the
surface of a beam or plate matrices to form an SMA composite structure [1].

SMA as the surface and linear-elastic materials as the interlayer make up laminated
structures, of which laminated beams are a common form. Machado [2] and Savi et al. [3]
investigated the dynamic characteristics and chaotic behavior of coupled SMA oscillators
through numerical approaches. Ren et al. [4–6] carried out a series of work on SMA com-
posite beams which analyzed the influence of fiber laying angle and the content percentage
of SMA on the equivalent damping ratio of the beam, and the vibration frequency response
characteristics of the beam structure. Collet et al. [7] considered a symmetry assumption
for SMA under tensile, compressive, and temperature loads, and examined the dynamic be-
havior of the material by applying moving external loads to SMA beams. Odeny D. et al. [8]
studied the nonlinearity of the aeroelastic behavior of reinforced SMA hybrid composite
(SMAHC) cylindrical plate on a microscopic mechanics model of carbon fiber–SMAHC lam-
inated plate using a layered Rayleigh–Ritz procedure. Akhavan-Rad B. et al. [9] applied the
high-order sandwich panel theory to the vibration of SMA wire-embedded laminated plate
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and provided an analytical solution to the nonlinear control equation for simply-supported
sandwich panels under uniform and sinusoidal loading. Reza Razavilar et al. [10] devel-
oped a semi-analytical method to examine the free and forced vibration of SMA beams,
modeled the control dynamic equation for SMA beams coupled with deformation strain,
and analyzed the dynamic characteristics of these beams using phase trajectory.

A large number of constitutive models, including the piecewise-linear model, Brin-
son’s polynomial constitutive model, and Falk’s model, have been developed to describe
the shape memory and pseudo-elasticity of SMA. Lu P et al. [11] proposed a relatively
common constitutive SMA–fiber constitutive relation and built a bending theory model of
SMA fiber-reinforced composite laminated beams without considering the stress relation
between the SMA layer and the matrix layer. Wu et al. [12] developed a singularity theory
for multi-piece description of bifurcations on a Tanaka–Liang–Brinson model by describing
the delayed constitutive relation of SMA with a flag-shaped piecewise linear function
and investigated the nonlinear vibration of SMA laminated beams by building a dynamic
model on the basis of their piecewise linear constitutive relation. Brinson’s constitutive
model is widely used because of its simplicity and effectiveness. Fu [13] addressed the free
vibration of SMA fiber-embedded composite laminated beams using Brinson’s polynomial
constitutive model to consider their stress–strain relation. Asadi [14,15] built a control
equation for laminated beams with SMA fibers that considered the effects of thermal and
aerodynamic loads using Brinson’s polynomial constitutive model; they investigated the
thermodynamic behavior of SMA laminated beams.

These investigations have found many interesting and complex dynamics of the
laminated beam, in the meantime, nonlinear dynamics with an internal resonance have
also been promoted. Zhang et al. [16] examined the 1/3rd subharmonic resonance and 3rd
super harmonic resonance of simply-supported SMA laminated beams. Wang et al. [17]
established the nonlinear vibration equation of an axially moving conductive beam in the
magnetic field through the Hamiltonian principle, then analyzed the nonlinear vibration
characteristics of the free vibrating beam under 1:3 internal resonances. Zhang et al. [18]
studied the parametric vibration responses in supercritical fluid-conveying pipes in the 3:1
internal resonance condition. Yang et al. [19] considered a composite cantilever piezoelectric
plate with one-to-three internal resonance. Zhang et al. [20] investigated the dynamic
stability of axially transporting viscoelastic beams with two frequency parametric excitation
and 1:3 internal resonance in which the direct method of multiple scales is employed to
obtain the solvability conditions in principal parametric resonances. Wang et al. [21]
developed a model that proposed an axially moving nano beam with two kinds of scale
effects. Based on the root discriminant of the frequency amplitude equation under internal
resonance conditions, theoretical analyses are performed to investigate the scale effects
of the resonance region and the critical external excitation amplitude. Zhang et al. [22]
investigated the instability boundaries of axially accelerating plates with internal resonance.
By the method of multiple scales, they established the modified solvability conditions in
principal parametric and internal resonances. Hu et al. [23,24] explored the nonlinear
dynamics of a super critically moving beam and a traveling viscoelastic beam under the
3:1 internal resonance condition. The direct multi-scale method is used to derive the
relationships between the excitation frequency and the response amplitudes. Zhu et al. [25]
investigated the nonlinear dynamical behaviors of an axially accelerating viscoelastic
sandwich beam subjected to three-to-one internal resonance and parametric excitations
resulting from simultaneous velocity and tension fluctuations. Bamadev et al. [26] used
the direct method of multiple scales to analyze the joint influence of the combination of
parametric resonance and internal resonance with the focus on steady state responses of
the axially moving viscoelastic beam.

An axially moving beam is presently used in a wide range of industrial applications,
such as band saws, and power transmission belts. Studies have shown that the beam could
oscillate so acutely that the real-life of the device is reduced. However, an internal resonance
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in the laminated SMA beam has not been reported so far. Hence, the present work aims to
investigate the nonlinear dynamics of the axially SMA beam with internal resonances.

An axially moving beam is also a simplified model for many aircraft structures, and
its velocity has a significant effect on its vibration characteristics. To determine the internal
resonance of axially moving SMA laminated beams, in this paper, we establish a trans-
verse vibration equation for SMA laminated beams under axial loading using the widely
accepted continuously smooth polynomial constitutive model. Considering the influence
of axial velocity, the multi-scale method is used to solve the nonlinear vibration equation
of clamped-hinged SMA laminated beam, and 1:3 internal resonances are analyzed.

2. Dynamic Modelling of SMA Laminated Beam in Axial Movement
2.1. Polynomial Constitutive Relationship of SMA

Based on the Landau–Devonshire thermodynamics theory, Falk proposed a polyno-
mial free energy equation, then Savi and Braga [27] obtained the coefficients of the free
energy function and the constitutive equation is given by:

σ = a(T − TM)ε− bε3 + eε5 (1)

where a and b are positive material constants and e = b2

4a(TA−TM)
. TA is the temperature

above which austenite is stable and TM is the temperature below which marten site is stable.
a = 1× 103 MPa/K, b = 40× 106 MPa, TA = 313 K, and TM = 287 K, which were obtained
from experiments in Ref. [27], and the stress–strain curve is shown in Figure 4b [27].

The merits of the SMA polynomial constitutive relation lie in its simplicity. Hao et al.’s [28]
research also shows that the polynomial model can qualitatively describe the dynamic
behaviors of SMA. For a SMA laminated beam with complex structure and complicated
stress conditions, it is sometimes difficult to obtain the dynamics equation of the system by
using other constitutive models, and the nonlinear dynamics characteristics of the system
can be easily obtained and analyzed by using this constitutive model.

2.2. Vibration Equation of SMA Laminated Beam

Figure 1 provides the structural diagram of a SMA laminated beam. The laminated
beam that is subject to axial load P, and the beam’s length is L, width is b1; and the
height of the matrix beam is H, the thickness of the upper and lower SMA layers is h, the
axial movement velocity is dx

dt = v. Where oxz is the stationary coordinate system, with
traverse displacement being recorded as w(x, t), the beam traverse movement velocity is
dw
dt = ∂w

∂t + v ∂w
∂x and the acceleration is d2w

dt2 = ∂2w
∂t2 + 2v ∂2w

∂x∂t + v2 ∂2w
∂x2 .

Materials 2021, 14, x FOR PEER REVIEW 3 of 14 
 

 

oscillate so acutely that the real-life of the device is reduced. However, an internal reso-
nance in the laminated SMA beam has not been reported so far. Hence, the present work 
aims to investigate the nonlinear dynamics of the axially SMA beam with internal reso-
nances. 

An axially moving beam is also a simplified model for many aircraft structures, and 
its velocity has a significant effect on its vibration characteristics. To determine the internal 
resonance of axially moving SMA laminated beams, in this paper, we establish a trans-
verse vibration equation for SMA laminated beams under axial loading using the widely 
accepted continuously smooth polynomial constitutive model. Considering the influence 
of axial velocity, the multi-scale method is used to solve the nonlinear vibration equation 
of clamped-hinged SMA laminated beam, and 1:3 internal resonances are analyzed. 

2. Dynamic Modelling of SMA Laminated Beam in Axial Movement 
2.1. Polynomial Constitutive Relationship of SMA 

Based on the Landau–Devonshire thermodynamics theory, Falk proposed a polyno-
mial free energy equation, then Savi and Braga [27] obtained the coefficients of the free 
energy function and the constitutive equation is given by:  

σ ε ε ε= − − +3 5( )Ma T T b e  (1)

where a and b are positive material constants and =
−

2

4 ( )A M

be
a T T

. TA is the temperature 

above which austenite is stable and TM is the temperature below which marten site is sta-
ble. = × 31 10 MPa/Ka , = × 640 10 MPab , =A 313KT , and =M 287KT , which were ob-
tained from experiments in Ref. [27], and the stress–strain curve is shown in Figures 4.2 
[27]. 

The merits of the SMA polynomial constitutive relation lie in its simplicity. Hao et 
al.’s [28] research also shows that the polynomial model can qualitatively describe the 
dynamic behaviors of SMA. For a SMA laminated beam with complex structure and com-
plicated stress conditions, it is sometimes difficult to obtain the dynamics equation of the 
system by using other constitutive models, and the nonlinear dynamics characteristics of 
the system can be easily obtained and analyzed by using this constitutive model. 

2.2. Vibration Equation of SMA Laminated Beam 
Figure 1 provides the structural diagram of a SMA laminated beam. The laminated 

beam that is subject to axial load P , and the beam’s length is L , width is 1b ; and the 
height of the matrix beam is H , the thickness of the upper and lower SMA layers is h, the 

axial movement velocity is =d
d

x v
t

. Where oxz is the stationary coordinate system, with 

traverse displacement being recorded as ( , )w x t , the beam traverse movement velocity is 
∂ ∂= +
∂ ∂

d
d

w w wv
t t x

 and the acceleration is ∂ ∂ ∂= + +
∂ ∂∂ ∂

2 2 2 2
2

2 2 2

d 2
d

w w w wv v
x tt t x

. 

 
Figure 1. Axially moving SMA laminated beam structural diagram. Figure 1. Axially moving SMA laminated beam structural diagram.

Hao et al. [28] gives the force diagram of the micro-body. Considering only the
transverse vibration of the beam and omitting the influence of the axial deformation, the
transverse vibration equation of the main beam can be obtained.

−E b1 H3

12
∂4w
∂x4 + H

2 Eb1H[( ∂2w
∂x2 )

2
+ ∂w

∂x
∂3w
∂x3 ]− b1Hh[a(T − TM)H+h

2
∂4w
∂x4 − 3

8 b(H + h)3( ∂w
∂x )

2 ∂4w
∂x4

− 3
4 b(H + h)3 ∂2w

∂x2 (
∂3w
∂x3 )

2
+ 5

32 e(H + h)5( ∂2w
∂x2 )

4
∂4w
∂x4 + 5

8 e(H + h)5( ∂2w
∂x2 )

3
( ∂3w

∂x3 )
2
]− P ∂2w

∂x2 − ρb1H d2w
dt2 − c ∂w

∂t = 0
(2)
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3. Internal Resonance
3.1. Differential Equation of Vibration

The experimental records from these tests were obtained under constant conditions.
The cutting parameters were: the spindle speed of the cutter was 10,400 r/min, the feed
rate was 1555 mm/min, the Y depth of cut (radial) was 0.125 mm, and the Z depth of cut
(axial) was 0.2 mm. The data were acquired at 50 kHz/channel; the experimental setup is
shown in Figure 2.
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One end was fixed and the other end simply supported the boundary condition. The
expression of the laminated SMA beam is:

w|x=0 = 0,
∂w
∂x

∣∣∣∣
x=0

= 0 (3)

w|x=l = 0,
∂2w
∂x2

∣∣∣∣
x=l

= 0 (4)

The assumed displacement solution satisfying the particular boundary conditions can
be described in the form of [17] as Equation (5):

w =
2

∑
n=1

Yn(t)Xn(x) (5)

where Yn(t) denotes the amplitude of the mode, and the function Xn(x) is determined by:

Xn = cosh pnx− cos pnx− ζn(sinhpnx− sin pnx),

ζn = cosh pn l+cos pn l
sinhpn l+sin pn l ,

pn = (4n+1)π
4l

(6)

Substituting Equation (2) with Equation (5), the vibration differential equations of
the axially moving laminated SMA beam can be obtained by the dimensionless method,
as follows:
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−ρb1H
2
∑

n=1
Ani

..
Yn(t) +

2
∑

n=1
(−2ρb1HvBni − cAni)

.
Yn(t) +

2
∑

n=1

{
PCni − 2ρb1Hv2Cni − E b1 H3

12 Dni

− 1
2 b1Hh[a(T − TM)(H + h)]

}
Yn(t) +

2
∑

n=1

1
2 Eb1H2EniY2

n + 1
2 Eb1H2S1iY1Y2 +

2
∑

n=1
[ 3

2 Eb1HFni − 3
8 b(H + h)3(−b1Hh)Gni]Y3

n

+ 3
2 Eb1H(S2iY2

1 Y2 + S3iY1Y2
2 )−

3
8 b(H + h)3(−b1Hh)(S4iY2

1 Y2 + S5iY1Y2
2 )

+
2
∑

n=1
[ 5

32 e(H + h)5(−b1Hh)Hni]Y5
n + 5

32 e(H + h)5(−b1Hh)(S6iY4
1 Y2 + S7iY1Y4

2 + S8iY3
1 Y2

2 + S9iY2
1 Y3

2 ) = 0

(7)

where the main coefficients are provided in Appendix A.
By introducing the non-dimensional parameters, qn = Yn/L, H1 = h/H, H2 = H/L,

E1 = a(T−TM)
E , E2 = b

E , E3 = e
E , and simplifying the coefficients with the integral coeffi-

cients, the non-dimensional quantities of the laminated SMA beam are obtained:
..
q1(t) + ω2

1q1(t) + g2
1q2(t) + µ11

.
q1(t) + µ12

.
q2(t) + (a21q2

1 + a22q2
2 + a23q1q2) + (a31q3

1 + a32q3
2

+a33q2
1q2 + a34q1q2

2) + (a51q5
1 + a52q5

2 + a53q4
1q2 + a54q1q4

2 + a55q3
1q2

2 + a56q2
1q3

2) = 0
(8)

..
q2(t) + ω2

2q2(t) + g2
2q1(t) + µ21

.
q1(t) + µ22

.
q2(t) + (b21q2

1 + b22q2
2 + b23q1q2) + (b31q3

1 + b32q3
2

+b33q2
1q2 + b34q1q2

2) + (b51q5
1 + b52q5

2 + b53q4
1q2 + b54q1q4

2 + b55q3
1q2

2 + b56q2
1q3

2) = 0
(9)

where the coefficients are provided in Appendix B.

3.2. Application of Multi-Scale Method

In this part, the 1:3 internal resonance of the SMA laminated beam will be solved by
the method of multiple scales [29].

After introducing a small parameter ε and different time variables, the approximate
solution can be expressed as follows:

q1 = q11(T0, T1) + εq12(T0, T1)
q2 = q21(T0, T1) + εq22(T0, T1)

(10)

By substituting Equation (10) with Equations (8) and (9), after expansion, the coeffi-
cients of the same power term of ε were equal, and the approximate equation of ε0 and ε1

can be obtained. Approximate equations for ε0:

D2
0q11 + ω2

1q11 = 0 (11)

D2
0q21 + ω2

2q21 = 0 (12)

Approximate equations for ε1:

D2
0q12 + ω2

1q12 =
(
−2D1q11 − µ11q11 − µ12q21)D0 − (a21q2

11 + a22q2
21 + a23q11q21)− (a31q3

11 + a32q3
21 + a33q2

11q21 + a34q11q2
21)

−(a51q5
11 + a52q5

21 + a53q4
11q21 + a54q11q4

21 + a55q3
11q2

21 + a56q2
11q3

21)
(13)

D2
0q22 + ω2

2q22 =
(
−2D1q21 − µ21q11 − µ22q21)D0 − (b21q2

11 + b22q2
21 + b23q11q21)− (b31q3

11 + b32q3
21 + b33q2

11q21 + b34q11q2
21)

−(b51q5
11 + b52q5

21 + b53q4
11q21 + b54q11q4

21 + b55q3
11q2

21 + b56q2
11q3

21)
(14)

where, D0 = ∂
∂T0

, D1 = ∂
∂T1

, D2
0 = ∂2

∂T0
2 , D2

1 = ∂2

∂T1
2 .

The general solution of Equations (10) and (11) could be written as:

q11 = A1(T1)eiω1T0 + A1(T1)e−iω1T0 (15)

q21 = A2(T1)eiω2T0 + A2(T1)e−iω2T0 (16)

where A1(T1) is a function at this point, A1(T1) is the conjugate of A1(T1), and i is an
imaginary unit. If we consider 1:3 internal resonance, after introducing the detuning
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parameter σ(ω2 = 3ω1 + εσ), we could obtain the following equation by substituting
Equations (15) and (16) with Equations (13) and (14).

−2D1 A1ω1i− µ11 A1ω1i− 3a31 A2
1 A1 − 2a34 A1 A2 A2 − 10a54 A1

3 A1
2 − 6a54 A1 A2

2 A2
2

−6a55 A1
2 A1 A2 A2 + (a33 A1

2 A2 − 4a53 A1 A1
3 A2 − 3a56 A1

2 A2
2 A2)eiσT1 = 0

(17)

−2D1 A2ω2i− µ22 A2ω2i− 3b32 A2
2 A2 + 2b33 A1 A1 A2 − 10b52 A2

3 A2
2 − 6b53 A1

2 A1
2 A2

−6b56 A1 A2
2 A2 + (−b31 A1

3 − 5b51 A1
4 A1 − 2b55 A1

3 A2 A2)eiσT1 = 0
(18)

In order to solve Equations (17) and (18), the complex function An is written as:

An(T1) =
1
2

an(T1)eiβn (19)

where n = 1, 2, and an and βn are real functions.
Then, substituting Equation (19) with Equations (17) and (18), separating the real and

imaginary parts, gave γ = β2 − 3β1 + σT1, we obtain:

2a′1ω1 −
1
2

µ11a1ω1 +
1
8

a33a2
1a2 sin γ− 1

8
a53a4

1a2 sin γ− 3
32

a56a2
1a2

3 sin γ = 0 (20)

2a′2ω2 −
1
2

µ22a2ω2 −
1
8

b31a3
1 sin γ− 5

32
b51a5

1 sin γ− 1
16

b55a3
1a2

2 sin γ = 0 (21)

2a1β′1ω1 −
3
8

a31a3
1 +

1
8

a33a1
2a2 cos γ− 1

4
a34a1a2

2 −
5

16
a51a5

1 −
1
8

a53a1
4a2 cos γ− 3

16
a55a1

3a2
2 − 3

32
a56a1

2a2
3 cos γ = 0 (22)

2a2β′2ω2 −
1
8

b31a3
1 cos γ− 3

8
b32a3

2 +
1
4

b33a2
1a2 −

5
32

b51a5
1 cos γ− 5

16
b52a5

2 −
3
16

b53a4
1a2 −

1
16

b55a3
1a2

2 cos γ− 3
16

b56a2
1a3

2 = 0 (23)

Then β1 and β2 can be eliminated by the Equations (22) and (23), we get:

a2γ′ = a2σ +
(

3a34
8ω1
− 3b32

16ω2

)
a3

2 +
(

9a31
16ω1

+ b33
8ω2

)
a2

1a2 +
(

9a54
32ω1
− 5b52

32ω2

)
a5

2 +
(

15a51
32ω1
− 3b53

32ω2

)
a4

1a2 +
(

9a55
32ω1
− 3b56

32ω2

)
a2

1a3
2

+

(
− 3a33a1a2

2
16ω1

− b31a3
1

16ω2

)
cos γ +

(
3a53
16ω1
− b55

32ω2

)
a3

1a2
2 cos γ +

(
9a56a1a4

2
64ω1

− 5b51a5
1

64ω2

)
cos γ

(24)

To analyze the steady-state motion of the 1:3 internal resonance, we can obtain the
equation a′1 = a′2 = γ′ = 0 from Equations (20)–(24).

4. Influence of Parameters for the Internal Resonances of Laminated SMA Beam

The nonlinear dynamic analytical model is cast into state-space form, non-dimensionalized,
and then solved numerically into the time domain using a fourth-order Runge–Kutta
scheme. The MATLAB programming is used to solve the dimensionless amplitude
modalities—a1 and a2, and carried on computer simulation.

For the axially moving laminated SMA beam, let L = 0.5 m, b1 = 0.05 m, H = 0.02 m,
E = 206 GPa, ρ = 7900 kg/m3, and T = 300 K. In Table 1, the first and second natural
frequencies of the system corresponding to different axial velocities and the thickness ratio
of the SMA layer to the base beam (H1 = h

H ) are given. It can be found that the first two
natural frequencies decrease slightly with the increase in axial velocity, and the first two
natural frequencies also decrease slightly with the decrease in SMA layer thickness.
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Table 1. Natural frequency and thickness ration of SMA to base beam.

Axial Velocity m/s h/H w1 w2

v = 0 m/s 0.35 0.5546 1.6630
v = 40 m/s 0.32 0.5503 1.6502
v = 80 m/s 0.22 0.5372 1.6112

4.1. System without Damping

Resonance is very sensitive to the initial conditions. For v = 0 m/s, H1 = 0.22, and
T = 300 K, Figures 2 and 3 show the time-history and the spectrum of a free, un-damping
nonlinear vibration system with different initial conditions and dimensionless amplitude
modalities—a1 and a2. Figure 2 shows the modal amplitude chart with different initial
values: a10 = a20 = 0.01 (black), a10 = a20 = 0.012 (red), and a10 = a20 = 0.016 (blue).
The 1:3 internal resonance can be observed in the system and its energy varies from the
first-order mode (solid line) to second-mode (dashed line), presenting a periodic motion.
Moreover, the fluctuation range of the first-order modal amplitude is greater than that
of the second-order modal. As can be seen from the spectrogram, with the increase in
the initial value, the vibration frequency of a second mode of the system also increases,
illustrating the nonlinear vibration characteristics of the system.
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Figure 4 shows a graph of the changes of amplitude over time for two different groups
a1 and a2 with v = 0 m/s, H1 = 0.22, and T = 300 K. The initial value of the modal
amplitude is a10 = a20 = 0.012. The initial value increases from 0 to 2π, the fluctuation
region of the first-order modal amplitude reduced with the increase in γ0, but the vibration
frequency of the first and second modes do not change significantly. A similar conclusion
was also found in [17].

Figures 5–7 demonstrate the time spectrum when H1 = 0.22, T = 300 K, and σ = 0.001.
The initial value of the amplitude are respectively a10 = a20 = 0.01 and γ0 = 0.5π with
changing axial speeds v = 0, v = 50 m/s, and v = 100 m/s. With the increase in the
axial velocity, the fluctuation range of a post-order mode amplitude increases firstly and
then decreases; however, the fluctuation range of the amplitude of the second-order mode
shows no significant change. Figures 6 and 7 illustrate that the second mode can suddenly
overtake the first mode modal amplitude with a greater axial velocity. The enclosed ring
in the phase diagram represents the second mode; the left side of the ring changes to the
right side, and the axial velocity has an effect on the resonance characteristics of the system.
However, when the axial velocity changes, the vibration frequency of the first-order mode
shows no significant change.
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4.2. Damped System

For the damping system, numerical methods are used to analyze characteristic vibra-
tion variations of the first two step changes when resonance occurs, and to discuss the
parameter influence, given H1 = 0.22, T = 300 K, σ = 0.01, v = 80 m/s, and γ0 = 0.1π.
Figure 8 shows the modal amplitude of a1 and a2 in a damped free-vibration system with
internal resonance at different initial values. The decay rate of the mode amplitude is
increased with the increase in the initial value of a1 and a2. As modal amplitude fluctuation
frequency increases, the second mode of amplitude fluctuation is not obvious leading to a
zero attenuation. The damping term is determined by the axial velocity and the damping
coefficient of the base beam. Figure 9 shows that in a damped internal resonance system,
the first- and second-order vibration modes exhibit a tendency of coupling attenuation
until zero and eventually increase with time.
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5. Conclusions

This study focused on the internal resonance of the 1:3 SMA laminated beam moving in
complex boundary conditions. The lateral vibration equations were derived with a multiple
scales method. Through numerical simulations, the resonance problems interposed with
the SMA laminated beam clamped at one end and hinge-joined at the other end were
analyzed. The results showed:

(1) For un-damping the nonlinear system, the system has periodic motion. The system
energy is exchanged between the two coupled vibration modes, but this periodic behavior
is not stable, showing an obvious dependence of the initial value.

(2) In the steady state solution of the un-damping nonlinear system, along with the
increase in the axial velocity, the fluctuation range of the first-mode amplitude increases
and then decreases. However, the fluctuation range of the amplitude of the second-order
mode shows no significant change.

(3) In a damped system, the vibration mode of the system shows a tendency to decrease
to attenuation. Moreover, the attenuation rate of the modal amplitude increases with the
increase in the initial value of a1 and a2.
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Appendix A

Main coefficients in Equation (7).

Ani =
∫ l

0 XnXidx, Bni =
∫ l

0
dXn
dx Xidx, Cni =

∫ l
0

d2Xn
dx2 Xidx, Dni =

∫ l
0

d4Xn
dx4 Xidx,

Eni =
∫ l

0 [
dXn
dx

d3Xn
dx3 + ( d2Xn

dx2 )
2
]Xidx,

Fni =
∫ l

0 (
dXn
dx )

2 d2Xn
dx2 Xidx,

Gni =
∫ l

0 [(
dXn
dx )

2 d4Xn
dx4 + d2Xn

dx2 ( d3Xn
dx3 )

2
]Xidx,

Hni =
∫ l

0 [(
d2Xn
dx2 )

4 d4Xn
dx4 + ( d2Xn

dx2 )
3
( d3Xn

dx3 )
2
]Xidx,

S1i =
∫ l

0 [
dX1
dx

d3X2
dx3 + dX2

dx
d3X1
dx3 ]Xidx,

S2i =
∫ l

0 [(
d2X1
dx2 )

2 dX2
dx + 1

2
dX1
dx

dX2
dx

d2X1
dx2 ]Xidx,

S3i =
∫ l

0 [(
d2X2
dx2 )

2 dX1
dx + 1

2
dX1
dx

dX2
dx

d2X2
dx2 ]Xidx,

S4i =
∫ l

0 [(
d2X1
dx2 )

2 d4X2
dx4 + 1

2
d2X2
dx2 ( d3X1

dx43 )
2
+ 1

2
d2X1
dx2

d2X2
dx2

d4X1
dx4 + 1

4
d2X1
dx2

d3X1
dx3

d3X3
dx3 ]Xidx,

S5i =
∫ l

0 [(
d2X2
dx2 )

2 d4X1
dx4 + 1

2
d2X1
dx2 ( d3X2

dx3 )
2
+ 1

2
d2X1
dx2

d2X2
dx2

d4X2
dx4 + 1

4
d2X2
dx2

d3X1
dx3

d3X2
dx3 ]Xidx,

S6i =
∫ l

0 [(
d4X1
dx4 )

4 d4X2
dx4 + 1

4 (
d2X2
dx2 )

3 d2X2
dx2

d4X1
dx4 + 1

8 (
d2X1
dx2 )

3 d3X1
dx3

d3X2
dx3

+ 1
12 (

d2X1
dx2 )

2 d2X2
dx2 ( d3X1

dx3 )
2
]Xidx,

S7i =
∫ l

0 [(
d2X2
dx2 )

4 d4X1
dx4 + 1

4
d2X1
dx2 ( d2X2

dx2 )
3 d4X2

dx4 + 1
8 (

d2X2
dx2 )

3 d3X1
dx3

d3X2
dx3

+ 1
12

d2X1
dx2 ( d2X2

dx2 )
2
( d3X2

dx3 )
2
]Xidx,

S8i =
∫ l

0 [
1
4 (

d2X1
dx2 )

3 d2X2
dx2

d4X2
dx4 + 1

4 (
d2X1
dx2 )

3
( d3X2

dx3 )
2
+ 1

6 (
d2X1
dx2 )

2
( d2X2

dx2 )
2 d4X1

dx4

+ 1
12

d2X1
dx2 ( d2X2

dx2 )
2
( d3X2

dx3 )
2
+ 1

24 (
d2X1
dx2 )

2 d2X2
dx2

d3X1
dx3

d3X2
dx3 ]Xidx,

S9i =
∫ l

0 [
1
4 (

d2X1
dx2 )

3 d2X2
dx2

d4X1
dx4 + 1

4 (
d2X2
dx2 )

3
( d3X1

dx3 )
2
+ 1

6 (
d2X1
dx2 )

2
( d2X2

dx2 )
2 d4X2

dx4

+ 1
12

d2X2
dx2 ( d2X1

dx2 )
2
( d3X2

dx3 )
2
+ 1

24 (
d2X2
dx2 )

2 d2X1
dx2

d3X1
dx3

d3X2
dx3 ]Xidx.

ω2
1 = [

E1EH1 H2
2 L2(1+H1)
ρ + 1

12
EH2

2 L2

ρ ]D11
A11

+ (2v− P
ρbH2L )

C11
A11

,

g2
1 = [

E1EH1 H2
2 L2(1+H1)
ρ + 1

12
EH2

2 L2

ρ ]D21
A11

+ (2v− P
ρbH2L )

C21
A11

,

g2
2 = [

E1EH1 H2
2 L2(1+H1)
ρ + 1

12
EH2

2 L2

ρ ]D12
A22

+ (2v− P
ρbH2L )

C12
A22

.

Appendix B

Main coefficients in Equations (8) and (9).

µ11 = 2v B11
A11

+ c
ρb1LH2

, µ12 = 2v B21
A11

+ cA21
ρb1LH2 A11

,

µ21 = 2v B12
A22

+ cA12
ρb1LH2 A22

, µ22 = 2v B22
A22

+ c
ρb1LH2

,

a21 = − 1
2

EH2L2E11
ρA11

, a22 = − 1
2

EH2L2E21
ρA11

, a23 = − 1
2

EH2L2S11
ρA11

,

b21 = − 1
2

EH2L2E12
ρA22

, b22 = − 1
2

EH2L2E22
ρA22

, b23 = − 1
2

EH2L2S12
ρA22

,

a31 = − 3
2

EL2F11
ρA11

− 3
8

E2EH1 H4
2 L6(1+H1)

3G11
ρA11

,

a32 = − 3
2

EL2F21
ρA11

− 3
8

E2EH1 H4
2 L6(1+H1)

3G21
ρA11

,

a33 = − 3
2

EL2S21
ρA11

− 3
8

E2EH1 H4
2 L6(1+H1)

3S41
ρA11

,

a34 = − 3
2

EL2S31
ρA11

− 3
8

E2EH1 H4
2 L6(1+H1)

3S51
ρA11

,

b31 = − 3
2

EL2F12
ρA22

− 3
8

E2EH1 H4
2 L6(1+H1)

3G12
ρA22

,
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b32 = − 3
2

EL2F22
ρA22

− 3
8

E2EH1 H4
2 L6(1+H1)

3G22
ρA22

,

b33 = − 3
2

EL2S22
ρA22

− 3
8

E2EH1 H4
2 L6(1+H1)

3S42
ρA22

,

b34 = − 3
2

EL2S32
ρA22

− 3
8

E2EH1 H4
2 L6(1+H1)

3S52
ρA22

,

a51 = 5
32

E3EH1 H6
2 L10(1+H1)

5 H11
ρA11

, a52 = 5
32

E3EH1 H6
2 L10(1+H1)

5 H21
ρA11

,

a53 = 5
32

E3EH1 H6
2 L10(1+H1)

5S61
ρA11

, a54 = 5
32

E3EH1 H6
2 L10(1+H1)

5S71
ρA11

,

a55 = 5
32

E3EH1 H6
2 L10(1+H1)

5S81
ρA11

, a56 = 5
32

E3EH1 H6
2 L10(1+H1)

5S91
ρA11

,

b51 = 5
32

E3EH1 H6
2 L10(1+H1)

5 H12
ρA22

, b52 = 5
32

E3EH1 H6
2 L10(1+H1)

5 H22
ρA22

,

b53 = 5
32

E3EH1 H6
2 L10(1+H1)

5S62
ρA22

, b54 = 5
32

E3EH1 H6
2 L10(1+H1)

5S72
ρA22

,

b55 = 5
32

E3EH1 H6
2 L10(1+H1)

5S82
ρA22

, b56 = 5
32

E3EH1 H6
2 L10(1+H1)

5S92
ρA22

.
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