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Abstract: It is well-known that the effect of interstitial fluid on the fracture pattern and strength
of saturated high-strength concrete is determined by qualitatively different mechanisms at quasi-
static and high strain rate loading. This paper shows that the intermediate range of strain rates
(10−4 s−1 <

.
ε < 100 s−1) is also characterized by the presence of a peculiar mechanism of interstitial

water effect on the concrete fracture and compressive strength. Using computer simulations, we have
shown that such a mechanism is the competition of two oppositely directed processes: deformation of
the pore space, which leads to an increase in pore pressure; and pore fluid flow. The balance of these
processes can be effectively characterized by the Darcy number, which generalizes the notion of strain
rate to fluid-saturated material. We have found that the dependence of the compressive strength of
high-strength concrete on the Darcy number is a decreasing sigmoid function. The parameters of this
function are determined by both low-scale (capillary) and large-scale (microscopic) pore subsystems
in a concrete matrix. The capillary pore network determines the phenomenon of strain-rate sensitivity
of fluid-saturated concrete and logistic form of the dependence of compressive strength on strain rate.
Microporosity controls the actual boundary of the quasi-static loading regime for fluid-saturated
samples and determines localized fracture patterns. The results of the study are relevant to the
design of special-purpose concretes, as well as the assessment of the limits of safe impacts on concrete
structural elements.

Keywords: water-saturated concrete; two-scale porosity; permeability; fluid filtration; dynamic
loading; fracture; compressive strength; computer simulation; discrete element method; coupled
poroelastic model

1. Introduction

High-strength concrete is often used as a high-performance building material for struc-
tures and structural elements operating in aquatic or water-saturated environments [1–5].
Well-known examples are dams, bridge piers, offshore platforms, quay walls, mine shaft
shells in flooded soils, etc. Since concrete is a permeable porous material, the pore space
of mortar (the main component of concrete) is gradually filled with water. In particular,
the laboratory study [6] showed that samples of mortar 10 cm thick are saturated with
water up to 80% within the first day of being in the vessel. This estimate is confirmed
by other experimental studies, which indicate that close to full saturation of laboratory
concrete samples with water or aqueous solution is achieved within 1–3 days [7–9]. The
surface layers of massive concrete structures in a water or water-saturated environment
can therefore be completely saturated with water to a depth of at least 101 cm and higher.

Water or an aqueous solution in the pore space has a significant effect on the me-
chanical properties of concrete. The pore fluid is reported to be responsible for numerous
phenomena of premature fracture of various brittle materials (including concretes) under
loads significantly lower than permissible for these materials in a dry state [6,10–17].
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At low strain rates corresponding to a quasi-static loading mode, the pore fluid typi-
cally has a negative effect on the strength of concrete. This effect most clearly appears under
compression, which is the typical type of stress state of elements of concrete constructions.
Different experimental studies show that the compressive strength of concrete samples can
decrease by 10–20 percent with an increase in water saturation [6,7,10,18–20]. Moreover,
compression tests on water-saturated samples in a high water pressure device (at different
values of water pressure) demonstrate an additional decrease in quasi-static strength by
more than 10% with an increase in pore pressure from atmospheric value to several MPa [7].
These results are consistent with many earlier studies on various types of concrete includ-
ing studies at higher water and confining pressures [21]. Note that a significant decrease
in quasi-static strength is achieved in these cases even despite an increase in specimen
confinement (lateral pressure increases).

The key factor determining the described decrease in strength is pore pressure (pres-
sure of interstitial water) [18,20]. Various authors propose different mechanisms of the
effect of pore pressure on the strength of the material at low strain rates, but they are all
associated with the growth of tensile volumetric stress in solid skeleton due to the com-
pression of the pore space and pore water. Expanding effect of water pressure causes local
splitting formation, acceleration of existing and newly formed cracks and finally promotes
macroscopic fracture at lower applied loads [21,22]. Note also that the mechanical effect of
the interstitial fluid pressure on the compressive strength of porous materials with a brittle
skeleton (including concrete) becomes significant even at low porosity of the order of a few
percent [23].

Due to the connectivity of the pore space of concrete, the rate of pore fluid pressure
growth during compression depends on the rate of loading. Indeed, the key physical
property of water that qualitatively distinguishes it from a solid-phase skeleton is mo-
bility (fluidity). An increase in pore pressure in a sample under compression leads to a
redistribution of free (chemically unbound) water in a system of interconnected material
discontinuities (pores, channels, cracks). Fluid flow provides redistribution and balancing
of local stresses in a fluid-saturated material. Moreover, the difference in fluid pressure
between the central part of the compressed sample and the outer surfaces causes the
outflow of “excess” pore fluid and a decrease in the overall stress level. It is clear that the
magnitude of the pore pressure gradients for a particular concrete is determined by the
strain rate (that is, the rate of compression of the pore space). Therefore, the mechanical
effect of interstitial water pressure on the stress state and mechanical characteristics of
concrete as a porous material should depend on the ratio of the rate of skeleton straining
(characterized by applied strain rate

.
ε ∼ 1/Tde f , where Tdef is the timescale of skeleton

and pore space deformation) to the pore fluid flow rate (characterized by Darcy timescale
TDarcy) [24,25].

There are two “limiting” ranges of the control parameter
.
ε in relation to pore fluid

flow rate in the pore space. The first of these is related to quasi-static loading conditions
(

.
ε < 10−4 s−1 for typical water-saturated concrete materials). Within this strain rate interval,

the pore fluid has time to redistribute in the sample (and outflow). Therefore, the fluid
flow compensates for the compression of the pore space, and the pore pressure slowly
increases during loading. Mechanical characteristics of water-saturated concrete gradually
tend to that of dry samples with the loading decrease rate [21]. The second “limiting”
interval covers “large” strain rates (

.
ε > 101 s−1). In this strain rate interval, the flow of pore

fluid is negligible due to the inertia of the flow process, and the pore pressure increase
rate tends to a maximum. However, the expected maximum negative effect of the pore
fluid on the strength of concrete does not occur, since the dynamic (inertial) properties
of the solid-phase skeleton and the viscous properties of the pore fluid play a leading
role here. In particular, the incubation time of damages and cracks in the solid-phase
skeleton of concrete at high strain rates becomes comparable (in order of magnitude) with
the characteristic loading time [11,26]. The finite rate of crack growth provides a significant
increase in the dynamic strength of concrete (specific value of the ultimate load) with an
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increase in
.
ε [6,10,27–33]. For example, at

.
ε~102 s−1 the DIF (dynamic increase factor)

value approaches 2 [6,28,31]. Pore water is a viscous liquid, and the forces of its viscous
resistance to crack formation (they are attributed to meniscus [17,22,34], Stefan [10,35,36],
and Newton inner friction [18,22] forces) exceed the negative effect of high pore pressure
at

.
ε > 101 s−1. These viscous forces are responsible for a strong positive influence of pore

fluid on dynamic strength at high strain rates. This effect is physically interpreted as an
increase in fracture incubation time [37].

The vast majority of studies are focused on studying fracture patterns and determining
the strength characteristics of water-saturated concretes at the two described “limiting”
intervals of strain rate. At the same time, they are connected by a wide but much less
studied “intermediate” interval (10−4 s−1 <

.
ε < 101 s−1). The mechanical behavior of

water-saturated concretes and the strain rate dependence of strength within this interval
have distinctive features. In this “intermediate” region, the rate of growth of pore pressure
during loading becomes comparable and exceeds the characteristic rates of filtration of
pore fluid but the role of inertia and viscous factors are still small or even negligible.
Therefore, fracture pattern and compressive strength of water-saturated concrete are largely
determined by a dynamic factor characterizing the balance of the rates of two competing
processes: applied deformation (pore compression) and pore fluid flow.

Despite the large number of works devoted to the study of the mechanical effect
of pore water, there are still no works with a systematic analysis and generalization of
the effect of the competition of two counter-directed processes on fracture behavior and
compressive strength of high-strength concretes in the “intermediate” interval of strain rates
(10−4 s−1 <

.
ε < 101 s−1). The relevance of such an analysis is particularly determined by

the fact that many dynamic impacts on underwater structures during operation (including
multiple impacts of heavy floating objects [38–40]) occur at strain rates lying in this interval.
The study and generalization of the mechanical effect of pore water on the features of
concrete fracture and dynamic strength at strain rates above quasi-static and below high
rate intervals is a topic that has both fundamental significance and practical implications
for the assessment of the limits of safe impacts on saturated structural elements and the
optimal design of the internal structure of concrete.

Experimental studies are able to provide comprehensive information about the nature
and characteristics of the macroscopic fracture of concrete samples and their strength
parameters. At the same time, the possibilities of laboratory experiments for analyzing the
nucleation and evolution of mesoscale damages and cracks, the role of the interaction of
constituent phases, and their contributions to fracture are limited. Mesoscale computer
modeling is an efficient tool for such research. The key advantage of virtual (computer)
study is the ability to qualitatively and quantitatively determine the contributions of the
structural parameters and the pore fluid to the change in the fracture pattern and dynamic
strength of concrete samples.

The traditional way is to use a powerful continuum-based finite element method
(FEM) with the accurate implementation of mesoscale geometries, nonlinear material mod-
els including the behavior of interface zones, and pore fluid infiltration. Thilakarathna
et al. [41] developed a mesoscopic FEM model of concrete, which takes into account
complex shapes of aggregates and accurate material models for mortar, aggregates, and
interphase boundaries. They modeled mortar as elastic-plastic material and applied non-
associated plastic flow law with Lubliner yield criterion and Drucker–Prager hyperbolic
potential function. Fracture of mortar was considered gradual softening after ultimate
stress was achieved. Aggregates were considered elastic-brittle with a pressure-dependent
fracture criterion (the same approximation for hardening inclusions is used in most models
of concrete). Mazzucco et al. [42] proposed a method of constructing a robust mesoscale
FEM model based on X-ray Computed Tomography. They used non-associated plastic
flow law with Menetrey-William yield function and Grassl potential function. Failure
was modeled as material gradual degradation controlled by a special isotropic damage
parameter. A similar (Menetrey-William-based) fracture-plastic continuous model was
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used by Sucharda et al. [43] and Valikhani et al. [44] to describe inelastic behavior and
continuous degradation of normal and ultra-high performance concretes. Niknezhad [45]
used an approach similar to [41], with the Kachanov-Rabotnov damage plasticity con-
stitutive model and non-associated plastic flow law. Interfaces were modeled in all the
abovementioned papers using the model of zero thickness cohesive zone with piecewise
linear (or sometimes nonlinear) traction-separation law. The numerical values of the
parameters of plasticity and post-peak behavior models are usually determined on the
basis of macroscopic experimental data for concrete components and by trial and error for
interfaces. An extension of these “classical” quasistatic models is a multiscale model by
Vorel et al. [46], where the mechanical properties of the matrix are derived from microscale
modeling. We want to particularly mention the dynamic model of water-saturate concrete
by Huang et al. [47,48], which applies the Hugoniot diagram to derive the equation of state
of concrete within the wide range of pressure values and takes into account pore pressure
using the Hugoniot mixing rule or effective stress law (Biot’s linear model of poroelasticity).
The developed FEM models provide great opportunities for analyzing the localization of
inelastic strains and degradation of individual components and the whole sample, accurate
reproduction and prediction of diagrams of monotonic and cyclic loading, studying the
effect of pore fluid on the acoustic and elastic characteristics of fluid-saturated material,
and predicting the changes in transport properties (permeability, porosity) of concrete due
to the accumulation of damages. Despite the advantages of the continuum-based approach,
its application to simulate damage localization including crack weaving and branching,
and the resulting size-effect meets well-known difficulties. As was mentioned above, the
fracture surfaces are usually represented using approximations or models, which smear
real discontinuity [41–45,49,50] or embed it (extended implementation of FEM [51]).

An attractive alternative is the use of particle-based (“discrete”) numerical methods.
These methods are based on representing material as an ensemble of finite-sized particles
that can change the state of bonding with neighbors (bonded-to-unbonded transition) and
hence change the neighborhood. The formalism of these methods is therefore not limited
by continuity constraints. The key advantage of discrete methods is the inherent ability to
model discontinuity formation as an extremely localized process by means of separating
the surfaces of adjacent particles. Several discrete methods deserve special attention in
the context of an adequate description of the failure of concretes and other brittle porous
materials in the range of scales. The Lattice Discrete Particle Model (LDPM) developed by
G. Cusatis et al. represents concrete as an ensemble of polyhedral aggregates implemented
in a matrix as a binding medium [52,53] and connected through a 3D lattice. Input model
parameters are typical material parameters including elastic moduli, compressive and shear
strengths, parameters of the post-peak softening curve, friction coefficient, etc. The values of
these parameters for the particular concrete are taken from experiments and trial and error
procedures. The developed formalism makes it possible to effectively take into account the
accumulation of low-scale damages, explicitly model mesoscopic fracture through breaking
the bond (springs) between adjacent particles, and implement the strain rate dependence
of crack cohesion [54,55]. Note that an alternative dynamic fracture model based on
the concept of kinetic strength theory was also implemented within the spring network
formalism [56]. The developed LDPM models make it possible to reproduce the stress–
strain curve of simulated concrete or rock, to analyze mesoscopic damage accumulation and
crack initiation and development as well as to explicitly obtain dilatancy/compaction and
changes in the porosity and permeability of the material under loading. Advanced LDPM
implementations for mesoscopic modeling of the behavior of permeable brittle materials
with interstitial fluid include several hybrid techniques [57,58] as well as coupled SPH-
LDPM methods [59]. Hybrid techniques allow us to take into account the interconnected
low-scale discontinuities, while coupled method makes it possible to explicitly investigate
fluid flow through mesoscopic discontinuities. An ideologically similar discrete method
used for mesoscale modeling of the mechanical behavior of porous materials (including
fracture) and flow of interstitial fluid is the discrete element method (DEM) [60,61]. The
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key difference between DEM and LDPM as applied to mesocomposite materials (including
concrete) is the explicit modeling of all components with an ensemble of particles. The most
popular DEM implementation is based on “dividing” the modeled body into equiaxial
polygonal regions (discrete elements) and their simplified representation by equivalent
balls. Note that this simplification of the element shape is applied only when solving
the equations of motion and dividing the vector of element–element interaction force
into two formally unrelated components. The ability of DEM to analyze deformation
and fracture processes in permeable fluid-saturated brittle materials is similar to LDPM.
An additional advantage of DEM is the ability to explicitly model the accumulation of
damages in the cement matrix and at the interfaces and evolution of these damages into
mesocracks. An important limitation of the classical DEM formalism (as well as the LDPM
formalism) is the approximation of rigid particles. This approximation makes it difficult
to reproduce the inelastic behavior due to the accumulation and development of lower-
scale discontinuities and to model coupled solid-fluid problems for permeable materials
with multi-scale porosity. While mesoscale voids with fluid can be modeled explicitly in
the classical DEM implementations with rigid elements, low-scale discontinuities (with
respect to the modeled mesoscopic scale) with interstitial fluid can be adequately taken
into account using only the advanced approximation of deformable particles.

The present paper is devoted to the study of the features of dynamic fracture and
strain rate dependence of compressive strength of fluid-saturated high-strength concrete
through computer simulation of uniaxial compression of mesoscale samples. The purpose
of this investigation is to reveal and generalize the regularities of change in fracture pattern
(including mesoscopic mechanisms) and compressive strength of fluid-saturated high-
strength concrete within the practically important “intermediate” interval of strain rates
(10−4 s−1 <

.
ε < 101 s−1) between quasi-static and high rate loading ranges.

The numerical study was carried out with the use of the advanced discrete element
technique, namely the method of homogeneously deformable discrete elements [62,63]. For
adequate modeling of the two-scale pore structure of high-strength concrete with interstitial
fluid, we implemented the coupled mechanical model of permeable brittle solids. The
model takes into account elastic-plastic deformation of the skeleton, the flow of fluid in the
pore space (including redistribution between two pore subsystems of different scales), and
the mutual influence of these processes (through deformation of the pore space and the
corresponding change in pore fluid pressure) [64].

The remainder of the paper is organized as follows. Section 2 explains the keystones
of the physical and numerical (discrete-element) mesoscopic model of fluid-saturated
high-strength concrete including the details of the implementation of non-associated plastic
flaw law for cement matrix, the two-parameter criterion of local fracture, and mechanical
interaction of concrete with interstitial fluid. Section 3 describes and interprets the depen-
dence of dynamic compressive strength of mesoscopic fluid-saturated concrete samples on
the strain rate, the evolution and features of fracture of the samples at different strain rates
as well as the role of fluid in low-scale pore network and large-scale pores. We are the first
to show that the obtained regularities of the dependence of the strength and fracture can
be characterized in terms of a recently proposed dynamic parameter [65], which general-
izes the notion of strain rate to fluid-saturated materials and characterizes the balance of
processes of skeleton deformation and pore fluid flow. Section 4 discusses the obtained
regularities for compressive strength and fracture patterns and shows the contributions
of mesoscopic structural elements to the fracture of the samples. The paper ends with the
concluding remarks.

2. Materials and Methods
2.1. The Model of a Mesoscopic Representative Volume of Concrete

We considered mesoscale samples of high-strength concrete with the pore space
completely saturated with fluid (water was considered as the “base” fluid). The initial
value of the pore pressure (before loading) was assumed to be equal to atmospheric
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pressure. The mesoscale here means the characteristic scale of the key elements of the
internal structure. These are aggregates of millimeter linear dimensions and “micropores”
with characteristic dimensions of hundreds of micrometers. The mesoscopic structure
of concrete consists of a cement stone (mortar) matrix with large hardening aggregates
(particles of basalt crushed stone). The typical form of aggregate particles is equiaxed, the
average size of the inclusions is 10–15 mm.

Porosity is among the key structural parameters of cement stone as it largely influences
the effective strength and elastic properties. Typical high-strength concrete is characterized
by a two-scale pore structure (capillary pores and micropores). The capillary porosity of the
cement stone reaches ~6 vol.%, while the volume fraction of micropores is up to 4% [66–68].
The characteristic size of micropores is hundreds of micrometers and the micropore shape
is close to round. The system of interconnected capillaries is open and determines the
permeability of the cement stone. The transverse dimensions of the capillary pore channels
can vary over a wide range from 10−2 µm to 101 µm. This is determined by various factors
including the conditions for the preparation and hardening of concrete as well as the
water-to-cement ratio. A decrease in the characteristic transverse size of capillary channels
is a consequence of the deposition of cement hydration products in the pore channels
during concrete hardening. Hydration product deposition can lead to multiple narrowing
of capillary characteristic opening and a decrease in cement permeability by several orders
of magnitude [68–70]. The connectivity of the capillary pore system with micropores also
deteriorates in this case. Difficulty in the redistribution of pore fluid between two pore
subsystems can also be a factor affecting the compressive strength and strain rate sensitivity
of concrete.

These principal features of the multiscale structure were taken into account in a
developed two-dimensional computer model of a representative mesoscale volume of
high-strength concrete. The model includes two spatial scales: mesoscopic and microscopic.
The mesoscale components of the internal structure of concrete (cement stone, aggregates,
micropores) are specified explicitly (Figure 1).

Materials 2021, 14, 4011 6 of 34 
 

 

2. Materials and Methods 

2.1. The Model of a Mesoscopic Representative Volume of Concrete 

We considered mesoscale samples of high-strength concrete with the pore space 

completely saturated with fluid (water was considered as the “base” fluid). The initial 

value of the pore pressure (before loading) was assumed to be equal to atmospheric 

pressure. The mesoscale here means the characteristic scale of the key elements of the 

internal structure. These are aggregates of millimeter linear dimensions and “mi-

cropores” with characteristic dimensions of hundreds of micrometers. The mesoscopic 

structure of concrete consists of a cement stone (mortar) matrix with large hardening 

aggregates (particles of basalt crushed stone). The typical form of aggregate particles is 

equiaxed, the average size of the inclusions is 10–15 mm. 

Porosity is among the key structural parameters of cement stone as it largely influ-

ences the effective strength and elastic properties. Typical high-strength concrete is 

characterized by a two-scale pore structure (capillary pores and micropores). The capil-

lary porosity of the cement stone reaches ~6 vol.%, while the volume fraction of mi-

cropores is up to 4% [66–68]. The characteristic size of micropores is hundreds of mi-

crometers and the micropore shape is close to round. The system of interconnected ca-

pillaries is open and determines the permeability of the cement stone. The transverse 

dimensions of the capillary pore channels can vary over a wide range from 10−2 µm to 101 

µm. This is determined by various factors including the conditions for the preparation 

and hardening of concrete as well as the water-to-cement ratio. A decrease in the char-

acteristic transverse size of capillary channels is a consequence of the deposition of ce-

ment hydration products in the pore channels during concrete hardening. Hydration 

product deposition can lead to multiple narrowing of capillary characteristic opening 

and a decrease in cement permeability by several orders of magnitude [68–70]. The con-

nectivity of the capillary pore system with micropores also deteriorates in this case. Dif-

ficulty in the redistribution of pore fluid between two pore subsystems can also be a 

factor affecting the compressive strength and strain rate sensitivity of concrete. 

These principal features of the multiscale structure were taken into account in a 

developed two-dimensional computer model of a representative mesoscale volume of 

high-strength concrete. The model includes two spatial scales: mesoscopic and micro-

scopic. The mesoscale components of the internal structure of concrete (cement stone, 

aggregates, micropores) are specified explicitly (Figure 1). 

 

Figure 1. An example of the structure of a mesoscale concrete sample with 10 vol.% of basalt ag-

gregates. The volume fraction of micropores is 4%. 

Spatial placement and determination of the geometry of particular aggregates in the 

model samples were carried out using the Voronoi tessellation algorithm [71]. The vol-

ume fraction of basalt aggregates was assumed to be 10% in the present study. The ag-

gregates were approximately equiaxial and angular. Micropores were randomly distrib-

uted in the volume of the cement stone matrix. Each micropore was introduced by re-

moving the corresponding area of the material from the initial (non-porous) matrix. We 

Figure 1. An example of the structure of a mesoscale concrete sample with 10 vol.% of basalt aggregates.
The volume fraction of micropores is 4%.

Spatial placement and determination of the geometry of particular aggregates in the
model samples were carried out using the Voronoi tessellation algorithm [71]. The volume
fraction of basalt aggregates was assumed to be 10% in the present study. The aggregates
were approximately equiaxial and angular. Micropores were randomly distributed in the
volume of the cement stone matrix. Each micropore was introduced by removing the
corresponding area of the material from the initial (non-porous) matrix. We considered
mesoscale samples with different volume fractions of micropores ranging from 0% (mortar
contains only capillary pores) to 4%. The microporosity of the cement stone was considered
mono-sized, the shape of the micropores was round (the diameter of the micropore is
500 µm).
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The fluid in the micropores of the cement stone was described effectively. Each
micropore was characterized by the mass, density, and pressure of the liquid in its volume
(we used the approximation of the equipartition of the liquid density in the micropore).
The volume of a micropore changes during loading. The current value of a micropore
volume during the simulation is calculated using the special algorithm described in [63].

The internal pore structure of the cement stone at lower scales was taken into account
effectively. It was characterized by capillary porosity and permeability. Capillary perme-
ability of the cement stone k was assumed to be linearly related to the capillary porosity
ϕ (ϕ = 6% in this study) and the characteristic transverse size (effective diameter) of the
capillary pore channels dch by the known relation: k = ϕdch

2 [72]. We varied the effective
diameter of the capillary channels dch in the range from 0.1 to 1 µm to analyze the effect of
the degree of deposition of cement hydration products in the capillary pore space on the
dynamic mechanical behavior of fluid-saturated concrete. Capillary porosity was assumed
to be connected with micropores.

The fluid in the volume of capillary pores was taken into account effectively and was
characterized by local density and pore pressure.

The mechanical characteristics of water were used for pore fluid: density at atmo-
spheric conditions ρ0

f l = 1000 kg/m3, bulk modulus Kfl = 2.2 GPa.
Basalt was considered an isotropic elastic-brittle material. The cement stone was

assumed to be an isotropic elastic-plastic material (the value of inelastic strain is small and
comparable to the value of elastic strain). We use the continuum model of plasticity of
microscopically brittle solids (non-associated plastic flow law with two-parameter Mises–
Schleicher yield criterion) to describe inelastic strain accumulation in cement stone on
the mesoscale. Linear strain hardening was assumed for cement stone (the value of the
strain-hardening coefficient is constant). The values of the mechanical characteristics of
both components (the elastic constants of basalt and cement stone and the parameters of a
unified hardening curve for cement stone) were taken from [73] and are summarized in
Tables 1 and 2, respectively.

Table 1. Physical and mechanical characteristics of the constituents of the model high-strength concrete.

Constituent ρ (kg/m3) ϕ (%) G (GPa) K (GPa) Ks (GPa)

Cement stone 3500 6 17 62.5 125
Basalt 2950 0 60 166 166

The following symbols are used in the Table: ρ is density, ϕ is capillary porosity, G is shear modulus, K is the bulk
modulus, Ks is the bulk modulus of the nonporous material (material of the skeleton walls). Detailed information
about the meaning of these parameters is provided in Section 2.3.

Table 2. Parameters of the plasticity model for cement stone.

Cohesion (MPa) Internal Friction Coefficient Strain-Hardening Coefficient (GPa)

18.5 0.6 14.1
Detailed information about the plasticity model for cement matrix and the meaning of these parameters is
provided in Section 2.3.

Basalt and cement stone are brittle materials. The shear strength of such materials is
sensitive to the value of normal/volumetric stress. We use the two-parameter Drucker–
Prager fracture criterion to describe local fracture of both components and matrix-aggregate
interfaces in the numerical model. The parameters of this criterion are uniaxial compressive
strength (UCS) and uniaxial tensile strength (UTS). Table 3 shows the values of these
parameters in the simulations. We assume the ideal cohesion of constituents, i.e., strength
parameters of matrix-aggregate interfaces are equal to the parameters of the matrix.
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Table 3. Strength parameters for concrete constituents and matrix-aggregate interface.

Constituent UCS (MPa) UTS (MPa)

Cement stone 120 30
Basalt 260 52

Cement-basalt interface 120 30
Detailed information about the criteria of local fractures is provided in Section 2.3.

2.2. Keystones of the Numerical Method

The mechanical behavior of the model concrete samples under loading was modeled
using the method of homogeneously (simply) deformable discrete elements [62,74]. The
discrete element method (DEM) is based on the representation of a material as an ensem-
ble of interacting (chemically bonded or contacting) particles with a given mass, shape,
volume, and surface area [75,76]. Within the framework of the formalism of deformable
discrete elements, the last three characteristics can change as a result of element–element
interactions.

Each discrete element models some material volume (fragment of a cement stone
matrix or basalt aggregate). The dynamics of the simulated sample is determined by the
numerical solution of the Newton–Euler system of equations of motion for translational
and rotational degrees of freedom of the elements. The authors use the most common
approximation in DEM, which applies the equivalent disk/ball approximation to the
description of dynamics of a discrete element. This approximation means that the equation
of motion of an element is formulated in a simplified form corresponding to a disk (in a
two-dimensional formulation of the problem) or a ball (in a 3D case) [75–77] (Equation (1)):

mi
d2→r i
dt2 = mi

d
→
v i

dt =
Ni
∑

j=1

(→
F

n

ij +
→
F

τ

ij

)
Ji

d
→
ωi
dt =

Ni
∑

j=1

→
Mij

, (1)

where
→
r i,
→
v i, and

→
ωi are three-dimensional radius vector, velocity vector, and angular

velocity vector of discrete element i, mi is mass of the element, Ji is a moment of inertia of

an equivalent disc/ball,
→
F

n

ij and
→
F

τ

ij are the potential forces of the central and tangential

interaction of the element i with the neighboring element j, and
→
Mij is the moment of force.

The motion Equation (1) are numerically solved using the velocity Verlet algorithm.

The central and tangential potential forces (
→
F

n

ij and
→
F

τ

ij) are formally written as “in-
dependent” although their form is determined on the basis of the constitutive law of the
material and is actually consistent. For convenience, the following relationships use specific
values of potential interaction forces defined by the ratio of the total values to the area of
contact surface (contact area) Sij (Equation (2)):

→
σ ij = σij

→
n ij =

→
F

np

ij /Sij = Fnp
ij
→
n ij/Sij

→
τ ij = τij

→
t ij =

→
F

τp

ij /Sij = Fτp
ij

→
t ij/Sij

, (2)

where
→
n ij is unit normal vector oriented along the segment connecting mass centers of the

interacting elements i and j and
→
t ij is a unit tangential vector in the plane of the contact

surface.
The main advantage of the method of homogeneously deformable discrete elements

in comparison with the classical formalism of rigid (non-deformable) discrete elements is
the fact that they take into account the change (both elastic and irreversible) of the shape
and volume of an element under loading. Within the framework of this method, stresses
and strains in the volume of an element are assumed to be uniformly distributed and
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characterized by tensors of averaged stresses and strains. The components of the average
stress tensor in the discrete element i are calculated as a superposition of the forces of
interaction of the element with its neighbors [62,74] (Equation (3)):

σi
αβ =

Ri

V0
i

Ni

∑
j=1

S0
ij
[
cos θij,α cos θij,βσij ± cos θij,α sin θij,βτij

]
, (3)

where Ri is the radius of equivalent disk/ball, S0
ij is the initial value of the contact area of

the element i with the neighbor j (contact square for unstrained pair), V0
i is the volume of

the unstrained element i, α,β = x,y,z (XYZ is laboratory coordinate system), cosθij,α is the

projection of the unit normal vector
→
n ij onto the α-axis, and Ni is the number of neighbors

of the element. The components of the average strain tensor εi
αβ in the discrete element i

can be calculated as a superposition of normal and tangential pair strains by analogy with
Equation (3) or incrementally with the use of the material’s constitutive law and calculated
average stresses. The latter way is used in the present implementation of the method.

The relations for the forces of element–element interaction are formulated in the
general many-body form (Equations (4) and (5)):{

σij = σ
pair
ij

(
ε jk

)
+ Aiσ

i
mean = σji = σ

pair
ji
(
ε ji
)
+ Ajσ

j
mean

∆rij = ∆qij + ∆qji = Ri∆εij + Rj∆ε ji
, (4)

{
τij = τ

pair
ij
(
γij
)
= τji = τ

pair
ji
(
γji
)

∆lsh
ij = Ri∆γij + Rj∆γji

. (5)

here, the index “pair” denotes pair-wise function, σi
mean =

(
σi

xx + σi
yy + σi

zz

)
/3 is mean

stress in the element i, Ai is the material parameter, the symbol ∆ denotes an increment
of some parameter over the time step of numerical integration of the motion Equation (1),
qij and qji are the distances from the mass centers of the interacting elements i and j to the
central point of the contact area (qij = Ri and qji = Rj for unstrained elements), εij and εji are
central pair strains of discrete elements i and j, lshear

ij is the relative tangential displacement
of the elements (it is calculated by taking into account the element rotations), and γij and
γki are the shear angles of discrete elements i and j (contributions of the elements to the
total shear angle in the pair i-j). Equations (4) and (5) take into account the necessity of
satisfying Newton’s third law (σij = σji and τij = τji).

The interaction forces are used in the definition of average stresses and, in turn, are
determined by the values of local stresses. This relationship makes possible the imple-
mentation of various models of elasticity, plasticity, and fracture (including those with
multiparameter criteria) within the framework of the formalism of discrete elements.

2.3. Keystones of the Coupled Mechanical Model

The modeled high-strength concrete is a composite material and consists of two
components: non-porous basalt aggregates and porous cement stone matrix. Micropores
are implemented by removing discrete elements from the generated non-porous model
sample (Figure 1).

For modeling fluid-saturated matrix by the method of homogeneously deformable
discrete elements, we use a coupled formalism [63]. Within this formalism, a discrete
element is considered porous and permeable. Pore space in the discrete element, which
models a fragment of cement stone matrix, relates to the capillary porosity of the concrete.
The capillary pore space of an element is described implicitly and is characterized by the
following integral parameters: pore volume, porosity, and permeability. The fluid in the
capillary pore space of an element is taken into account implicitly and is also characterized
by integral parameters: mass, density, pore pressure, and dynamic viscosity. The pore fluid
is assumed to be Newtonian.
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The elastic response of a permeable discrete element modeling a fragment of a cement
stone with interstitial fluid is described using Biot’s linear model of poroelasticity [78,79]
(Equation (6)):

∆σαβ = 2G
(

∆εαβ − δαβ
a∆Ppore

K

)
+ δαβ(1− 2G/K)∆σmean, (6)

where ∆ is the increment of the corresponding stress/strain per time step of the numerical
scheme for integrating the equations of motion, σαβ and εαβ are averaged stresses and
strains in the discrete element, G and K are the shear and bulk moduli of dry material, δαβ

are Kronecker delta, Ppore is the pressure of fluid in the pore space of the element, and a
= (1–K/Ks) is the poroelasticity coefficient in the Biot’s model (Ks is the bulk modulus of
the material of the skeleton walls). Corresponding relationships for the response forces of
element i to the action of the neighbors j are formulated as follows (Equation (7)): ∆σij = 2Gi

(
∆εij −

ai∆Pi
pore

Ki

)
+
(

1− 2Gi
Ki

)
∆σi

mean

∆τij = 2Gi∆γij

, (7)

where Gi, Ki, ai, and Pi
pore are corresponding parameters for the element i.

The pore fluid is assumed to be linearly compressible. The main constitutive equations
relating capillary pore pressure in the element to average mean stress, pore volume, and
fluid density within the framework of Biot’s model, are as follows [78,79] (Equations (8)
and (9)):

Vp −V0
p

V
= ϕ− ϕ0 =

a
K

(
σmean − σ0

mean

)
+

(
1
K
− 1 + φ

Ks

)(
Ppore − P0

pore

)
, (8)

Ppore = P0
pore + K f l

(
ρ f l

ρo
f l
− 1

)
= P0

pore + K f l

(
m f l

ρo
f lVp
− 1

)
. (9)

here, Vp and V0
p are the current and initial values of the pore volume in the element, ϕ

and ϕ0 are the corresponding values of porosity, V is the volume of the element, ρ0
f l and

P0
pore are the equilibrium values of the density and pressure of the fluid under atmospheric

conditions, mfl and ρfl are the current values of fluid mass and density in the capillary pore
space of the element, and Kfl is the bulk modulus of fluid.

The inelastic behavior of mesoscale volumes of cement stone under loading is mainly
due to the occurrence, accumulation, and growth of micro- and nanoscale damage. We
applied the non-associated plastic flow law with the Mises–Schleicher yield criterion
(Nikolaevsky’s model) [62,63,80] to describe stress relaxation and accumulation of inelastic
strains in the cement stone. This model is widely used for natural and artificial brittle
materials [81,82]. The effect of pore pressure in the volume of a discrete element that
simulates a cement stone on its inelastic mechanical behavior is taken into account using a
modified formulation of the Mises–Schleicher yield criterion (Equation (10)):

Φ = α
(
σmean + Ppore

)
+ σeq/

√
3 = Y, (10)

whereα is the internal friction coefficient, Y is cohesion (yield stress under simple shear loading),

and σeq = 1√
2

√(
σxx − σyy

)2
+
(
σyy − σzz

)2
+ (σzz − σxx)

2 + 6
[(

σxy
)2

+
(
σyz
)2

+ (σxz)
2
]

is the equivalent (Mises) stress. The feature of Nikolaevsky’s model is a postulated linear
dependence of plastic volume strain rate. The dimensionless coefficient of proportionality
Λ is called the coefficient (rate) of dilatancy.

Nikolaevsky’s model is implemented within the explicit numerical scheme of solving
motions Equation (1) using the well-known radial return algorithm of Wilkins [83]. The
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essence of this algorithm is the scaling of the components of the deviator stress tensor at
each integration step after finishing the elastic problem solution. Being written in terms
of stress, the scaling expression for the applied model of plasticity has the following form
(Equations (11) and (12)):

σ′αβ =
(
σαβ − δαβσmean

)
M + δαβσ′mean, (11){

σ′eq = σeq −
√

3GC
KΛα/3+G

σ′mean = σmean − 1
3

KΛC
KΛα/3+G

, (12)

where C = Φ−Y, M =
√

σ′eq/σeq, σ′mean and σ′eq are “relaxed” (scaled) values of mean
stress and equivalent stress in the element. To provide the required scaling of average
stresses in the element i, all central and tangential forces of the response of the element i to
the impact of the neighbors j are scaled using a ratio similar to Equation (11) (Equations (13)
and (14)): {

σ′ ij =
(

σcur
ij − σi

mean

)
Mi + (σi

mean − Li)

τ′ ij = τcur
ij Mi

, (13)

 Mi = 1−
√

3
σi

eq

GiCi
KiΛiαi/3+Gi

Li =
1
3

KiΛiCi
KiΛiαi/3+G

, (14)

where
(
σ′ ij, τ′ ij

)
are scaled specific central and tangential (shear) response forces of the

element i.
The unified hardening curve for the cement stone is defined by the dependence Y(εms),

where εms =
(
Kεmean + Ppore

)
Gα/3+ εeq/

√
3 is a “Mises–Schleicher strain parameter”. The

form of parameter εms ensures the equality
(

α
(
σmean + Ppore

)
+ σeq/

√
3
)

/εms = 3G within
the region of elastic strain similar to the conventional model of plasticity of metals with von
Mises yield criterion. The strain-hardening coefficient is the derivative dY(εms)/dεms. More
details of numerical implementation of the above mechanical model of inelastic behavior
of brittle solids can be found in [62,63].

The discrete element model of a concrete sample in an initial (unstrained) state assumes
that all neighboring elements are chemically bonded (no mesoscale cracks). Local fracture
under loading was modeled by breaking the chemical bond between the elements when
the specified fracture criterion is satisfied [62,63]. We applied the two-parameter Drucker–
Prager criterion [84] for cement stone (this classical criterion was also modified by taking
into account the local pore pressure) (Equation (15)):

σf ract = 1.5(β− 1)
(
σmean + Ppore

)
+ 0.5(β + 1)σeq = σc, (15)

where β = σc/σt, σc, and σt are the values of UCS and UTS for dry materials. Numerical
implementation of this criterion in the discrete element method is based on determining
the local stress tensor on the contact area of the linked pair of elements and calculating
its invariants [62]. These invariants are calculated for the pair at each time step and then
substituted into Equation (15) to check the bond break condition is met in the pair.

Basalt is assumed to be a non-porous, elastic-brittle material. Its mechanical behavior
was described using the generalized Hooke’s law Equations (6) and (7) and the Drucker–
Prager fracture criterion Equation (15) at Ppore = 0. Fracture of interfaces (the pairs of
elements with one element modeling cement stone and the other modeling aggregate) was
considered using the Drucker–Prager criterion with the material parameters σc and σt
corresponding to cement stone.

The pore pressure gradient was considered the driving force of liquid redistribution
in the capillary pore space of the cement stone. Filtration was described by numerically
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solving the equation of fluid transport [85]. We used the form of the equation that takes
into account the finite velocity of propagation of disturbances (Equation (16)):

→
υ = − k

η
∇Ppore − τr

∂
→
υ

∂t
where τr =

K f l

φ

k
η

1
V2

f l
. (16)

here,
→
υ is the power density of the fluid flow, k is the capillary permeability of the element,

η is the fluid viscosity, τr is the relaxation time, and Vf l =
√

K f l/ρ0
f l is the sound velocity in

the fluid. Equation (6) was numerically solved by the finite volume method on an ensemble
of discrete elements [63].

Fluid transport between the micropore and surrounding discrete elements of the
cement stone (the walls of the micropore) is calculated similarly to the calculation of
the transport of pore fluid between adjacent discrete elements, namely with the use of
Equation (16). In the numerical solution of Equation (16) for the pairs “micropore–surface
discrete elements”, the micropore is replaced by a virtual discrete element with porosity 1,
permeability 4R2 (R is discrete element radius), and pore pressure equal to the real pressure
of fluid in the micropore. The outflow of fluid from the sample into the surrounding space
(through external surfaces) or into new internal voids resulting from the formation of
damages/cracks and damage/crack surfaces separation is calculated in a similar way.

2.4. Loading Conditions and Varied Material Parameters

We numerically studied the effect of free pore water on the value of dynamic strength
and fracture of 2D mesoscale samples of high-strength concrete under uniaxial compression.
2D concrete samples were modeled in the plane stress approximation (σzz = σxz = σyz = 0,
where XY is the plane of deformation). In some respects (in particular, with respect to the
stiffness of the sample), this corresponds to the conditions of a real experiment on concrete
cubic samples.

2D concrete samples were modeled as an ensemble of close-packed elements of the
same size. The size of the discrete element was 500 µm and is equal to the size of the
micropore (each micropore was created by removing one discrete element from the matrix).
The samples were of square form. The “basic” value of the sample size (side length) was
10 cm.

We modeled uniaxial compression of the samples at a constant loading velocity V
(Figure 2). The lower (support) surface of the sample was fixed in the vertical direction
and the upper surface was displaced in the vertical direction at a velocity Vy. Zero external
forces were applied to both (the upper and lower) surfaces in the horizontal direction to
fulfill the boundary condition σxx = σxy = 0.

Side surfaces of the sample were stress-free and hydraulically open to provide the
possibility of a free outflow of fluid from the sample.

The initial (before loading) values of the pore fluid density and pressure in all capillary
pores and micropores were equal to 1000 kg/m3 and atmospheric pressure, respectively.
The space surrounding the sample was filled with the same fluid at atmospheric pressure,
which was supported constantly throughout the loading.

To vary the balance of the processes of deformation of the pore space of concrete
and pore fluid flow, we modeled uniaxial compression at different values of the loading
velocity Vy, the permeability k of the capillary system in the cement stone (it characterizes
the leak-off capacity of concrete), the size of the sample W, and the dynamic viscosity of the
pore fluid η (which can potentially be fresh or saltwater, as well as an aqueous solution).
We varied the strain rate

.
ε = Vy/W within three orders of magnitude (from 1·10−3 s−1 to

5 s−1), the viscosity of the fluid η within an order of magnitude relative to the viscosity of
saline water (2·10−4 Pa·s to 3·10−3 Pa·s), the permeability k within two orders of magnitude
(from 6·10−16 m2 to 6·10−14 m2), and the sample size W within four times (from 5 cm to
20 cm).
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We measured the compressive strength of a sample as the peak value of sample
resistance force to the upper surface divided by the end surface area. The fracture pattern
was analyzed qualitatively and quantitatively using the information about the spatial
distribution and the number of broken bonds in the matrix, aggregates, and interfaces.
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3. Results

In this work, we consider the range of strain
.
ε rates in which the mechanical char-

acteristics of dry concrete samples (including strength) can be reasonably assumed to
be strain rate independent. This particularly determined the choice of rate-independent
formulation of strength criterion Equation (5). At the same time, mobile fluid in the pore
space is capable of changing the value of critical (maximum) load depending on the loading
rate. The expanding action of the pore fluid causes an earlier (in comparison with “dry”
samples) onset of damage initiation and the development of cracks in the material, and thus
determines a reduced strength value. During the process of material compression, the pore
space and the pore fluid are both compressed. This leads to an increase in pore pressure
(and its gradient), which not only affects the stress state of the skeleton but initiates fluid
flow. The outflow of pore fluid through free side surfaces (due to a gradually growing
pressure gradient from the center of the sample to the periphery during compression)
promotes a decrease in pore pressure. During the course of material compression, there
is competition between two interrelated and oppositely directed processes that control
the dynamics of pore pressure growth. Due to the inertia of the fluid flow process, it is
reasonable to suppose that the value of the dynamic strength of porous fluid-saturated
concrete samples should decrease with an increase in the strain rate. In the quasi-static
regime of loading (fully drained condition), the strength of concrete should be close to the
upper limit corresponding to the strength of the dry sample [21]. As the compression rate
increases, the strength value should tend to the lower limit corresponding to the strength
of water-saturated hydro-isolated samples (undrained condition) [24,63].

The competitive influence of compression of the porous skeleton (this leads to an
increase in pore pressure) and filtration of pore fluid (this leads to a decrease in pore
pressure) can be qualitatively and quantitatively characterized by the ratio of the time scales
of these processes. The time scale of the first process can be characterized by the inverse
strain rate: Tde f ∼ 1/

.
ε. The time scale of the fluid flow process (called the Darcy timescale)

is defined as TDarcy = ηW2/k(P2 − P1), where W is a characteristic system lengthscale,
(P2 − P1) is pore pressure difference at the ends of this lengthscale (pressure gradient is
driving force for fluid flow), η is fluid viscosity, and k is the material permeability. Note that
the given relation for Darcy’s time scale is derived by the finite-difference approximation
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of Darcy’s law. The ratio of these times (dimensionless Darcy number [24,25]) characterizes
the balance of the rates of deformation and filtration (Equation (17)):

Da =
TDarcy

Tde f
=

η
.
εW2

k(P2 − P1)
, (17)

We were the first to show that the dimensionless parameter Da can be considered a
generalization of the conventional dynamic parameter

.
ε for fluid-saturated high-strength

concretes with two-scale pore structure. In a recent paper [65], we showed that the de-
pendence of dynamic compressive strength of high-strength concrete σcomp on strain rate
has a nonlinear (logistic) profile. We discussed the advantage of using the generalized
dependence σcomp(Da) instead of conventionally used σcomp(

.
ε). The dependence σcomp(Da)

takes into account the scale factor through the size W and is applicable for various pore
fluids and concrete permeability values (at a constant porosity).

The present study is focused on revealing and analyzing the relation of the features
of this generalized strength dependence to the features and mechanisms of fracture of
fluid-saturated concrete. The analysis is based on the simulation results for various values
of

.
ε, η, k, and W (the limits of their variation are given above).

Concrete is a heterogeneous composite material with two-scale porosity and mesoscale
hardening inclusions. These structural factors should have a significant influence on the
value of the dynamic strength and the limits of its change. To identify the contribution of
each of them, the following were analyzed:

1. The role and contributions of different scale pore subsystems (micropores and capil-
lary network). The analysis of this factor was carried out on the basis of the results of
modeling samples without micropores (only a capillary network) and with microp-
ores.

2. Inhomogeneity of the structure at the mesoscale. Samples with the different spatial
distribution of micropores and basalt aggregates were analyzed, and the intervals of
scatter of local dynamic strength (strength of mesoscopic samples) were estimated.

3.1. Generalized Rate Dependence of Strength for Concretes with One-Scale and Two-Scale Porosity

The considered high-strength concrete has two-scale porosity but the characteristic
fluid flow rate is mainly determined by the permeability of the capillary pore network
k. To study the effect of cement stone permeability (provided by a connected network of
capillary pore channels) on the compressive strength of concrete, we first simulated uniaxial
compression of model samples with cement stone containing only capillary porosity (no
micropores). The typical initial structure of such samples corresponds to that presented in
Figure 1 but without micropores.

The results of modeling the mesoscale samples of fluid-saturated concrete with one-
scale (capillary) porosity at various values of

.
ε, η, k, and W confirm the correctness of the

assumption [65] that the dynamic compressive strength is a single-valued function of the
ratio of the characteristic rates of deformation and fluid flow (Da). Note that the difference
(P2–P1) in (17) has the meaning of the pressure difference in the center of the sample and
on the free side surface in the direction transverse to the loading axis. When applying
the parameter Da to uniquely characterize dynamic strength, we should take into account
that the pore pressure in the center of the sample (P2) continuously increases during
the course of sample compression, while it remains constant and equal to atmospheric
pressure (P1 = 105 Pa) on the side surface. Hence, the characteristic value of fluid flow rate
continuously increases due to a gradual increase in the pressure difference in the sample.
We therefore use an analog of the Darcy number Equation (17) with P2 calculated as
Terzaghi’s estimation of maximum reachable pore pressure: P2 = σCem

c φ0, where ϕ0 is the
initial capillary porosity of the cement stone (P2~7 MPa for simulated cement stone). The
pressure P1 in Equation (17) is pore pressure on the side surface of the sample (P1 = 105 Pa).
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The set of obtained values of the compressive strength of concrete samples with one-
scale (capillary) porosity at different values of

.
ε, η, k, and W form a unified curve σcomp(Da)

(curve 1 in Figure 3). This curve has a logistic form and is well approximated by a sigmoid
function (Equation (18)):

σcomp(Da) = σmin
comp +

σmax
comp − σmin

comp

(1 + [Da/24.37]3)
, (18)

where σcomp is the dynamic compressive strength of the concrete sample; σmin
comp ≈ 55.6 MPa

is the minimum value of the strength of the concrete sample, namely, at negligible filtration
(at high loading rates or low permeability); σmax

comp ≈ 64 MPa is the maximum value of the
strength equal to the strength of a dry sample or a water-saturated sample under quasi-
static loading (when the outflow of pore fluid through the side surfaces maintains a pore
pressure equal to atmospheric). The characteristic range of change in the strength value is
(σmax

comp − σmin
comp) ≈ 8 MPa, which is about 15% of the compressive strength of dry concrete.

We should remind ourselves here that the strength of the dry sample can be reasonably
assumed to be constant (σmax

comp ≈ 64 MPa) in the considered range of strain rates.
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Figure 3. Dependence of the compressive strength of fluid-saturated mesoscale concrete samples
with one-scale (curve 1) and two-scale (curve 2) pore structures on the Darcy number Da. Three
main sections are marked on the curves: the characteristic fluid flow times are much shorter than the
characteristic loading times (I); a qualitative change in the balance of these competing processes (II);
the characteristic fluid flow times are much longer than the characteristic loading times (III).

The unified dependence σcomp(Da) (curve 1 in Figure 3) can be divided into three
characteristic sections.

Section I (Da < 10) corresponds to such combinations of values of structural parameters,
fluid viscosity, and loading rate, which ensure enough time for fluid redistribution in the
volume of capillary pore channels and flow out of the sample. Therefore, the pore pressure
is at a low level. In this case, the filtration (outflow) of the fluid is an efficient mechanism
of stress relaxation in the skeleton, and the strength of the sample is close to the maximum
value and changes only slightly. The maximum strength (~64 MPa) is achieved at Da→ 0.

Section III (Da > 100) corresponds to the combinations of parameters
.
ε, η, k, and W, at

which the fluid does not have time to redistribute in the capillary network during concrete
loading. The sample is actually under undrained conditions, and the pore pressure is close
to the maximum achievable value, thus minimizing the strength of concrete as much as
possible. Therefore, the concrete strength remains almost unchanged at Da > 10 and is close
to the minimum value (~56 MPa).
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Section II of the curve (10 < Da < 100) is transitional, the ratio of strain rate to the rate
of pore fluid filtration varies within the above-mentioned limits.

Analysis of fracture of samples characterized by different values of the Darcy number
indicates their qualitatively similar patterns corresponding to typical fracture of brittle
heterogeneous materials (Figure 4). The first damages nucleate and accumulate mainly
at the interfaces between the “soft” matrix and “hard” aggregates (Figure 4a), where the
maximum deviator stresses are localized. These interface damages and small cracks inhibit
the load transfer from the matrix to the inclusions. This leads to the development of
fracture through the growth of cracks in the cement stone. The sources of these cracks
are the above-mentioned interface damages. Since the characteristic value of the inelastic
strain of the cement stone is relatively small, the dynamics of matrix fracture is close to that
of brittle materials. It is characterized by the fast propagation of main cracks and by the
formation of many secondary (local) cracks (Figure 4a,b). We emphasize the formation of
small zones of strong fragmentation (cleavage up to crushing) of the matrix. The formation
of cleavage zones is an effective way to relax the high local shear stresses in the regions
constrained by intersecting inclined long cracks.

It is important to note the changes in the fracture pattern with increasing loading
rate characterized by the Darcy number (Figure 4c,d). An increase in the Darcy number
(and a corresponding decrease in the role of pore fluid flow and increase in the rate of
pore pressure growth) is accompanied by an increase in the “multiplicity” of fracture.
The number of main cracks and connecting secondary (local) cracks increases with the
value of Da. The number and characteristic size of cleavage zones in the cement stone also
increase significantly. Such a change in the fracture pattern (an increase in the degree of
fragmentation with an increase in the generalized loading rate parameter Da) qualitatively
corresponds to the experimentally observed regularities for various water-saturated brittle
materials including concretes [10,31,35,36,86].

To study the contribution of micropores to the strength of concrete, we considered
mesoscopic samples with two-scale porosity of cement stone (Figure 1). As noted above,
the micropore diameter was 500 µm and the microporosity value was 4% of the total
volume of the cement stone. Micropores and capillary pores were assumed to be connected
(combined into a single filtration system).

Analysis of the simulation results at various values of
.
ε, η, k, and W shows that the

strength of water-saturated concrete with two-scale porosity is also a single-valued function
of Da. Similar to the case of one-scale porosity, this dependence is well approximated by a
sigmoid function (Equation (19)):

σcomp = σmin
comp +

σmax
comp − σmin

comp

(1 + [Da/2.90]1.8)
, (19)

where σmin
comp ≈ 43.3 MPa and σmax

comp ≈ 49.9 MPa (curve 2 in Figure 3).
One can see that the effect of microporosity on the change in compressive strength of

concrete is manifested in the entire considered range of variation of the parameter Da.
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Figure 4. Fracture of model water-saturated concrete samples with capillary pores at different values
of Da: 0.5 (a,b); 140 (c,d). Figuers (a,c) show the beginning phase of fracture, while figures (b,d) show
broken samples. Primary (interfacial) damages in (a,c) are marked by the red lines and indicated
by the number 1. The main cracks (first destructive cracks) in (b,d) are marked by the red line and
indicated by the number 2. The cleavage zones are bordered by green contours and indicated by the
number 3.

First of all, it is important to mention a significant overall decrease in the value of
dynamic compressive strength of the samples. The maximum and minimum strength
values of fluid-saturated concrete with two-scale porosity (σmax

comp and σmin
comp) decrease by

approximately the same amount (13–14 MPa or about 25%) in comparison with similar
strength values for concrete with only capillary pores in the mortar. An explanation of this
effect is clear. Micropores in the concrete structure are mesoscopic stress concentrators and
cause earlier initiation of damages and cracks in the cement stone and the formation of the
main crack at lower values of the applied load.

At the same time, the dynamics of change in the sample strength from σmax
comp to σmin

comp
significantly differs from the same for concretes with only capillary pores (Figure 3). The
key difference is that the length of section I contracts to 0 < Da < 0.4. However, stage III
(minimum strength values) begins at the same characteristic values of the Darcy number as
in the case of concrete with a one-scale pore system (Da > 100). In other words, large-scale
pores (micropores) provide an increase in the length of the transition stage II by almost
two orders of magnitude.
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Fracture of concrete samples with two-scale porosity (Figure 5) is much more localized
in comparison with concrete with one-scale porosity (Figure 4).
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Figure 5. Fracture of model water-saturated concrete samples with capillary and microscopic pores
at different values of Da: 0.5 (a,b); 140 (c,d). Figures (a,c) show the beginning phase of fracture, while
figures (b,d) show broken samples. Primary short cracks originating from damage to the mesopore
walls are shown in (a,c). They are marked by the red lines and indicated by the number 1. The main
cracks in (b,d) are marked by the red line and indicated by the number 2, the intraparticle cracks
(green lines) are indicated by the number 3.

All fractures in the matrix, including the first damage (Figure 5a,c), destroying main
cracks, and connecting internal cracks (Figure 5b,d), are related to micropores. Primary
damages are formed by the destruction of the walls of micropores. Under the increasing
load, adjacent damage coalesces into short internal cracks (Figure 5a,c) and then into long
cracks up to main cracks (Figure 5b,d). Note that the growth of cracks is discrete and
occurs in a jump-like manner (from micropore to micropore). Two important differences
can be distinguished between the fracture pattern of specimens with two-scale porosity
and the fracture pattern of specimens with only capillary porosity. First, when meeting
a hard inclusion of basalt, a growing crack often “cuts” it but does not bend around it
(Figure 5b,d). Second, we emphasize a qualitatively higher degree of fracture localization
including a smaller number of short secondary cracks connecting long cracks, and the
absence of cleavage zones. This is a consequence of the large number of centers of damage
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nucleation (micropores), which allow more efficient relaxation of high local shear stresses
by localizing fracture (crack formation).

We also emphasize the systematic change in aggregate contribution to fracture with an
increase in Da. Fracture of aggregates is predominantly at the interfaces (interfacial cracks,
which partially detach inclusions from the matrix) at small Da values, although the number
of intraparticle damages, short or through cracks (cracks that pass through the inclusion) is
larger than in concrete with only capillary porosity. An increase in Da and a corresponding
increase in characteristic pore pressure in the matrix are accompanied by a nearly twofold
increase in the number of through intraparticle cracks and a concurrent decrease in the
number of small damages in the particles. The number of intraparticle cracks at large Da
values is comparable to the number of cracks that propagate around the particles through
the interface.

3.2. Influence of Heterogeneity of Concrete Structure on the Value of Local (Mesoscopic) Dynamic
Compressive Strength

The previous section analyzes the general features of the mechanical effect of pore
fluid pressure and pore structure parameters on the dynamic compressive strength of a
mesoscopic representative volume of high-strength concrete. Concrete is a strongly hetero-
geneous material. The heterogeneity of the structure can differ significantly in different
mesoscale regions of large-scale (macroscopic) structures due to the features of manufactur-
ing technology. Direct averaging of the strength values of various statistically equivalent
mesoscale volumes does not guarantee an accurate estimate of the macroscopic strength of
concrete, since macroscopic strength is determined, among other things, by the interaction
of adjacent mesovolumes. At the same time, knowledge of the local (mesoscopic) charac-
teristics of concrete is of most importance in many topical practical problems. Examples of
such problems are local contact loading of underwater parts of large concrete structures,
including the collision of a ship with a concrete berth or dynamic contact load by ice
plates during “icequakes” (analog of earthquakes in ice covers of large northern lakes
or seas) [38,39,87]. Underestimation of local dynamic strength can have the far-reaching
consequence of reducing the operational life of the entire concrete structure.

The foregoing determines the relevance of estimating the characteristic interval of
variation of the local dynamic strength of statistically equivalent mesoscale concrete vol-
umes characterized by the different spatial distributions of structural elements. Variation
in the mechanical properties of concrete at the mesoscale is determined by the different
spatial arrangements of micropores in cement stone and hardening aggregates. To identify
the partial contribution of each of these factors to the dynamic strength of concrete, we
carried out two series of calculations:

3 The first series investigated the strain rate dependence of the dynamic strength for five
model samples with different spatial positions of micropores. Note that the combined
effect of micropores and basalt aggregates on the strength of concrete is generally not
a superposition of their partial contributions. Therefore, we analyzed the influence
of the spatial arrangement of micropores on the variation in the strength of cement
stone (the main component of concrete).

4 The second series investigated the strain rate dependence of the dynamic strength for
five model concrete specimens with different spatial arrangements of aggregates. All
concrete samples were characterized by the same spatial position of micropores in the
cement stone (except for the areas occupied by basalt aggregates).

Other mechanical and geometric parameters of the samples, as well as the loading
conditions, are the same as those used in the previous section.

Figure 6a,b show examples of model cement stone specimens. Different spatial
positions of micropores in the samples were provided by setting different seed values
of the random number generator in the micropore generating software. The statistical
equivalence of the pore distributions in these samples is confirmed by the coincidence of
the radial distribution functions (Figure 6c).
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Figure 6. Examples of the initial structure of fluid-saturated microporous (4 vol.%) samples of cement
stone with different spatial arrangements of micropores (a,b) and corresponding radial distribution
functions of micropores (c).

The results of modeling uniaxial compression at various values of
.
ε, η, k, and W shows

that strain rate depends on the compressive strength of the representative mesovolumes
with different spatial positions of micropores are well approximated by sigmoid functions.
The approximating functions for different cement stone samples are almost parallel to each
other, and their parameters (minimum and maximum strength, exponent, and position of
the midpoint) differ insignificantly. The sigmoids below correspond to the “limiting” cases
(upper and lower boundary curves) (Equations (20) and (21)):

σcomp = σmin
comp +

σmax
comp − σmin

comp

(1 + [Da/6.31]1.9)
, (20)

where σmin
comp ≈ 50.41 MPa, σmax

comp ≈ 56.86 MPa;

σcomp = σmin
comp +

σmax
comp − σmin

comp

(1 + [Da/4.51]1.85)
, (21)

where σmin
comp ≈ 47.85 MPa, σmax

comp ≈ 54.13 MPa.
Equations (20) and (21) are shown in Figure 7. They correspond to the samples in

Figure 6a,b, respectively. Curves σcomp(Da) for the rest of the samples lie within the interval
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limited by these two “limiting” curves. One can see that the range of variation in the value
of the local dynamic strength of the cement stone is nearly constant in the entire range of
Da and is ~5%.
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Figure 7. Examples of the dependence of compressive strength of water-saturated cement stone
samples with different spatial arrangements of micropores (4 vol.%). Curves 1 and 2 correspond to
the samples in Figure 6a,b, respectively.

Samples of cement stone with different spatial arrangements of micropores have a
similar pattern of fracture at the same values of Da, and the change in fracture pattern is
determined by the value of Da. At all Da values, the first damages appear on the walls of
micropores (Figure 8a,c) because the micropore is the softest mesoscopic structural element.
With a further increase in the load, these damages coalesce into small cracks that develop
into main cracks and numerous secondary cracks that provide material fragmentation
(Figure 8b,d). Note that cracks develop in a jump-like manner (from micropore to micro-
pore). They have complex trajectories and break the sample into non-equiaxial blocks
oriented along the loading direction. Secondary (connecting) cracks divide large blocks
into smaller fragments. Note that the development of a system of secondary cracks is
much more pronounced at large Da (dynamic loading, Figure 8d) values. This leads to
much greater fragmentation of the material (the size of the blocks is typically several times
smaller than at a small Da value). The smaller characteristic size of fragments is due to the
high pore pressure at large Da values, which leads to a significant increase in shear stresses
in the vicinity of micropores and multiple fractures.

To study the effect of the spatial distribution of aggregates on the mechanical charac-
teristics of mesoscale volumes, we generated five statistically equivalent model samples.
All samples have the same arrangement of micropores in the cement stone (Figure 6b).
Basalt aggregates were located in this matrix (in all cases, the volume concentration of
aggregates was 10%). Different shapes, sizes, and spatial positions of the aggregates in
different samples are due to different seed values of the generator of random numbers in
the software generator of aggregates. Examples are shown in Figure 9.
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Figure 8. Fracture of model water-saturated samples of cement stone with a two-scale pore structure
at different values of Da: 0.5 (a,b); 140 (c,d). Figures (a,c) show the beginning phase of fracture, while
figures (b,d) show broken samples. Primary short cracks originating from damage to the mesopore
walls are shown in (a,c). They are marked by the red lines and indicated by the number 1. The main
cracks in (b,d) are marked by the red line and indicated by the number 2. Some typical non-equiaxial
fragments are bordered with green contours and indicated by the number 3.
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Figure 9. Examples of mesoscale water-saturated concrete samples with different spatial ar-
rangements of aggregates and the same arrangement of micropores. Different initial values of
the generator of random number were used to arrange aggregates in (a,b). The sample (a) is char-
acterized by a slightly more uniform spatial distribution of aggregates and higher com-pressive
strength in comparison with (b).
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The analysis of the simulation results shows that the values of local elastic parameters
of concrete are almost independent of the spatial arrangement of aggregates and their
geometric details. For example, Young’s modulus E is the same for all considered samples
(the difference is less than 1%). The numerically obtained value E = 36.8 GPa agrees well
with the estimate within the Reuss approximation of elastic moduli 1/E = CCem/ECem +
(1− CCem)/EBas (CCem is the volume fraction of porous mortar, E is Young’s modulus of the
composite, ECem and EBas are Young’s moduli of porous mortar and basalt). The difference
between the numerical and analytical estimates does not exceed 2%. This confirms that the
considered samples are representative mesoscopic volume elements.

The approximating sigmoid functions for different concrete specimens are almost
parallel to each other, similar to the above case of cement stone. The sigmoids below
correspond to the “limiting” cases (upper and lower boundary curves):

σcomp = σmin
comp +

σmax
comp − σmin

comp

(1 + [Da/5.02]1.82)
, (22)

where σmin
comp ≈ 47.26 MPa and σmax

comp ≈ 53.44 MPa;

σcomp = σmin
comp +

σmax
comp − σmin

comp

(1 + [Da/3.13]1.86)
, (23)

where σmin
comp ≈ 42.71 MPa and σmax

comp ≈ 47.37 MPa.
Functions (22) and (23) are shown in Figure 10. Curves σcomp(Da) for the rest of the

mesoscale concrete samples lie within the interval bounded by these two “limiting” curves.
The width of the σcomp variation interval is about 10% of the strength of dry concrete

and does not depend on the value of Da (in other words, it is the same in both quasi-static
and dynamic regimes of loading). Note that the intervals of variation of other parameters
of the approximating sigmoid are also moderate.
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φ (%) 
σdrain 

(MPa) 

RMSD 

σdrain (MPa) 

σundrain 

(MPa) 

RMSD 

σundrain 

(MPa) 

Midpoint 
RMSD 

Midpoint 
Power 

RMSD 

Power 

0 55.9 1.5 49.4 1.4 6.2 1.6 1.86 0.05 

10 50.3 3.1 44.4 2.5 3.7 1.2 1.83 0.03 

The following symbols are used in the Table: φ is the volume fraction of aggregates, σdrain is the 

maximum value of compressive strength (drained condition at low Da), σundrain is the minimum 
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Summarized results of the numerical analysis of the effect of interstitial fluid on
dynamic strength of mesoscopic representative volumes of high-strength concrete are
shown in Table 4. The data in the table are based on the processing of 5 statistically
equivalent mesoscale samples.
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Table 4. Parameters of the logistic dependence of the uniaxial compressive strength of high-strength
concrete with a two-scale porosity (6 vol.% of capillary pores and 4 vol.% of micropores) on the
generalized loading rate parameter Da.

ϕ (%) σdrain
(MPa)

RMSD
σdrain
(MPa)

σundrain
(MPa)

RMSD
σundrain
(MPa)

Midpoint
RMSD

Mid-
point

Power RMSD
Power

0 55.9 1.5 49.4 1.4 6.2 1.6 1.86 0.05
10 50.3 3.1 44.4 2.5 3.7 1.2 1.83 0.03

The following symbols are used in the Table: ϕ is the volume fraction of aggregates, σdrain is the maximum value
of compressive strength (drained condition at low Da), σundrain is the minimum value of compressive strength
(undrained condition at large Da), Midpoint and Power are the midpoint and the power of approximating sigmoid,
and RMSD is the root-mean-square deviation of the corresponding parameter.

Therefore, the features of the spatial arrangement of micropores and hardening ag-
gregates mainly determine the characteristic level of local strength and insignificantly
affect the strain rate sensitivity of concrete. Both types of structural elements are strong
mesoscale stress concentrators. Comparison of the relative contributions of micropores
and aggregates to the value of the variation interval of the local dynamic strength shows
that aggregates are the most significant factor. Their heterogeneous spatial distribution
provides a 2–2.5 times wider range of variation in local strength than micropores in the
cement stone.

4. Discussion

The simulation results showed that the redistribution (flow) of pore fluid in the
pore space is a key factor controlling the systematic change of compressive strength
and fracture pattern of concrete samples in the “intermediate” interval of strain rates
(10−4 s−1 <

.
ε < 101 s−1). We should remember that this interval separates the quasi-static

and high strain rate regions. Since the fluid flow rate is controlled by applied strain rate, the
dependence of the mechanical parameters (including compressive strength) and fracture
features of fluid-saturated concrete samples on the loading dynamics is adequately charac-
terized by the general loading rate parameter (Darcy number). In other words, the control
parameter is not simply the strain rate, but the balance of the strain and fluid flow rates.

The structural factor that has an important influence on the rate sensitivity of strength
and fracture pattern of concrete is porosity. The considered high-strength concrete has
two-scale porosity. Although the influence of capillary and microporosity on fracture and
compressive strength is generally similar, there are significant differences between them.

The open capillary network determines the phenomenon of strain-rate sensitivity of
fluid-saturated concrete and logistic form of the compressive strength dependence on the
rate parameter (Da). An increase in Da is accompanied by an increase in pore pressure in
cement stone. On the one hand, this determines an increase in the effective stiffness (bulk
modulus) of the matrix. On the other hand, this leads to a decrease in the threshold of
plasticity and strength. The increase in pore pressure determines the onset of fracture of
the matrix at lower values of the applied load and, consequently, a decrease in the uniaxial
compressive strength of the sample. At the same time, a decrease in the plasticity threshold
and an increase in the effective stiffness of the fluid-saturated matrix lead to a change in
the contributions of mesoscopic structural elements to fracture.

These conclusions are confirmed by a quantitative analysis of the damage accumu-
lation in concrete samples with a single-scale pore structure (only capillary pores). The
term “damage” hereinafter means a broken bond between two adjacent discrete elements.
Figure 11 shows the relationship between the number of broken bonds in the sample and
the applied strain. The number of broken bonds is normalized by the total number of
bonds in the unstrained sample. Four graphs depict the dynamics of the accumulation of
all damages (a), damages in the cement stone matrix (b), damages in the basalt aggregates
(c), and damages at the “matrix-aggregate” interfaces (d). Each graph shows three curves
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illustrating the dynamics of damage accumulation at different values of Da corresponding
to the three main stages of the dependence σcomp(Da) (curve 1 in Figure 3).

First, we have to mention a systematic almost twofold decrease in the value of strain
of the beginning of intensive damage accumulation with an increase in Da. This is a
consequence of an increase in the characteristic pore pressure level. Second, an increase
in Da is also accompanied by a moderate (about 30%) increase in the total number of
damages in the sample (Figure 11a). This indicates a moderate increase in the degree
of its fragmentation (Figure 4). This effect takes place mainly in the range of Da values
corresponding to stage III of the dependence σcomp(Da) since the pore pressure in the
matrix is close to maximum at this stage. The increase in damage is achieved primarily
through matrix contribution (Figure 11b). At the same time, it is important to note a
threefold increase in the contribution of aggregates to sample fracture with an increase in
Da (Figure 11c) along with an almost unchanged contribution of interfaces (Figure 11d).
This fact is clearly associated with an effective increase in the volumetric stiffness of the
fluid-saturated matrix and stress transfer from matrix to aggregates. Therefore, although
the general pattern of fracture does not change significantly, an increase in the generalized
loading rate (Da) leads to a much more intensive contribution of the “aggregate” mechanism
to the fracture of fluid-saturated concrete.
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Figure 11. The dependences of the number of broken bonds in the fluid-saturated concrete sample
with one-scale pore structure (capillary porosity) on the value of applied strain: (a) all broken bonds;
(b) broken bonds in cement stone; (c) broken bonds in basalt aggregates; (d) broken bonds at the
interphase boundaries. The number of broken bonds is normalized by the total number of bonds in
the unstrained sample. Roman numerals I, II, and III denote the number of the corresponding section
of the unified curve σcomp(Da).
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Insertion of micropores into the structure of water-saturated concrete leads to a change
in the trend of the dependence of the sample damage (and the contributions of mesoscopic
structural elements) on the loading rate. Large pores (micropores) are strong local stress
concentrators and are deformed more strongly than capillary pores. “Extra” fluid passes
from micropores into capillary pores during the loading and increases the pore pressure in
the capillary pore system of surrounding regions of the matrix. This has implications for
both the fracture and strain rate dependence of concrete strength.

First, an increase in Da is accompanied by an increase in the effective stiffness of
micropores to a much greater extent than that of the surrounding cement stone matrix with
capillary porosity. This leads to the fact that micropores become not voids, but inclusions
with the stiffness of only an order of magnitude less than the stiffness of a cement stone
(we can additionally mention that Poisson’s ratio of such an inclusion is 0.5). Hence,
the concentration of deviatoric stresses in the matrix around micropores decreases, and
the characteristic magnitude of compressive bulk stress increases. This effect provides a
significant and gradual decrease in the total number of damages and contributions of all
structural elements with an increase in Da (Figure 12). In other words, the fracture pattern
of concrete with a two-scale pore structure becomes more localized compared to concrete
with only a capillary pore network (Figures 11 and 12). Moreover, the degree of fracture
localization in fluid-saturated concrete with a two-scale pore structure increases with the
loading rate (Da). This is achieved by reducing the number of individual damages and
short internal cracks (the effect is especially pronounced for the aggregates, Figure 12c).
The destruction is carried out by the development of a system of large cracks. These cracks
are generated mainly on micropores. However, a dramatic increase in the effective stiffness
of micropores with an increase in Da leads to the number of such centers of crack initiation
being almost halved (Figure 13).

Second, some fraction of micropore fluid passes into capillary pores during the loading
and additionally increases the pore pressure in the capillary pore system. Since microp-
ores are deformed larger than capillary pores, the characteristic rate of fluid flow from
micropores to the surrounding matrix is higher than inside the matrix. In addition, the
characteristic distance between micropores is much less than the half-width of the sample.
Therefore, the effect of pore fluid transport between micro- and capillary pore spaces on
the stress state and strength of concrete is valuable already at Da corresponding to low
strain rates. The consequence is an “earlier” transition from stage I to stage II (Figure 3),
that is, the dynamic strength of concrete with micropores begins to decrease at significantly
lower strain rates. The foregoing suggests that an increase in the number of scales of the
pore structure of fluid-saturated concrete is accompanied by a decrease in the threshold of
its strain rate sensitivity.

Summarizing the above, the fracture pattern and dynamic compressive strength of
water-saturated concrete with two-scale porosity are determined not only by the parameters
of the capillary pore system (mainly by permeability) but also by the volume fraction of
large (micro-scale) pores. An increase in the fraction of micropores leads not only to a
common decrease in the strength of the samples but also to a decrease in the threshold
for the strain rate sensitivity of strength from Da~101 down to Da~10−1 (Figure 3). For
water-saturated samples with a transverse size (width) of 5–10 cm, this corresponds to a
shift in the characteristic threshold values of the strain rate

.
ε from 10−2–10−1 s−1 down to

10−4–10−3 s−1. The interval of significant change in strength also changes (expands) by
two orders of magnitude. In terms of the parameters of the sigmoid function σcomp(Da),
this is accompanied by a more than twofold decrease in the exponent and a shift of the
median point of the sigmoid to the left by an order of magnitude.
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Figure 12. The dependences of the number of broken bonds in the fluid-saturated concrete sample
with two-scale pore structure (capillary porosity and 4 vol.% micropores) on the value of applied
strain: (a) all broken bonds; (b) broken bonds in cement stone; (c) broken bonds in basalt aggregates;
(d) broken bonds at the interphase boundaries. The number of broken bonds is normalized by the
total number of bonds in the unstrained sample. Roman numerals I, II, and III denote the number of
the corresponding section of the unified curve σcomp(Da).
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Figure 13. The dependence of the number of broken bonds in the walls of micropores in the fluid-
saturated concrete sample with two-scale pore structure (capillary porosity and 4 vol.% micropores)
on the value of applied strain. The number of broken bonds is normalized by the total number of
bonds in the unstrained sample. Roman numerals I, II, and III denote the number of the corresponding
section of the unified curve σcomp(Da).
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It is important to note that the change in the parameters of the unified curve σcomp(Da),
with an increase in the volume fraction of micropores, is strongly nonlinear. This is
illustrated in Figure 14, which shows σcomp(Da) curves for the samples with three different
volume fractions of micropores (0%, 2%, and 4%). One can see that the σcomp(Da) curve
shifts down and to the left almost without distortion at “small” values of volume fraction
(the exponent of the sigmoid for micropore fraction 2% is the same as for 0%, while Da value
of the midpoint of the sigmoid decreases three times). A further increase in the volume
fraction of micropores is accompanied by the expansion of transitional section II at the
expense of section I with an almost unchanged value of the median point of the sigmoid.
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Figure 14. Dependence of the compressive strength of fluid-saturated mesoscale concrete samples
with different volume fractions of micropores on the Darcy number Da: 0% (curve 1); 2% (curve 2);
4% (curve 3). Curves 1 and 3 correspond to curves 1 and 2 in Figure 3.

Such a staged nature of the change in the parameters of the dependence σcomp(Da) is
explained by the mutual influence of micropores. At low concentrations of micropores, the
distance between them is significantly higher than the size of the region of the surrounding
matrix, in which the pore pressure significantly increases due to fluid transport from the
micropore. A further increase in the volume fraction of micropores (i.e., a decrease in the
characteristic distance between micropores) leads to the influence of micropores on the pore
pressure and the dynamics of the fluid flow process throughout the cement stone matrix.

Therefore, the mechanical effect of pore pressure on the compressive strength of
concretes with a two-scale pore structure (strength reduction) can take place already at
low strain rates approaching the quasi-static loading regime. The factor controlling the
threshold (minimum) values of

.
ε is microporosity (the volume fraction of micropores

must exceed some characteristic value of the order of several percent), while the capillary
network determines the phenomenon of strain-rate sensitivity of the concrete and logistic
form of the dependence of compressive strength on strain rate.

5. Conclusions

The paper numerically studied the mechanical effect of pore fluid pressure on the
fracture and dynamic strength of high-strength concrete under uniaxial compression. We
considered the “intermediate” range of strain rates between quasi-static (<10−4 s−1) and
large (≥100 s−1) values. The peculiarities of this interval are: (1) insignificant strain
rate sensitivity of the mechanical characteristics of dry concrete; (2) the determining role
of competition between pore pressure and pore fluid flow in the mechanical effect of
interstitial fluid on the stresses and strength of concrete.

The study was carried out with the use of a previously developed coupled numerical
(discrete element) model of high-strength concrete with two-scale porosity and interstitial
fluid [65]. In the previous paper [65], we first showed that sensitivity of the compressive
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strength of fluid-saturated concrete to loading rate can be effectively characterized by the
Darcy number (Da). Parameter Da is a measure of the balance of pore space deformation
and pore fluid flow and a dimensionless generalization of the traditionally used strain rate
to the fluid-saturated materials. We revealed the nonlinear (logistic) decreasing dependence
of the compressive strength on Darcy number and showed that the parameters of this
dependence are different for concretes with one-scale and two-scale porosities.

In the present study, we comprehensively investigated how the capillary and micro-
pore subsystems determine the change in the fracture pattern and dynamic compressive
strength of fluid-saturated high-strength concrete with an increase in the loading rate
characterized by the Da value. The following observations and conclusions can be dawn:

• The effect of pore fluid on the dynamic mechanical behavior of concrete is determined
not only by the absolute value of the open porosity but also by the number of pore
scales. We showed that fracture of concrete with only low-scale porosity (capillary
pore network) is typically brittle and is characterized by the formation of a network of
internal “secondary” cracks. It is important to emphasize the formation of regions with
the strong breaking of the cement stone matrix (cleavage zones) up to the crushing of
the material. The introduction of large-scale pores (micropores) leads to a qualitative
change in the dynamics of crack growth and a strongly pronounced localization of
fracture. Cracks originate not at interphase boundaries (as with one-scale porosity)
but at micropores and develop in a jump-like manner (from micropore to micropore).
Moreover, there are no cleavage zones even at sufficiently high Da values correspond-
ing to characteristic strain rates >1 s−1. The latter is a consequence of the large number
of centers of crack nucleation (micropores), which allow efficient relaxation of high
local shear stresses without cleavage and crushing of the material.

• Large pores (micropores) also determine a qualitative change in the fracture trend
with an increase in the loading rate (characterized by the value of Da). An increase in
Da value leads to an increase in “multiplicity” of fracture of the concrete with only
low-scale (capillary) porosity. The number of main cracks and connecting internal
cracks in the matrix increases with the value of Da. The sizes of cleavage zones and
their number increase in multiples. This can be generally characterized by an increase
in the total damage of concrete (the amount of mesoscale damages increases). The
opposite trend takes place for concrete with low-scale and large (microscopic) pores.
The total damage of the samples systematically decreases with an increase in Da due
to a decrease in the number of single mesoscopic damages and short internal cracks.
Fractures develop by means of the formation of large cracks. We also emphasize the
systematic change in the contribution of aggregates to fracture in both systems with
an increase in Da value. At a small Da value, the cracks predominantly bend around
hard aggregates through interfaces. At large Da values, many cracks cut aggregates
(the fraction of fractured particles increases with an increase in Da).

• The above trends in the change of fracture with an increase in Da are determined
by the increasing characteristic value of the pore fluid pressure and its contribution
to the internal stresses in the solid-phase skeleton of cement stone. At the same
time, the effects of this contribution differ for concretes with one-scale (capillary)
and two-scale (capillary and micropores) porosity. The increase in pore pressure
determines the onset of fracture of the matrix at lower values of the applied stress.
In the first case (only low scale porosity), this determines an increase in damage
of the mesoscopically homogeneous matrix material with an increase in Da. The
micropores with interstitial fluid provide the mesoscopic heterogeneity of the matrix
and the corresponding inhomogeneity of stress distribution. Micropores deform more
strongly than capillary pores in the matrix, and the pore pressure in the micropore
grows faster than in the surrounding region of the matrix. An increase in Da is
accompanied by an increase in effective stiffness of these stress mesoconcentrators due
to the finite rate of fluid outflow to the capillary network. Hence, the concentration
of deviator stress in the matrix around micropores decreases, while the characteristic
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magnitude of compressive volumetric stress increases. This effect provides the above
described significant and gradual decrease in the total number of damages with an
increase in Da value.

• The above results allow us to conclude that expanding the range of scales of the pore
structure contributes to an increase in the localization of fracture of water-saturated
concrete and to a decrease in the degree of fragmentation under compression. This
conclusion can be useful for the design of the internal structure of concrete, which
must meet special requirements for fracture.

• Micropores reduce not only the overall compressive strength of concrete (by ~25%)
but also the threshold of the sensitivity of concrete to the loading rate (by two orders
of magnitude). A noticeable decrease in the strength of concrete with a two-scale pore
structure begins at Da~10−1, while the sensitivity threshold for concrete with only a
capillary pore system is Da≈ 10. Moreover, the length of the Da interval corresponding
to a decrease in concrete strength from drained (maximum) to undrained (minimum)
values increases by two orders of magnitude (the exponent of the approximating
sigmoid is almost halved). This is a consequence of the above-described effect of a
stronger increase in pore pressure in micropores during compression. Indeed, the
pore pressure gradient between the micropore and the surrounding matrix is higher
than inside the matrix, and the characteristic rate of fluid flow from micropores to the
surrounding matrix is higher than in the matrix. An intense inflow of fluid into the
matrix accelerates the growth of pore pressure and the redistribution of fluid in the
matrix. Therefore, the effect of pore fluid transport between micro- and capillary pore
spaces on the stress state and strength of concrete is valuable already at Da values
corresponding to low strain rates.

• The described effect of increasing the sensitivity of concrete to the loading rate depends
on the characteristic distance between micropores (that is, on their concentration).
At low concentrations, the distance between micropores is significantly larger than
the characteristic size of the region of the surrounding matrix with increased pore
pressure provided by fluid transport from the micropore. In this case, the decrease in
the concrete sensitivity threshold is not accompanied by a noticeable change in the
width of the “transition” interval of Da between the intervals corresponding to the
maximum (drained) and the minimum (undrained) values of strength. An increase in
the concentration of micropores (i.e., a decrease in the characteristic distance between
micropores) leads to the influence of micropores on the pore pressure and the dynamics
of the fluid flow throughout the cement stone matrix. Overcoming the “percolation
threshold” is accompanied by the expansion of the transition interval of Da.

• An important result of the study is the revealed “stability” of strain rate dependence
of the dynamic compressive strength for representative mesoscopic concrete vol-
umes characterized by different spatial arrangements of micropores and hardening
inclusions. Small variation intervals of the parameters of the approximating sig-
moid indicate that the results of modeling of representative volume elements on the
mesoscale can be used to forecast the dynamic strength of macroscopic samples and
structural elements (except the elements containing macroscopic defects).

The results of the present study make a valuable contribution to the understanding
of the role of pore pressure in the onset of the limiting state of concretes as well as other
brittle solids with a multi-scale pore structure. These results can be particularly useful
for developing predictive models of degradation and abrasive wear of offshore concrete
structures in the Arctic under multiple dynamic contact loading by sea ice and/or other
floating objects. The results of the study can also be used when solving the problems of
determining the “optimal” parameters of the internal structure of concretes that function
under conditions of moisture saturation or in an aqueous environment.
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