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Abstract: Magnetoactive elastomers (MAEs) claim a vital place in the class of field-controllable mate-
rials due to their tunable stiffness and the ability to change their macroscopic shape in the presence
of an external magnetic field. In the present work, three principal geometries of shear deformation
were investigated with respect to the applied magnetic field. The physical model that considers
dipole-dipole interactions between magnetized particles was used to study the stress-strain behav-
ior of ellipsoidal MAEs. The magneto-rheological effect for different shapes of the MAE sample
ranging from disc-like (highly oblate) to rod-like (highly prolate) samples was investigated along
and transverse to the field direction. The rotation of the MAE during the shear deformation leads
to a non-symmetric Cauchy stress tensor due to a field-induced magnetic torque. We show that
the external magnetic field induces a mechanical anisotropy along the field direction by determining
the distinct magneto-mechanical behavior of MAEs with respect to the orientation of the magnetic
field to shear deformation.

Keywords: magnetoactive elastomers; shear deformations; magneto-rheological effect; magnetic
torque

1. Introduction

Magnetoactive elastomers (MAEs) are field-controllable materials whose mechanical
properties can be manipulated by applying an external magnetic field. They comprise
micron-sized magnetically soft/hard particles integrated into an elastomer matrix. MAEs
are used in several engineering applications because of their exceptional macroscopic shape
response to an applied magnetic field and a magneto-mechanical coupled behavior [1–7].
General applications of MAEs include actuators, sensors, adaptively tuned vibration ab-
sorbers, dampers, microfluid transport systems, adaptive engine mounts [8–11]. Automo-
tive suspension bushing is a pioneer application of the MAE developed by Ginder et al. [8].
The adaptively tuned vibration absorbers utilize MAEs as variable-spring rate elements.
The microfluid transport systems use the ability of MAEs to change their shape in an exter-
nal magnetic field, and such changes drive the fluid through artificial vessels [5]. In addition
to these applications, MAEs are also used in the biomedical applications such as mag-
netic fixator of eye retina, artificial cilia, active porous scaffold controlled by a magnetic
field, adjustable active surface morphology etc. [4,12–14]. MAEs can also alter the ma-
terial parameters such as elastic and shear moduli in the magnetic field. For instance,
the field-induced increase and decrease in the elastic modulus of MAEs with respect to
the orientation of the applied magnetic field are recently predicted [15]. The wide variety
of applications of MAEs makes it crucially important to understand mechanics triggering
the change in mechanical properties.

The MAEs can be differentiated based on the method of synthesis as isotropic and
anisotropic MAEs. The application of a uniform external magnetic field during the cross-
linking procedure leads to “chain-like” structures of magnetic particles inside the matrix,
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whereas application of the rotating magnetic field results in “plane-like” structures of mag-
netic particles [16–19]. These structures produce a mechanical anisotropy in the MAE and
the magneto-mechanical behavior varies strongly with the spatial distribution of the mag-
netic particles. On the other hand, mechanically isotropic MAEs with random distribution
of magnetic particles demonstrate a “transverse isotropy” in the presence of an external
magnetic field [15]. Different theoretical approaches have been proposed to investigate
the magneto-mechanical behavior of MAEs [20–31]. These approaches can be broadly di-
vided into particle-interaction models, micro-scale and macro-scale continuum models [32].
The micro-scale continuum models fully resolve the local magnetic and mechanical field
with the help of a continuum formulation of a coupled magneto-mechanical boundary
value problem [26,33]. The particle-interaction models do not resolve the local fields in-
stead ulitizing effective pair-wise interactions. The macro-scale models predict the material
behaviour of MAEs without resolving the microstructure [34–36]. The micro-scale and
particle-interaction models describe the effect of local particle arrangement on the magneto-
mechanical behaviour of MAEs, while macro-scale continuum models address the issue
of the sample shape of MAEs. It is well known from theoretical [15,37] and experimental
studies [38,39] that the shape of MAEs plays a crucial role in the magneto-mechanical
behavior. Thus, models of MAEs that account for effects from microstructure alone or only
from its macroscopic shape cannot fully describe the effective material behaviour. Accord-
ingly, the complex interplay between the microstructure and macroscopic shape creates
the necessity of a unified approach bridging different scales. For example, the cascading
mean-field description of the magnetization field in MAE composites is recently proposed
by splitting the field into three contributions on different scales [40]. As the magnetization
field provides a detailed description of local and global effects, this strategy allows to decou-
ple the short-range contributions from the long-range contributions to the magnetization
field in the MAE.

As a path towards the effective material model of the MAE, one needs a theoretical
framework that allows considering the magneto-mechanical effects emerging from the mi-
crostructure and shape of MAEs. Such theoretical framework is provided by a unified
continuum-mechanics and microscopic approach [22], which we apply in this work to
study the magneto-mechanical response of MAEs to shear deformations. This unification
of macroscopic and microscopic approaches can lead towards a generalized “analytical”
material model of MAEs. In our previous study, the particle-interaction model and micro-
scale continuum model have been compared [28]. The comparison shows a very good
agreement between both modeling strategies, especially for isotropic particle distribution.
Thus, the analytical model based on dipole-dipole interactions presented in this work signif-
icantly reduces the computation resources otherwise required in the micro-scale continuum
modeling. The unified approach is based originally on the “ellipsoidal” approximation
to the sample shape, though some limitations of this approximation have been recently
reported [24]. Recent works provide the extension of unified approach to any arbitrary
sample shapes [40,41].

The present work focuses mainly on investigating the material behavior of MAEs dur-
ing the shear deformation and predicts the magneto-rheological effect, defined as the change
in the shear moduli in the presence of an external magnetic field. The shear deformation
along the field direction, perpendicular to the field direction, and in the isotropic plane
(plane perpendicular to the field direction) is studied. Following the different geometries
of shear deformations, we examine the effect of field-induced magnetic torque and its con-
sequences on the symmetry of the Cauchy stress tensor. In the initial state before applying
the magnetic field or any deformation, the MAE has a shape of an ellipsoid of revolution
with two equal semi-axes B = C, as shown in Figure 1. We consider a random distribution
of spherical micron-sized magnetically soft particles in the MAE.
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Figure 1. Schematics of an MAE sample with the shape of an ellipsoid of revolution with two equal
semi axes B = C: (a) A prolate MAE sample (A > B = C). (b) An oblate MAE sample (A < B = C).

2. Material Model

We define ~X as the position vector of a material point in the reference configuration
(undeformed) and ~x as the position vector in the current configuration (deformed), then
the deformation gradient tensor is defined as Fmech = ∂~x

∂~X
[42]. The corresponding right and

left-Cauchy deformation tensors are Cmech = FT
mech · Fmech, bmech = Fmech · FT

mech [42–44].
The principal invariants of the left Cauchy deformation tensor are [44]

I1 = tr(bmech), I2 =
1
2
(tr(bmech)

2 − tr(b2
mech)), I3 = det(bmech) (1)

As rubber-like materials are incompressible, i.e., I3 = 1, and conventionally repre-
sented by the Neo-Hookean model, we assume MAEs to be modeled by a Neo-Hookean
solid in the absence of a magnetic field. Thus, the elastic free energy per unit volume
of the MAE is given as

ψel =
G
2
(I1 − 3) (2)

where G is the shear modulus in Pa. The assumption of linear magnetization provides that
the magnetization of particles ~M is proportional to the total magnetic field ~H

~M = χ~H (3)

where χ is the magnetic susceptibility. The total magnetic field ~H has been derived in [41]

~H = ~H0 + (G− npI) · ~M (4)

where ~H0 is the applied magnetic field, np = 1
3 is the isotropic demagnetizing factor of a spher-

ical magnetically soft particle, and I is the identity tensor. The tensor G = Gmacro + Gmicro
is defined as a sum of macroscopic contributions from the long-range interactions between
magnetized particles and microscopic contributions that take into account the local particle
distribution [41]. In this work, we consider the isotropic distribution of magnetic particles
inside an elastomer matrix, for which the contributions from local particle arrangement are
vanishing, Gmicro = 0 [41,45–47]. With this, we rewrite Equation (4)

~H = ~H0 + (Gmacro − npI) · ~M (5)

From Equations (3) and (5) we derive an expression for the magnetization ~M as a func-
tion of the applied magnetic field ~H0

~M =
(
I− χ

(
Gmacro − npI

))−1 · χ ~H0 (6)
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Here, Gmacro = φ(npI − J), φ is the volume fraction of magnetic particles, J is
the shape-dependent demagnetizing tensor. The Equation (6) can be further simplified
by substituting the expression for Gmacro as

~M = (RI + φJ)−1 · ~H0 (7)

where R = χ−1 + np − φnp. Further, the magnetic energy due to the interactions between
the magnetized particles in the case of linear magnetization behaviour reads [22]

ψmag = −µ0φ

2
( ~M · ~H0) (8)

where µ0 = 4π× 10−7 NA−2 is the permeability of vacuum. The magnetization ~M depends

on two aspect ratios γ1 =
√

e1
e2

and γ2 =
√

e1
e3

of an ellipsoidal MAE, where e1, e2, e3

are the squares of principal stretches along the x, y and z-axis, respectively. Substitut-
ing the expression for the magnetization ~M from Equation (7) into the magnetic energy
in Equation (8), we receive the magnetic energy of an ellipsoidal MAE as

ψmag = −µ0φ

2

(
~(H0)e · J∗ · ~(H0)e

)
(9)

where J∗ = (RI + φJe)−1, Je is the demagnetizing tensor of an ellipsoid. By adapting a co-
ordinate system which coincides with the principal axes of an ellipsoid, the demagnetizing
tensor Je can be represented as

Je =

Ja 0 0
0 Jb 0
0 0 Jc

 (10)

where Ja, Jb, Jc are the demagnetizing factors of a general ellipsoid and Ja + Jb + Jc = 1 [48].
Similarly, the applied magnetic field vector ~H0 can be represented in the principal axes
of an ellipsoidal MAE as

~(H0)e = QT ~H0 (11)

where Q is the rotation matrix that rotates between the main coordinate system and
principal axes of an ellipsoid

Q =

cos α cos β cos α sin β sin δ− sin α cos δ cos α sin β cos δ + sin α sin δ
sin α cos β sin α sin β sin δ + cos α cos δ sin α sin β cos δ− cos α sin δ
− sin β cos β sin δ cos β cos δ

 (12)

Here α, β and δ are angles between the principal axes ex, ey, ez of an ellipsoidal MAE
and principal directions x, y, z in the cartesian coordinate system, respectively. Combining
Equations (2) and (9), the total free energy per unit volume of an ellipsoidal MAE becomes

ψMAE =
G
2
(I1 − 3)− µ0φ

2

(
~(H0)e · J∗ · ~(H0)e

)
(13)

The corresponding Cauchy stress tensor can be derived from the free energy of an el-
lipsoidal MAE as [15,42]

σ = −pI + Gbmech

− µ0φ
2

(
~(H0)e⊗ ~(H0)e : ∂J∗

∂Fmech
+ J∗ :

∂
(

~(H0)e⊗ ~(H0)e

)
∂Fmech

)
· FT

mech
(14)

where p is the hydrostatic pressure. The contribution of derivatives of ~(H0)e⊗ ~(H0)e with
respect to Fmech in the Cauchy stress tensor is non-symmetric. The symmetry of the Cauchy
stress tensor is the result of applying the conservation of angular momentum to an in-
finitesimal material element. But in this work, we consider a macroscopic MAE sample
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coupled to an external magnetic field. The deformation gradient tensor F can be decom-
posed as F = R ·U where R is called the rotation tensor and U is the right stretch tensor.
In the case of R 6= I, which is generally true for the shear deformation, MAEs rotate
in the main axis system. It is known in the literature [49] that an ellipsoidal magnetic
body (in our case, an ellipsoidal MAE) in the presence of a uniform external magnetic
field experiences a magnetic torque due to the angle between magnetization and applied
magnetic field. The presence of an external magnetic field yields additional magnetic
couple µ0φ

(
~M× ~H0

)
[32]. But the derivation of the Cauchy stress tensor assumes that

there are no body moments. Thus, the magnetic torque acting on an ellipsoidal MAE affects
the symmetry of the Cauchy stress tensor. The balance of angular momentum requires
that σ + µ0φ

(
~M⊗ ~H0

)
is symmetric or equivalently ε̂ : σ + µ0φ

(
~M× ~H0

)
=~0, where ε̂

is the third order permutation tensor [35,50]. We introduce an antisymmetric tensor

τ = µ0φ

((
~M⊗ ~H0

)T
− ~M⊗ ~H0

)
=

 0 −τxy −τxz
τxy 0 −τyz
τxz τyz 0

 (15)

Here, τij = µ0φ
(

Mi(H0)j −Mj(H0)i
)
, i 6= j is the magnitude of the magnetic torque.

From the above symmetry conditions, we can write

σ − σT = τ (16)

The Equations (15) and (16) yield the following relation

σij − σji = −τij (17)

For i 6= j, the difference between the shear stress components σji−σij is exactly equal to
the magnitude of the magnetic torque | ~τ | exerted by an external magnetic field. A detailed
discussion of the magnetic torque acting on an MAE sample is presented in the next section.
From the relations presented in Equation (17), it follows that σij +

1
2 τij = σji − 1

2 τij. Thus,
the total symmetric stress tensor T can be constructed for a general case as

T = σ − 1
2

τ (18)

One can also introduce the total symmetric stress tensor as T = 1
2
(
σ + σT) from

Equations (16) and (18).

3. Magnetic Torque

Under the influence of an applied uniform magnetic field, an ellipsoidal MAE sus-
pended freely in the field deforms and rotates to align its longest axis with the field
direction (for details see Appendix A). It reflects that the MAE experiences a field-induced
macroscopic magnetic torque in the presence of an applied magnetic field [51]. The torque
exerted by the magnetic field on an MAE sample can be obtained with the help of magnetic
energy in the equilibrium. The torque exerted by the magnetic field per unit volume is
defined as [49,52,53]

~τ = µ0φ
(
~M× ~H0

)
(19)

Consider a prolate MAE sample suspended freely in an external magnetic field, as shown
in Figure 2a. In this case, the magnetic torque ~τ is directed towards the z-axis and rotates
a prolate MAE sample in an anticlockwise direction to align the symmetry axis along the field
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direction x. The magnetic energy per unit volume of an ellipsoidal MAE tilted under the angle
α to the applied magnetic field in the x-y plane is obtained from Equation (9)

ψmag = −
µ0φH2

0
2

(
cos2 α

R + φJa
+

sin2 α

R + φJb

)
(20)

The magnitude of the torque ~τ per unit volume can be determined by taking the derivative
of the magnetic energy over the rotation angle α [51]

τxy = −
∂ψmag

∂α
= 2ζ sin α cos α

(
Ja − Jb

(R + φJa)(R + φJb)

)
(21)

where ζ =
(

µ0φ2H0
2
)

/2. The total magnetic field in Equation (4) is influenced by the com-

peting tendencies of the magnetization ~M to orient parallel to the applied magnetic field
and to orient along to the longest axis of an MAE sample because it has the lowest demag-
netizing factor [49]. Since the longest axis of an ellipsoid has the smallest demagnetizing
factor and vice versa, the difference Ja − Jb is negative for prolate MAEs. It ensures that
the torque ~τ is restoring and it tries to align the symmetry axis of a prolate MAE along
the field direction. On the other hand, the difference Ja − Jb is positive for oblate MAEs.
It means that the torque is not restoring in this case and acts so that the symmetry axis
of an oblate MAE attempts to align perpendicular to the field direction. Figure 2b shows
the dimensionless magnitude of the torque τm as a function of the rotation angle α for dif-
ferent aspect ratios γ0. The magnitude of the torque is maximal at α = 45◦ and zero at
α = 90◦ irrespective of the aspect ratio. It appears to be an equilibrium state at α = 90◦

for prolate ellipsoid as the magnitude of the torque τxy = 0. However, it is a metastable
state and already a small perturbation rotates the ellipsoid back from α = 90◦ to α = 0◦.
The macroscopic magnetic torque is directly proportional to the magnitude of an applied
magnetic field ~H0 and volume fraction φ. It shows that the magnetic field opposes an ap-
plied rotation in magnetized prolate MAEs and facilitates it in the case of oblate MAEs.
The Cauchy stress tensor σ alone can not account for these effects induced by an external
magnetic field. The couple generated by the magnetic field

(
~M× ~H0

)
must be accounted

for the balance of angular momentum. It dictates the symmetry conditions of the Cauchy
stress tensor, as mentioned in the previous section.

(a) (b)

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

m

0= 0.25

0= 0.5

0= 0.9

0= 1.1

0= 2

0= 4

Figure 2. (a) A prolate MAE suspended freely in a uniform magnetic field ~H0 applied along the x-axis.
(b) The dimensionless magnetic torque τm = 1

ζ | τxy | as a function of a rotation angle α.
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4. Shear Deformations

We consider the amount of shear k as the displacement imposed on an ellipsoidal MAE
sample due to homogeneous shear deformation. During the shear deformation, a sam-
ple is assumed to be confined between two parallel plates. Thus, the magneto-induced
deformations are neglected. Our earlier study established that the magnetoactive elas-
tomers with the random distribution of magnetic particles exhibit transverse isotropy along
the field direction with respect to uniaxial deformations [15]. For transversely isotropic
materials, the shear deformation can be distinguished between (1) Shear deformation
in the plane of isotropy (the y-z plane) and (2) Shear deformation in the plane perpen-
dicular to the plane of isotropy (the x-y plane). When shear deformation is applied in
the plane of isotropy, the reinforcement does not play a role, and material yields a pure
matrix response [54,55]. However, it is not true in the field-controllable materials like MAEs
(see Section 4.3). The shear deformation can be further separated in the plane perpendicular
to the plane of isotropy between (1) Shear deformation along the external magnetic field
(in the x-y plane along x-direction) and (2) Shear deformation perpendicular to the external
magnetic field (in the x-y plane along y-direction).

To describe the initial shape of an MAE sample, we use the fact that a sphere can be
transformed into an ellipsoid of revolution under uniaxial deformation. Thus, the shape
transformation of a unit sphere to an ellipsoid of revolution is achieved by appyling
a uniaxial transformation tensor Fshape where det(Fshape) = 1 as shown in Figure 3a.
The transformation tensor Fshape is analogous to the deformation gradient tensor F. We use
the term transformation tensor to highlight the fact that the shape transformation is a math-
ematical manipulation to obtain the initial shape of an MAE sample. Equivalent to the left
Cauchy deformation tensor b, we define the tensor bshape = Fshape · FT

shape.

Fshape =

λ1 0 0
0 1/

√
λ1 0

0 0 1/
√

λ1

 (22)

bshape =

λ1
2 0 0

0 1/λ1 0
0 0 1/λ1

 (23)

Here, λ1 is a stretch ratio along the x-axis which transforms a sphere into an ellipsoid
of revolution. For λ1 < 1 one can obtain an oblate spheroid and for λ1 > 1 a sphere
transforms into a prolate spheroid. The initial shape of an MAE sample is characterized
by defining an initial aspect ratio γ0 with the help of eigenvalues of bshape. During the shear
deformation, the external magnetic field is always applied along the x-axis (symmetry axis
of an MAE sample), and the initial shape of an MAE sample is assumed to be an ellipsoid
of revolution, as shown in Figure 3b–d. We choose the value of volume fraction of magnetic
particles φ = 0.3 as an optimum value [15,26,56,57], the magnetic susceptibility χ = 1000,
and shear modulus of 50 kPa in the absence of the applied magnetic field ~H0 following
our previous work [15]. In the next Section 4.1 , we apply shear deformation Fmech to
a transformed ellipsoid of revolution. Hence, the total deformation gradient tensor F in our
formalism is given as F = Fmech · Fshape. The corresponding total left Cauchy deformation
tensor and the mechanical left Cauchy deformation tensor are calculated as b = F · FT and
bmech = Fmech · FT

mech respectively.
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(a) (b)

(c) (d)

Figure 3. The shape transformation and shear geometries: (a) The transformation of a unit sphere to
an ellipsoid of revolution with two equal semi-axes. (b) Schematics of shear deformation of an oblate
MAE along the field direction. The displacement k is applied to the bottom plate in the x-direction.
(c) Schematics of the shear deformation of a prolate MAE perpendicular to the field direction. The
shear displacement k is applied to the top plate in the y-direction. (d) Schematics of shear deformation
of an oblate MAE in the y-z plane which is perpendicular to the field direction. The circle with a cross
represents the x-direction. The shear displacement k is applied to the left plate along the y-direction.

4.1. Shear Deformation along the External Magnetic Field

The shear deformation is produced by enforcing a displacement k along the field
direction in the x-y plane, as shown in Figure 3b. The corresponding shear deformation
gradient tensor is

Fmech =

1 k 0
0 1 0
0 0 1

 (24)

When an MAE sample of the shape of an ellipsoid of revolution is subjected to shear
deformation, it deforms into a general ellipsoid with three distinct semi-axes. Thus, to
characterize its final shape, one needs two aspect ratios γ1 and γ2. The change in aspect
ratios is calculated by determining the eigenvalues of the total left Cauchy deformation

tensor b as γ1 =
√

e1
e2

and γ2 =
√

e1
e3

. The principal invariants of the total left Cauchy
deformation tensor are the coefficients of the characteristic polynomial. By solving the char-
acteristic polynomial, the principal stretches can be expressed as the functions of invariants
Ĩ1 and Ĩ2 (for definition see Appendix B) of the total left Cauchy deformation tensor b [43].
Eigenvectors of the total left Cauchy deformation tensor b provide angles between the prin-
cipal axis of an ellipsoidal MAE and the applied magnetic field. The free energy of an
ellipsoidal MAE during the shear deformation in the x-y plane can be expressed by adding
Equations (2) and (20)

ψMAE =
G
2
(I1 − 3)−

µ0φH2
0

2

(
cos2 α

R + φJa
+

sin2 α

R + φJb

)
(25)
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The demagnetizing factors Ja and Jb along the x and y-axis are function of the aspect
ratios γ1 and γ2. For shear deformation applied parallel to the field direction, the corre-
sponding total stress tensor can be obtained from Equations (18) and (25)

T‖ = −pI + Gbmech + ζ(S1E1 + S2E2 + S3E3)−
1
2

τ (26)

where

S1 = φ

(
cos2 α

(R + φJa)
2

∂Ja

∂γ1
+

sin2 α

(R + φJb)
2

∂Jb
∂γ1

)

S2 = φ

(
cos2 α

(R + φJa)
2

∂Ja

∂γ2
+

sin2 α

(R + φJb)
2

∂Jb
∂γ2

)

S3 = 2φ sin α cos α

(
Jb − Ja

(R + φJa)(R + φJb)

)
(27)

and

E1 =
∂γ1

∂Fmech
· FT

mech

E2 =
∂γ2

∂Fmech
· FT

mech

E3 =
∂α

∂Fmech
· FT

mech

(28)

The total stress components are

T‖ =

σxx Txy 0
Txy σyy 0
0 0 σzz

 (29)

and the corresponding total shear stress component is

Txy = Gk + ζ(S1E1 + S2E2)xy + τxy

(
1
2
− (E3)xy

)
(30)

The total shear stress component Txy is related to the amount of shear k through
the shear modulus G, parameter ζ and the initial shape of the MAE. The shear stress
response Txy of the MAE as a function of the amount of shear k is shown in Figure 4a
at different values of the initial aspect ratio γ0 and in Figure 4b at different magnitudes
of the applied magnetic field ~H0. Here, we only present results for oblate MAEs as a negli-
gible effect is predicted for prolate MAEs during the shear deformation applied parallel
to the field direction. The considerable deviation from Neo-Hookean behavior is seen
for highly oblate MAEs in Figure 4a. In Figure 3b, at k = 0, the symmetry axis of an oblate
spheroidal MAE is parallel to the applied field direction. As mentioned in the previous
section, it is a metastable state. When k > 0, the applied rotation in the form of shear
and the rotation imposed by the magnetic torque coincides. As a result, oblate MAEs
exhibit nearly zero shear stress at small shear deformations. The total shear stress Txy
in oblate MAEs during the shear deformation parallel to the field direction is directly
proportional to the length of its symmetry axis. Consequently, for highly oblate MAEs
(γ0 < 0.25), even a negative shear stress is observed. In Figure 4a,b, the shear stress compo-
nent Txy crosses the Neo-Hookean line at a certain critical value of k = kc. The contribution
of magnetic torque (Figure 5a) according to the symmetry condition given in Equation (16)
to the Cauchy shear stress component results in a zero field-induced magnetic stress at
k = kc, as shown in Figure 5b. It is clear from Figure 4a,b that the critical value kc is
a function of the initial aspect ratio γ0 but it does not depend on the magnitude of an
external magnetic field ~H0.
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Figure 4. The stress-strain behavior of MAEs in the x-y plane: (a) Shear stress Txy as a function
of the amount of shear k during the shear deformation along the field direction for oblate MAEs at
different initial aspect ratios γ0. (b) Shear stress Txy as a function of the amount of shear k during
the shear deformation along the field direction for an oblate MAE (γ0 = 0.3) at different magnitudes
of the applied magnetic field ~H0. (c) Shear stress Txy as a function of the amount of shear k during
the shear deformation perpendicular to the field direction for prolate MAEs at different initial aspect
ratios γ0. (d) Shear stress Txy as a function of the amount of shear k during the shear deformation
perpendicular to the field direction for a prolate MAE (γ0 = 10) at different magnitudes of the applied
magnetic field ~H0.
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Figure 5. (a) The magnetic torque τxy as a function of the amount of shear k during shear
deformation along the field direction (dashed lines) and perpendicular to the field direc-
tion (solid lines) for different values of the initial aspect ratio γ0. (b) The magnetic stress

Tmag = ζ(S1E1 + S2E2)xy + τxy

(
1
2 − (E3)xy

)
as a function of the amount of shear k during shear

deformation along the field direction (dashed lines) and perpendicular to the field direction (solid
lines) for different values of the initial aspect ratio γ0.

4.2. Shear Deformation Perpendicular to the External Magnetic Field

Here, we consider a shear deformation generated by forcing a displacement k per-
pendicular to the field direction, as shown in Figure 3c. Similar to the previous section,
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the total deformation gradient tensor and the total left Cauchy deformation tensor are
F = Fmech · Fshape, b = F · FT, respectively. The shear deformation tensor Fmech is

Fmech =

1 0 0
k 1 0
0 0 1

 (31)

As was done in Section 4.1, we use the mechanical left Cauchy deformation tensor
bmech in the elastic part and the total left Cauchy deformation tensor b in the magnetic part
of the total stress tensor. The total stress tensor corresponding to the shear deformation
applied perpendicular to the field direction T⊥ and corresponding shear stress component
have identical form as shown in Equations (29) and (30), respectively. Here, we only
present results for prolate MAEs as a negligible effect is predicted for oblate MAEs during
the shear deformation applied perpendicular to the field direction. In Figure 3c, at k = 0,
the symmetry axis of a prolate MAE is parallel to the applied magnetic field. Unlike
the previous section, it is a global equilibrium state. When shear deformation is applied,
a prolate MAE generates a large amount of shear stress compared to Neo-Hookean response
as the sample opposes its stretch and rotation against the direction of the applied magnetic
field. The total shear stress component Txy increases with an increase in the initial aspect
ratio γ0 and with the magnitude of the applied magnetic field ~H0 as shown in Figure 4c,d,
respectively. Like the previous section, in this case, the critical value kc exists at which
the magnetic stress is zero (solid lines in Figure 5b). In Figure 5a, it is observed that
the magnitude of the torque is higher during the shear deformation of oblate MAEs applied
along (dashed lines) the field direction than the magnitude of the torque during the shear
deformation of prolate MAEs applied perpendicular to the field direction (solid lines).

4.3. Shear Deformation in the Plane of Isotropy (y-z Plane)

Here, we consider a shear deformation created by forcing a displacement k in the plane
perpendicular to the applied field direction, as shown in Figure 3d. The corresponding
deformation gradient tensor is

Fmech =

1 0 0
0 1 k
0 0 1

 (32)

The corresponding Cauchy stress tensor is

T = σ =

σxx 0 0
0 σyy σyz
0 σyz σzz

 (33)

and the Cauchy shear stress component σyz is

σyz = Gk +
ζ

(R + φJa)2

(
∂Ja

∂γ1
E1 +

∂Ja

∂γ2
E2

)
yz

(34)

The shear stress response of an oblate MAEs in the y-z plane is shown in Figure 6a,b.
We observe that the shear stress σyz is not affected by the magnetic couple ~M× ~H0, which
indicates that the magnetic torque does not play any role when the shear displacement
is imposed in the y-z plane (~τ = ~0). The symmetry axis of an MAE sample (oblate and
prolate) remains aligned with the magnetic field direction. Thus, there is no magnetic
torque acting on an MAE sample, and the symmetry of the Cauchy stress tensor is unaf-
fected. The shear stress deviates more pronounced from the Neo-Hooken behavior when
the sample shape becomes close to spherical. The shear stress response decreases monoton-
ically with respect to the magnitude of the applied magnetic field, as shown in Figure 6b.
Similar behavior is seen for prolate MAEs. Highly oblate and prolate MAEs exhibit close
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to Neo-Hookean response and show a negligible effect of the magnetic field. As men-
tioned previously, the deviations from Neo-Hookean behavior in the isotropic (y-z) plane
are observed only in the case of MAEs. These deviations are absent in the conventional
transversely isotropic materials [55].
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Figure 6. The stress-strain behavior of MAEs in the y-z plane: (a) Shear stress σyz as a function
of the amount of shear k during the shear deformation in the y-z plane along y-direction for oblate
MAEs at different values of the initial aspect ratio γ0. (b) Shear stress σyz as a function of the amount
of shear k during the shear deformation in the y-z plane along y-direction for an oblate MAE (γ0 = 0.3)
at different values of the magnitude of applied magnetic field ~H0.

5. Magneto-Rheological Effect (∆G)

The magneto-rheological (MR) effect is defined as the change of the modulus of the MAE
in an external magnetic field [58]. Like in previous sections, we calculate the shear moduli
of MAEs in the plane parallel to the field direction (the x-y plane) and the plane perpendic-
ular to the field direction (the y-z plane). The shear modulus G‖ along the field direction
is calculated by taking the derivative of the shear stress component (Equation (30)) over
the amount of shear k

G‖ =
(

∂Txy

∂k

)
k=0

(35)

Similarly, the shear modulus G⊥ and Gyz are calculated perpendicular to the field
direction and in the y-z plane, respectively, from corresponding shear stress components.
From the three different shear moduli, we obtain the relative MR-effects as

∆G‖ =
G‖ − G

G
(36)

∆G⊥ =
G⊥ − G

G
(37)

∆Gyz =
Gyz − G

G
(38)

where G is the zero-field shear modulus of the MAE when ~H0 =~0.
Note that the shear modulus G is a function of the volume fraction of magnetic par-

ticles φ and elasticity of the matrix. At the same time, G‖, G⊥ and Gyz are a function
of the strength of the applied magnetic field ~H0, volume fraction φ and the initial shape γ0.
The % MR-effect in oblate MAEs along the field direction and prolate MAEs perpendicular
to the field direction is illustrated in Figure 7a. The MR effect produced by oblate MAEs
perpendicular to the field and prolate MAEs parallel to the field is negligible and not
shown here. The continuous lines in Figure 7a represent the MR effect exhibited by oblate
MAEs along the field direction and the dashed lines show the MR effect of prolate MAEs
transverse to the field direction. Large MR effect up to 200% is observed for oblate as well
prolate MAEs. Oblate MAEs yield a negative MR effect along the field direction, while
prolate MAEs exhibit a positive MR effect transverse to the applied field direction. The MR
effect at the initial aspect ratio γ0 ≈ 1.3 is almost zero. As illustrated in Figure 4, at the crit-
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ical value of k = kc, MAEs exhibit Neo-Hookean behaviour. Similarly, in Figure 7a, at
γ0 ≈ 1.3, the MAE yields zero-field shear modulus. In Figure 7b, the MR effect in the plane
perpendicular to the field direction is small (only a few percentages) compared to the MR
effect in the x-y plane and it is negative for oblate MAEs along with prolate samples. The
oblate MAEs (γ0 < 1) show the maximum MR-effect for all the values of the applied
magnetic field.
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Figure 7. The magneto-rheological (MR) effect: (a) The %MR-effect in the x-y plane along the field
direction (solid lines) and perpendicular to the field direction (dashed lines) as a function of the initial
aspect ratio γ0; (b) The % MR-effect in the plane of isotropy (the y-z plane) as a function of the initial
aspect ratio γ0.

6. Conclusions

In this paper, we have investigated the magneto-mechanical behavior of ellipsoidal
MAEs during shear deformations. In continuation of our previous work [15], additional
verification of the transverse isotropy is presented by establishing the distinct direction-
dependent behavior of MAEs during the shear deformations. We found that the stress-strain
relationship is a strong function of the initial shape of MAEs during the applied shear
deformations. Analogous to the classical transversely isotropic materials, it’s shown that
the MAEs have three distinct shear moduli: G‖ along the field direction, G⊥ transverse to
the field direction and Gyz in the plane perpendicular to the field direction ~H0. The role
of the magnetically induced torque on the symmetry of the Cauchy stress tensor has been
addressed and the modified symmetry conditions have been used to construct a symmetric
total stress tensor of MAEs [35,50]. The magnetic torque exerted by the applied magnetic
field on ellipsoidal MAEs during shear deformation has a significant effect on the magneto-
mechanical behavior of MAEs. The oblate MAEs exhibit negative MR effect ∆G‖ along
the field direction. On the other hand, prolate MAEs yield a large positive MR-effect ∆G⊥
perpendicular to the field direction. These results agree qualitatively with the previous
predictions where the coarse grained network model is used [59]. In recent work, the MR
effect has been studied by considering the local particle rearrangement during the shear
deformation, and significant MR effects have been reported [60]. In contrast, in this work,
we explicitly consider the effect of the macroscopic shape of the MAE, assuming the particle
distribution remains isotropic even after the deformation. Thus, we speculate that the effects
emerging from the initial shape of the MAE would additionally enhance the overall MR
effect. The proposed ellipsoidal approximation of MAEs can be further extended to more
practical shapes like discs and cylinders. The present study of shape effect offers a basis
for the synthesis of MAEs as per the commercial interests. The material model proposed
in Section 2 can be implemented in the design and simulation of soft actuators on a macro-
scale where ellipsoidal MAE inclusions are used for local stiffening purposes.
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Appendix A

The macroscopic magnetic torque plays an important role in the magneto-mechanical
behavior of the MAE when it is confined between two parallel plates, as described
in Section 4. Here we present the magneto-induced deformations of a prolate MAE sample
suspended freely in a uniform magnetic field ~H0, as shown in Figure 2. The symmetry axis
of an ellipsoidal MAE makes an angle α with the x-axis ( ~H0). We apply an external magnetic
field along the x-axis and observe its effect on the deformation and orientation of an MAE
sample. From Equation (14), we derive a system of non-linear coupled equations where
the Cauchy stress tensor σ is a function of magneto-induced deformation gradient tensor
Fmech such that

σij = f (Fmech)ij (A1)

where i = 1, 2, 3 and j = 1, 2, 3. The magneto-induced deformation gradient tensor Fmech
is calculated at equilibrium where the Cauchy stress tensor σ = 0. The resultant total
left Cauchy deformation tensor b is diagonal. It shows that the principal axes of an MAE
sample are re-oriented and coincides with the main coordinate system.

The Table A1 shows that the maximum deformation is achieved at highest magnitude
of an applied magnetic field and a symmetry axis of an ellipsoidal MAE is aligned with
the magnetic field direction x.

Table A1. Magneto-induced deformation and re-orientation of the MAE.

Magnetic Field Strength | ~H0 | kA/m γ1 γ2 α◦

0 2.42 1.90 20.81
70 2.44 1.92 0

170 2.55 2 0
270 2.74 2.15 0
370 3.01 2.34 0

Appendix B

We define the principal invariants of the total left Cauchy deformation tensor
b = Fmech · bshape · FT

mech as

Ĩ1 = tr(b), Ĩ2 =
1
2
(tr(b)2 − tr(b2)), Ĩ3 = det(b) (A2)

In addition to these principal invariants, the anisotropic invariants are

Ĩ4 = ~H0 · b · ~H0

Ĩ5 = ~H0 · b2 · ~H0
(A3)
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Thus, by using these invariants of the total left Cauchy deformation tensor b, we
can write

ψmag = −
µ0φH2

0
2

(
cos2 α

(
Ĩ1, Ĩ2, Ĩ4, Ĩ5

)
R + φJa

(
Ĩ1, Ĩ2

) +
sin2 α

(
Ĩ1, Ĩ2, Ĩ4, Ĩ5

)
R + φJb

(
Ĩ1, Ĩ2

) )
(A4)

The corresponding Cauchy stress tensor is

σmag = ψ1b + ψ2

(
Ĩ1b− b2

)
+ ψ4

(
~H0 ⊗ b · ~H0

)
+ ψ5

(
b · ~H0 ⊗ b · ~H0 + ~H0 ⊗ b · ~H0

)
(A5)

where ψi = 2 ∂ψmag

∂ Ĩi
, i = 1, 2, 3, 4, 5.
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