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Abstract: The creation of acrylic dentures involves many stages. One of them is to prepare the
surfaces of artificial teeth for connection with the denture plates. The teeth could be rubbed with a
chemical reagent, the surface could be developed, or retention hooks could be created. Preparation
of the surface is used to improve the bond between the teeth and the plate. Choosing the right
combination affects the length of denture use. This work focuses on a numerical analysis of grooving.
The purpose of this article is to select the shape and size of the grooves that would most affect the
quality of the bond strength. Two types of grooves in different dimensional configurations were
analyzed. The variables were groove depth and width, and the distance between the grooves. Finally,
24 configurations were obtained. Models were analyzed in terms of their angular position to the
loading force. Finite element method (FEM) analysis was performed on the 3D geometry created,
which consisted of two polymer bodies under the shear process. The smallest values of the stresses
and strains were characterized by a sample with parallel grooves with the grooving dimensions
width 0.20 mm, thickness 0.10 mm, and distance between the grooves 5.00 mm, placed at an angle of
90◦. The best dimensions from the parallel (III) and cross (#) grooves were compared experimentally.
Specimens with grooving III were not damaged in the shear test. The research shows that the shape
of the groove affects the distribution of stresses and strains. Combining the selected method with an
adequately selected chemical reagent can significantly increase the strength of the connection.

Keywords: acrylic dentures; numerical analysis; FEM; surface development; shear test

1. Introduction

Patients who come into a dental practice have several denture options to choose
from. The simplest, most popular and cheapest [1] form of treatment is an acrylic denture,
consisting of acrylic fake teeth and an acrylic denture plate. A more expensive but superior
form of prosthetic reconstruction is a removable denture metal framework. These dentures
are made of a metal framework designed by a dental technician, an acrylic denture plate
and acrylic artificial teeth [2]. This paper focuses on prosthetic reconstruction using acrylic
dentures because the problem of connecting two similar materials occurs in this type of
treatment [3–5].

The process of creating acrylic dentures involves several stages [6–8]. One of them
is the preparation of the surfaces of artificial teeth. This stage is very important, as the
strength of the bond between the teeth and the denture plate depends on the correct
preparation of the surfaces. Dentures are expected to last for 4 to 5 years [9,10], as after
this period they cause a loss of height of the alveolar process and/or the grinding down of
abutment teeth in the case of partial dentures. However, some patients report that their
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dentures require repair after only a few months, with 33% of these cases caused by a tooth
falling out [11,12].

Given the above issue, numerous researchers have attempted to analyze the process
of bonding acrylic teeth to the denture plate to devise an optimal way to increase the
strength of the bond between these materials. Methods proposed by these researchers may
be divided into two groups: chemical and mechanical.

Chemical methods involve rubbing the surface of the tooth with a suitable chemical
substance. These most commonly used include:

• methyl methacrylate (MMA) [13,14],
• ethylene glycol dimethacrylate (EGDMA) [10],
• a monomer (i.e., a combination of MMA and EGDMA) [12,15–18],
• acetone [13,19,20], or
• glues [13,19,20] supplied by various manufacturers of acryl (composed primarily

of MMA).

MMA had the most significant effect on increasing the strength of the bond. For
example, in a study comparing the resistance of substances to denaturation, the strength
of samples treated with MMA increased to 14.47 N. In contrast, the strength of samples
treated with other substances ranged from 8.51 to 11.42 N (strength of untreated samples
amounted to 8.79 N) [13].

The chemical method also had the best results when compared with other ways
of improving the strength of the bond (control = 30.06 MPa, sandblasting = 33.52 MPa,
methylmethacrylate based adhesive agent = 42.44 MPa, surface treated with an Er,Cr:YSGG
laser system = 35.71 MPa) [21]. The use of chemical substances aims to activate exist-
ing polymer bonds, create new chains, and treat the surface of acryl [22]. MMA and
EGDMA are the most popular substances, as acryl is mainly composed of polymethyl
methacrylate (PMMA).

Fibers that imitate gums or various types of filler (e.g., cellulose [23]) are also some-
times used. When creating the denture plate, the technician combines MMA with a
cross-linker in the form of EGDMA. When subjected to a high temperature and pressure,
the substance undergoes polymerization, creating the final product [24]. Therefore, treating
the surface may contribute to increasing the grip between the two materials [25,26].

Some researchers suggest combining chemical methods with the second group, i.e., so-
called mechanical methods [27].

Mechanical methods include two additional types of treating the surface of teeth:
creating a retaining groove and surface development. Retaining grooves are formed by
drilling a groove in a tooth using a burr on the side adjoining the plate. They are created
to create a pocket into which acryl will flow. Grooves shapes may be round, V-shaped,
T-shaped, or shaped as a diatoric cavity. However, studies show that the shape of the
groove has no impact on the strength of the bond [5].

The final method of improving the strength of the bond discussed in the paper is
mechanical surface development. Studies show that appropriate development of the
surface significantly increases the strength of the bond, including vonds between dis-
similar materials [28]. When bonding acryl with acryl, researchers have identified the
following methods:

• shearing the enamel layer using a burr or sandpaper [12,13,18,27,29],
• sanding using aluminium oxide [12,13,18,21,29–31].

Sanding of the surface may significantly increase the surface development, thus
contributing to an improved bond between the two materials [32,33]. However, in this
process, aluminium oxide particles are driven into the surface of the treated material [34],
which in the case of acryl may reduce the surface are directly adhering to PMMA. Ultimately,
such treatment may have no effect on the bond between two acrylic surfaces or it may even
even reduce its strength.
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There are also problems with standardizing the results of these tests, as researchers
use various methods to test the strength of the bond. They also applied to sand using
differing gradations at differing angles and in many cases, the papers do not contain any
information about the burrs and sandpaper used to shear the enamel layer.

Of note is the fact that some researchers used an Er,Cr:YSGG [21] or Er:YAG [13] laser
in their methods. Unfortunately, this method is very expensive, and lasers of this type are
not used in dental laboratories. Due to this, the method cannot be successfully adopted in
practice even if it produces satisfactory results.

Grooving is a method that has so far not been used in dental technology despite
producing interesting results. Thin grooves can be created using small discs available in
every Dental Technician’s workshop. The best and most economical method that enables
the analysis and optimization of multiple variants of such surface modification is the
application of computer software that uses the finite elements method (FEM) [35,36].

Therefore, this paper aims to apply FEM to analyze surfaces modified using the
mechanical grooving method. The analysis will produce optimal grooving parameters that
will improve the strength, quality, and functionality of medical devices.

2. Materials and Methods

A 3D model of two polymer samples with various mechanical modifications, depicting
a bond between the treated surfaces, was created together with a discrete model using
ANSYS Workbench software with the SpaceClaim module (Ansys Inc., Canonsburg, PA,
USA). The model consisted of two solid figures used to represent the shear strength test—
Figure 1.

Figure 1. Geometric model of samples used for numerical analysis. Elements representing the
denture base plate and the artificial tooth in the (A) X-axis, (B) Y-axis and (C) a sketch.

Two types of grooves (parallel—marked with ‘III’, and cross—marked with ‘#’)
(Figure 2) were analyzed in various dimensions, using the variable parameters of the
depth and width of the grooves and the distance between the grooves. The grooving
variants subjected to analysis are specified in Table 1.
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Figure 2. Examples of (A) parallel (marked as ‘III’), (B) cross grooving (marked as ‘#’).

Table 1. Dimensions and variants of all created geometries.

Parallel Grooving (Marked as ‘III’)

N◦ Dimensions (mm) N◦ Dimensions (mm) N◦ Dimensions (mm)

1
width 0.20

5
width 0.50

9
width 1.00

distance 2.00 distance 2.00 distance 2.00
depth 0.10 depth 0.10 depth 0.10

2
width 0.20

6
width 0.50

10
width 1.00

distance 5.00 distance 5.00 distance 5.00
depth 0.10 depth 0.10 depth 0.10

3
width 0.20

7
width 0.50

11
width 1.00

distance 2.00 distance 2.00 distance 2.00
depth 0.20 depth 0.20 depth 0.20

4
width 0.20

8
width 0.50

12
width 1.00

distance 5.00 distance 5.00 distance 5.00
depth 0.20 depth 0.20 depth 0.20

Cross Grooving (Marked as ‘#’)

N◦ Dimensions (mm) N◦ Dimensions (mm) N◦ Dimensions (mm)

13
width 0.20

17
width 0.50

21
width 1.00

distance 2.00 distance 2.00 distance 2.00
depth 0.10 depth 0.10 depth 0.10

14
width 0.20

18
width 0.50

22
width 1.00

distance 5.00 distance 5.00 distance 5.00
depth 0.10 depth 0.10 depth 0.10

15
width 0.20

19
width 0.50

23
width 1.00

distance 2.00 distance 2.00 distance 2.00
depth 0.20 depth 0.20 depth 0.20

16
width 0.20

20
width 0.50

24
width 1.00

distance 5.00 distance 5.00 distance 5.00
depth 0.20 depth 0.20 depth 0.20
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Furthermore, each model was analyzed in terms of its angular position regarding the
force load affecting it. Three angular variants of force load were tested: along the Z-axis
(0◦), displaced by 45◦ along the ZX plane, and displaced by 90◦ along the Z-axis, i.e., along
the X-axis only in respect of parallel grooving (Figure 3).

Figure 3. Force point variants.

The geometric model was then reformatted into a discrete model. The generated
grid consisted of adequately parameterized finite elements, enabling favorable and precise
simulation results. Additionally, with the MultiZone function, mesh subzones were defined
which, combined with the earlier division of the geometry, enabled the optimization of
the grid. The most significant area of accuracy and precision of the grid components
was the location where the two cylinders met, i.e., the grooved surface. The mesh was
denser, and the dimensions of elements were reduced in these locations (Figure 4). Mesh
convergence analysis was carried out by incrementally increasing the number of elements
and verifying the estimations to ensure the convergence of the numerical solution. Finally,
mesh convergence tests were performed, resulting in a total number of elements and nodes
of 448,957 and 300,985, respectively.

Figure 4. Discrete model.

The model was restrained on the large cylinder walls along the circumference using
the ‘fixed support’ option. The load was applied using the ‘remote force’ option. A force of
400 N was applied to the model along the Z-axis to the outer surface of the small cylinder,
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as shown in Figure 5. The force was based on the conditions found in the oral cavity [3,5,10].
A “bonded” contact was used at the junction of both bodies.

Figure 5. Boundary conditions and loads of the analyzed model.

The material data of both components matched the data of the prosthetic acryl used
in the heat-curing method. The acryl material was modeled as an isotropic material
with a bilinear elastic-plastic stress-strain curve with the strain hardening constituents
of the viscoplastic model. Detailed parameters of the acryl used in the model, based on
papers [3,5], are shown in Table 2.

Table 2. Material properties of acrylic resin used in numerical simulations.

Property Value

Density 1.9 g/cm3

Poisson’s Ratio 0.44
Young’s Modulus 2 940 MPa
Yield Strength 51.7 MPa
Tensile Strength 58.5 MPa
Compressive Yield Strength 81.4 MPa

Numerical analyses were performed to determine the distribution of stresses (equiva-
lent von Mises) on the bond between the large and small components and the values and
distribution of deformations.

The best configuration obtained from the numerical simulation giving the best results
and the exact configuration of grooves with second types of grooves were also tested with
a universal testing machine (from Zwick/Roell).

The shear test was carried out according to the rules for composite materials. The
machine knife displacement rate was set to 2 mm/min (the ISO standard for the connection
of artificial teeth with the denture base plate (ISO 22112:2017) requires the use of a displace-
ment in the range from 0.5 to 10 mm/min). According to the manufacturer’s leaflet, the
samples were made of the Vertex Rapid Simplified heat cure acrylic resin (Vetex Dental,
Soesterberg, The Netherlands).

The samples (Figure 6) were mapping as per the simulation (dimensions as in Figure 1).
On the surface of the smaller cylinder, before pouring acrylic from the more significant part,
grooves were made with a rotating disc (the thickness of the disc was 0.2 mm). The grooves
were made according to the dimensions of the variants no. 2 from the III group (width
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0.20 mm, distance 5.00 mm, depth 0.10 mm) and no. 14 from # group (width 0.20 mm,
distance 5.00 mm, depth 0.10 mm). For the III-group sample, the force was applied at 90◦,
while force was applied to the #-group sample at 0◦.

Figure 6. Created groves: (A) III according to no. 2, (B) # according to no. 14. (C) final samples,
(D) shear test.

3. Results

The observation was focused on the highest stresses present on the surface with the
protruding grooves and maximum deformations to which the material was subjected. The
results presented are shown on the surface of the models corresponding to the base plate,
because the highest stresses and deformations appeared in this area (at the connection of
the tooth and the denture base plate). All views are from the Y-axis perspective. Results for
each sample were then compared, depending on the angular position. The generated maps
show a distribution of stresses typical of shear strength tests. The test results help locate
the points where the highest stresses appear, causing excessive loads to be applied to the
material and, as a result, potentially damaging the sample. Sample maps of the impact of
the angle of application of the force generated based on variant no. 1 (parallel grooving)
are shown in Figure 7.

Figures 8 and 9 show maximum stresses, while Figures 10 and 11 show maximum
deformations.

Considering only the samples with grooves positioned at an angle of 0◦, sample
7 recorded the best result with the lowest maximum stress, whereas sample 14 recorded
the worst result by far. Regarding tests on samples with grooves positioned at an angle of
45◦, the highest stresses were generated on sample 9, while the lowest were on sample 4. A
comparison of samples with grooves positioned at an angle of 90◦ indicates that the lowest
maximum stresses were present on sample 2, whereas the highest were present on sample
9. This was also the result in the case of the grooves positioned at an angle of 0◦.

When comparing the results from all angles, the lowest stresses were produced when
using the following variants:

• no. 2, with grooves positioned at an angle of 90◦,
• no. 4, with grooves positioned at an angle of 45◦,
• no. 7 and no. 15, with grooves positioned at an angle of 0◦.
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Figure 7. Distribution of stresses (whole view and focus on area of maximum stress) and deformations depending on the
direction of the applied force, based on grooving variant 1.

Figure 8. Overview of maximum stresses from simulation results of parallel grooving (III) at various angles.
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Figure 9. Overview of maximum stresses from simulation results of cross grooving (#) at various angles.

Figure 10. Overview of maximum deformations from simulation results of parallel grooving (III) at various angles.

Figure 11. Overview of maximum deformations from simulation results of cross grooving (#) at various angles.
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The results of the tests for maximum deformation based on grooving input positioning
at an angle of 0◦ indicate similar values of minimum deformations in the case of samples
2, 6, 10, 18, and 22. The highest value in respect of this angle was observed in the case of
variant 23. Regarding the deformations in the 45◦ samples, the highest deformation value
was recorded for sample no. 14, whereas the lowest values were recorded for samples 2, 6,
and 21. With regards to the 90◦ samples, the results were in most cases very similar for all
tested samples. The highest deformation value was recorded in sample 11.

Maps of the highest values of deformations and stresses are shown in Figure 12.

Figure 12. Overview of all variants which resulted in the highest values of stress and deformation.

All possible configurations of grooves for the three angles of application of force were
also analyzed. An overview of best values of each configuration can be found in Tables 3–5.
The most favorable configurations were distinguished by examining the influence of
individual parameters on the value of stresses and deformations, where both stresses and
deformations were the lowest.

The results of the shear test are shown in Figure 13. The average shear strengths in
both cases were 13.0 ± 0.6 MPa.

However, during this study, none of specimens from set III were wholly broken
(Figure 14). There were only cracks inside the samples. In comparison, all samples from
set # were completely damaged. These fractures were considered as mixed (partly in the
sample and partly in the bonding area).
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Table 3. The best grooving parameters as a function of depth and angle.

Grooving
Analyzed Dimensions The Best Values

Were Obtained with

Width (mm) Distance (mm) Angle (◦) Depth (mm)

Parallel

0.20 2.00 0 0.20
0.20 5.00 90 0.10
0.50 2.00 90 0.20
0.50 5.00 90 0.10
1.00 2.00 45 0.20
1.00 5.00 90 0.20

Cross

0.20 2.00 0 0.20
0.20 5.00 0 0.20
0.50 2.00 0 0.20
0.50 5.00 45 0.20
1.00 2.00 45 0.20
1.00 5.00 0 0.20

Table 4. The best grooving parameters as a function of distance and angle.

Grooving
Analyzed Dimensions The Best Values

Were Obtained with

Width (mm) Depth (mm) Angle (◦) Distance (mm)

Parallel

0.20 0.10 90 5.00
0.20 0.20 45 5.00
0.50 0.10 90 5.00
0.50 0.20 90 2.00
1.00 0.10 0 5.00
1.00 0.20 90 5.00

Cross

0.20 0.10 0 2.00
0.20 0.20 0 5.00
0.50 0.10 0 5.00
0.50 0.20 0 5.00
1.00 0.10 0 5.00
1.00 0.20 0 5.00

Table 5. The best grooving parameters as a function of width and angle.

Grooving
Analyzed Dimensions The Best Values

Were Obtained with

Distance (mm) Depth (mm) Angle (◦) Width (mm)

Parallel

2.00 0.10 45 0.20
5.00 0.10 90 0.20
2.00 0.20 90 0.20
5.00 0.20 90 1.00

Cross

2.00 0.10 0 0.20
5.00 0.10 0 0.50
5.00 0.20 0 0.20
5.00 0.20 0 0.20
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Figure 13. Average shear strength for sample no. 2 (marked as ‘III’) and sample no. 14 (marked as ‘#’).

Figure 14. Focus on samples after the shear test: (A) parallel grooving (III), and (B) cross grooving
(#); (C) both samples.

4. Discussion

A comparison of results at all angles shows that the worst deformations were gen-
erated in samples when the grooves were positioned at an angle of 45◦. In contrast, the
lowest deformation values were observed for the angle of 90◦. Similar data were obtained
regarding maximum stresses; in the case of 45◦, they were significantly higher than in the
two remaining angles.

Stress and deformation testing as a function of angle and depth (in parallel grooving)
indicate that results were better when the sample was positioned at 90◦ and the groove
depth was 0.20 mm. Regarding cross grooving, the best results were obtained when the
groove depth was 0.20 mm at an angle of 0◦.

Regarding stress and deformation as a function of angle and distance, an analysis
of samples with cross grooving showed that the best results were generated in every
combination of grooving with a distance of 5.00 mm and at an angle of 0◦.

An overview of the results of stress and deformation testing as a function of angle and
width indicated that with regards to parallel grooving, results were the best when the sample
was positioned at an angle of 90◦ and the groove depth was 0.20 mm. Regarding cross
grooving, the best results were produced when the width was 0.20 mm at an angle of 0◦.
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An analysis of the results of the simulation shows that some of the shear tests exceeded
the strength of the material used, which amounts to 58.50 MPa [3,10,22]. Exceeding the
strength limit of the tested samples resulted in the total break of the bond between the two
components. The bond was broken in the case of the configuration marked in Table 1 as
number ‘9’ at angles of 45◦ and 90◦, as well as configuration ‘14’ at the grooving angles of
0◦ and 45◦.

The PMMA yield limit is 51.7 MPa [3,10,22], which means that in the case of some of
the examined geometries, the yield limit was exceeded, and the material was permanently
plasticized. Values of stresses that exceeded the yield limit were produced in configuration
‘5’, with grooving positioned at 45◦ and 90◦ angles; in configuration ‘10’, with grooving
positioned at an angle of 45◦; and in configuration ‘17’, with grooving positioned at angles
of 0◦ and 45◦.

Similar results were produced by previous studies that also touched upon the issue of
analyzing maximum stresses using the finite element methods [5]. The results of the tests
varied in proportion to the forces applied to the models. A corresponding image of the
map of the distribution of stresses and deformations in examining the impact of shearing
forces was also obtained.

The highest stresses and deformations generated at the contact point of two surfaces
occurred mostly at the edges of the grooves. In some cases, they appeared on a smooth
connection of both cylinders.

The results of the shear tests show that the appropriate shape and distribution of the
grooves significantly affects the quality of the connection. Despite the achievement of the
same values of MPa—the connection with III-type grooves did not break at all. There
was only a crack deep into the material, but the whole structure is still connected very
well. The machine automatically stopped after the force dropped, but the sample was
not destroyed. The experimental tests confirmed the results of the numerical simulation
analysis. Additionally, local stress measurements were made in both the numerically
modeled samples, numbers 2 and 14 (Figure 15). Based on the measurement maps obtained,
it is possible to notice which maximum values indicate which samples will be destroyed
entirely. Otherwise, there may be only a violation of the connection of two elements, but a
fragment of the sample would not be completely torn off. After a cloud points comparison
using the results of the shear test, we see that specimen no. 2 obtained lover local values
than no. 14, i.e., option no. 2 can pass longer loads.

Figure 15. Cloud points of local stress from simulation results for specimens no. 2 and 14.
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5. Conclusions

To summarize, the finite element method enables the analysis of many grooving
variants as a potential factor increasing the strength of the bond between two acrylic
materials. Research shows that grooving shape affects the distribution of stresses and
deformations and their values.

• The angle of 0◦ produces the lowest stresses in most samples, irrespective of groove
dimensions.

• The lowest deformations were observed in samples with parallel grooving at an angle
of 90◦.

• The highest stresses were recorded when the grooving angle was 45◦ and the depth
was 0.10 mm, indicating that increasing grooving depth reduces stresses but increases
deformation.

Taking into account the groove depth of the grooves:

• In samples with parallel (III) grooves, increasing the groove depth in most cases
increased the deformations but reduced stresses.

• In cross-grooved (#) variants, increased depth resulted in higher deformations but
lower stresses.

An analysis of the impact of distance between grooves on stress and deformation
values indicates that:

• Increasing the width of III grooves had no clear impact on results.
• The greater the distance of the grooves in the # shape, the lower the deformations

and stresses.

In the case of width:

• Increasing the width results in a slight increase in deformations and stresses (III shape).
• Increasing the width has no clear impact (# shape).

This extensive analysis enables pinpointing the optimal arrangement, i.e., one char-
acterized by both the lowest values of stress (36.828 MPa) and deformation (0.015 mm)
(Figure 16), which directly impacts the improved strength of the bond. Such effects can be
achieved using variant ‘2’ (Figure 17), i.e., parallel grooving with the following dimensions:
width 0.20 mm, groove thickness 0.10 mm, distance between grooves 5.00 mm, shear force
angle 90◦. This configuration keeps stresses and deformations at a low level, even when
the force is applied at an angle of 0◦.

Cross grooves are a less advantageous arrangement. In these cases, low stress values
did not always correspond to soft deformations. An additional advantage of parallel
grooving is that it can be easily prepared in a dental lab.

Strength tests have shown that suitable grooves can extend the length of use of the
structure. The entire construction with the III grooves was not destroyed, but a phased
cracking occurred. The numerical simulations made it easier to select the most appropriate
configurations for endurance testing. Compared to a laboratory experiment, computer
simulation fares better because it is much cheaper and easier to carry out and allows us to
simulate any complex problem while considering the influence of various factors, which is
not always possible for a physical experiment.

This mechanical surface development method combined with an appropriate chemical
substance may significantly increase the strength of the bond between two acrylic materials,
which constitutes the next step in our research.



Materials 2021, 14, 3927 15 of 17

Figure 16. Stress and deformation maps produced in respect of variant no. 2—the optimal combination developed using
numerical analysis.

Figure 17. Optimal groove dimensions result in the strongest bond between acrylic materials.
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