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Abstract: The influence of the thermo-oxidative aging semi-crystalline polyethylene terephthalate 

process on the thermal and mechanical properties was analysed in the article. For this purpose, PET 

was aged at 140 °C for 21, 35 and 56 days. The research showed that as a result of aging, the amount 

of the crystalline phase increases by about 8%, which translates into the properties of the aged ma-

terial. The glass transition and melt temperature of lamellar crystals formed during first and second 

crystallisation increase with aging. The mechanical properties of the material were analysed in the 

temperature range of 25 to 75 °C. The tests were showing an increase in Young’s modulus and a 

decrease in elongation at the break as a result of aging. This phenomenon was particularly visible 

during tests at 75 °C and during the morphological observation of the fracture surface, where the 

fracture character of the material changes from ductile to brittle. In the case of the material aged for 

the longest time, the temperature has a negligible influence on the elongation at break. 
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1. Introduction 

Polyethylene terephthalate (PET) is one of the most popular thermoplastic polymers 

and is used primarily for the production of clothing fibres, tanks, bottles and also as a 

construction material. The annual production of this material in 2016 was 50.01 MMT [1] 

and it is forecast to rise to 87.16 MMT by 2022. 

Amorphous PET is used for the production of bottles and packaging due to its high 

transparency, which is very similar to that of glass. In other cases, a semi-crystalline state 

of polymer is used, which has a milky white colour and is opaque. 

Due to such factors as good mechanical properties (abrasion resistance, dimensional 

stability-creep resistance, easy processing of details and their surfaces, high impact 

strength) even at low temperatures (<−70 °C), low water absorption and resistance to in-

organic chemicals, PET is widely used in a variety of industries (machine, automotive, 

electromechanical, electronic). High resistance to various environmental factors along 

with an absence of harmful low molecular weight substances make it widely used in ap-

plications where it comes into contact with food (food industry, food packaging, house-

hold appliances). 

The change in the properties of PET, as well as that of other polymers, is often influ-

enced by the environment, causing its properties to degrade mainly through random scis-

sion of the polymer chains. Depending on the environmental conditions, thermal, thermo-
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oxidative, chemical, radiative, biochemical and hydrolytic degradation processes can be 

distinguished. The chemical processes during the thermal degradation of PET were inves-

tigated by Holladn and Hay using FTIR [2]. The presence of diethylene glycol and 

isophthalate units has a significant influence on the process, increasing the chain flexibility 

and creating more favourable bond angles. The degradation process involves the for-

mation of volatile degradation products. Turnbull, Liggat and MacDonald [3] also dealt 

with this topic. The conducted research showed that the formation of cyclic oligomers is 

the main reaction takes place during the thermal degradation process. Pirzadeh, 

Zadhoush and Haghighat investigated the influence of temperature and humidity on the 

properties of PET fibres and granules [4]. At temperatures lower than Tg, they did not 

observe any material degradation. On the other hand, the course of the hydrolysis process 

depends on the moisture level, and water is more readily absorbed by the fibres than the 

granules. Accordingly, the fibres undergo hydrolytic degradation faster, which is not af-

fected by temperature. The influence of chemical degradation on the mechanical proper-

ties of the fibres used to reinforce concrete was investigated by Machovie et al. [5] Ciera 

et al. investigated the influence of incorporated spores on the mechanical and morpholog-

ical properties of PET fibres [6]. 

In addition to changes in the properties of PET caused by degradation processes, this 

material is also susceptible to physical aging below the glass transition temperature 

caused by the slow drive of quenched material at a thermodynamically non-equilibrium 

state to equilibrium. This is related to the relaxation processes with characteristic, different 

time constants [7,8]. It results in a reduction in entropy, enthalpy and specific volume with 

an increase in yield stress and tensile and flexural module. Hay investigated the effect of 

the crystalline phase on the behaviour and properties of PET. It turned out that the crys-

talline phase limits mobility of the chain segments, influencing the macroscopic properties 

of the material [8]. Zhao et al. used the physical aging process to analyse the amorphous 

phase in semi-crystalline polyethylene terephthalate [9]. The research shows that two 

types of areas filled with the amorphous PET phase can be distinguished. The first area—

the free amorphous region—can evolve during aging and is mainly responsible for 

changes in properties, transforming into the second area, the constrained amorphous re-

gion. The total number of the amorphous phase remains practically constant. Sato and 

Sprengel studied the dynamics of the relaxation process below the glass transition tem-

perature and determined the constants of individual relaxation processes [7]. Farhoodi et 

al. investigated the physical aging process at 25 °C and 45 °C. No changes were observed 

at lower temperatures, while the higher temperature allowed for the observation of the 

relaxation processes in the material [10]. 

Tests using the Differential Scanning Calorimetry technique show that depending on 

the crystallization, the recrystallization process of PET and the subsequent annealing (iso-

thermal crystallization), endothermic peaks can appear on thermograms [11–13]. This 

phenomenon is characteristic not only for PET, but also for other polymers [14,15]. In most 

cases, two endothermic peaks are observed. The first endothermic peak is associated with 

secondary crystallization, while the second peak is associated with the melting of crystal-

lites formed during the primary, first crystallization [11,13]. The lamellar crystals formed 

during primary crystallization are characterized not only by greater thickness, but also by 

a structure closer to an ideal crystal. In contrast, structures formed at lower temperatures 

are thinner, with more structural defects and lower thermal stability [11,16,17]. 

Tang et al. showed that lamella growth is the dominant process for annealing in the 

temperature range of 180 to 220 °C [18]. Annealing at higher temperatures increases the 

thickness of the lamellae formed during primary crystallization. According to Ziyu and 

Hay, diffusion processes are responsible for the increase in lamella thickness when an-

nealing above the crystallization temperature and below the melting temperature [19]. 

The kinetics of the isothermal crystallization process was studied by Zheng et al. [20] 

and by Zendehzaban and Shamsipur [21]. Research has shown that increasing the aging 
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temperature significantly affects the quality of crystallites as well as the melting point. 

Additionally, materials with shorter chains crystallize more easily. 

Due to the very high production of plastics and the resulting increase in environmen-

tal pollution, the possibilities of their processing and reuse were addressed. This is con-

nected not only with the processing of the material, but also with the determination of the 

influence of the method of processing the material on its properties. The relatively simple 

way of recycling PET meant that it is reprocessed in large amounts, and numerous works 

related to recycled PET can be found [22–25]. 

The works conducted by the researchers are also aimed at the modification of PET 

with additives improving its properties [26–29] or enabling acceleration of the degrada-

tion process [30–32]. 

Thermo-oxidative aging is the main, basic process that causes the destruction of 

structural elements made of PET. For this reason, the aim of the presented article is to 

show the influence of the thermo-oxidative aging process of the polyethylene tereph-

thalate on its properties in the temperature range at which this material is commonly used. 

Typical commercially available PET was used in this study after polycondensation. Intrin-

sic viscosity (IV) and the average molecular weights of such a material are 0.60 dL g−1 and 

24.8 kg mol−1, respectively [13,33,34]. 

2. Experimental Part 

2.1. Materials Preparation 

The PET sheet was cut into pieces, which were then placed in an oven heated to a 

temperature of 140 °C in such a way that air could freely flow around each of the pieces. 

The degradation process of PET at temperatures of 110 and 120 °C is relatively slow; there-

fore, a higher temperature was adopted [35]. The pieces were removed from the oven after 

21, 35 and 56 days. Then, test specimens were made from unaged and aged PET. 

2.2. Differential Scanning Calorimetry 

The TA Instruments DSC 250 apparatus (New Castle, DE, USA) was used to perform 

the differential scanning calorimetry (DSC) tests. Measurements were carried out in an 

inert gas atmosphere at a heating rate of 10 °C/min, in the range of 50 to 300 °C. 

2.3. Fourier-Transform Infrared 

Fourier-transform infrared (FTIR) spectra were collected by a Thermo Nicolet iS5 

FTIR Spectrometer (Waltham, MA, USA), equipped with a single-reflection accessory 

(iD7) for attenuated total reflection (ATR) measurements, with diamond crystal. Thirty-

two accumulated spectra were recorded for each specimen at a resolution of 4 cm−1 from 

4000 to 600 cm−1 of wavenumber. IR spectra were analyzed with the help of OMNIC soft-

ware (version 9.11.745) from Thermo Scientific (Waltham, MA, USA). At least 32 meas-

urements per material were performed at different locations of the plate, in order to obtain 

representative results. The obtained spectra were used to determine Carbonyl Index (CI). 

The CI values were calculated from the ratio between the integrated band absorbance of 

the carbonyl group (C=O, 1712 cm−1) and the methylene group (CH2, 1408 cm−1) (1) [36]. 

The area under the band is calculated through the Omnic software using the peak analysis 

tool. This index allows the characterization of the degradation process in polymeric ma-

terials based on the baseline method. 

CI =  
(Absorbance at 1712 𝑐𝑚−1 )

(Absorbance at 1408 𝑐𝑚−1 )
 (1) 
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2.4. Dynamic Mechanical Analysis 

The experiment of dynamic mechanical analysis (DMA) of cuboid samples was con-

ducted using TA Instruments DMA Q800 analyser (New Castle, DE, USA). The dual can-

tilever clamps were used to test the mechanical properties polymer. The measurements 

were carried out within the temperature range from −70 °C to 255 °C, at a heating rate of 

3 °C/min and with frequency of 1 Hz. The amplitude of test sample deformation was es-

tablished at 10 µm. The tests used cuboidal specimens, cut from pieces of PET sheets, with 

the following dimensions: 60 mm, width of about 10 mm, thickness of about 3 mm. 

2.5. Mechanical Analysis 

The static tensile test was carried out on the Instron 8862 electromechanical universal 

test system (Instron, Norwood, MA, USA). The maximum displacement range of this sys-

tem is ±100 mm and the maximum piston speed is 300 mm/min. In order to perform the 

test in a variety of positive temperatures, the Instron temperature chamber, installed on 

the test system, was used. The chamber allows conducting the test at temperatures from 

−100 °C to 320 °C. 

The test system automatically recorded the loading force and the position of the trav-

erse in time with 50 Hz frequency. The tests were performed by applying displacement-

controlled loading. The speed of the traverse was equal to 10 mm/min and a strain rate 

during the test was constant and equal to 7 × 10−3 1/s. The forces were recorded by the test 

system, while the displacements were registered with use of the Instron extensometer. 

The dimensions of the samples were determined on the basis of the ISO 527-2:2012 

standard concerning a determination of the tensile properties of moulding and extrusion 

plastics. The 1BA test specimen was used, because of the limited space of the temperature 

chamber. The water jet cutting technique was utilised to prepare the test samples. 

The tensile tests were carried out on the basis of the PN-ISO 527:2007 standard. Ac-

cording to the standard, the tests were performed with the use of the dog bone samples at 

a constant strain rate. Tensile stress was calculated as the force related to the initial cross 

section area of the gauge length of the tested sample. Tensile strength is defined as the 

maximum recorder tensile stress and elongation at break as the gauge length deformation 

at break. The effect of transverse deformations of the sample during the test is not taken 

into account. 

The samples were tested in the following temperature range: 25 °C, 50 °C and 75 °C. 

After mounting the samples in the clamps of the testing system and closing the climate 

chamber, about 15 min were allowed to settle and normalize the temperature inside the 

chamber. Measurements of the temperature inside the chamber were performed with the 

use of the two K-type thermocouples: one placed in the working field of the chamber and 

the other fixed between two layers of the tested material (two pieces of the test material 

were applied to each other and a thermocouple was placed between them). The tests were 

carried out when the control system was showing a constant, set temperature. According 

to the chamber specification, it allows temperature stabilization in the range of ±2 °C, and 

the permissible K-type thermocouple error is ±1.5 °C. 

2.6. Scanning Electron Microscopy 

A model FEI Quanta 3D FEG scanning electron microscope (Hillsboro, OR, USA) was 

used to analyse the surface fracture of PET samples. The analysis of the failure mecha-

nisms was carried out by a direct observation of the topography of fracture surfaces of 

each PET variant, i.e., as-received, aged during 21, 35, and 56 days and then mechanically 

tested at 25 °C, 50 °C and 70 °C. The observations were conducted at magnification 200× 

and 500× in a low-vacuum mode. 
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2.7. Light Microscope 

The macro-observations of the fracture PET samples after tensile tests were per-

formed on a Keyence VHX-950F light microscope (Osaka, Japan) with a magnification of 

20×. 

3. Results 

Density measurements by aerometric method showed a slight increase in density 

with material aging (Table 1). 

The CI as a function of the ageing time plot is shown in Figure 1. The trend in the CI 

changes associated with the degradation process is clear and visible. The starting value of 

the CI indicates that the non-aged polymer is partially oxidated, e.g., after high-tempera-

ture processing like extrusion or thermoforming. 

Table 1. PET density measured by the hydrostatic method. 

Parameter As-Received 21 Days 35 Days 56 Days 

 (g/cm3) 1.387 1.392 1.396 1.402 

 

Figure 1. Carbonyl index as a function of ageing time for a series of PET samples. 

DSC thermogram of aged and unaged PET is presented in Figure 2, while the param-

eters determined from them are included in Table 2. The midpoint glass transition tem-

perature (Tg) of the unaged PET is equal to 85.4 °C (Table 2). This temperature decreases 

to 76.1 °C for aged materials. The change in enthalpy associated with the glass transition 

process also decreases. 

Table 2. PET parameters obtained using the DSC method. 

Aging Time 
Tg  

(°C) 

TI  

(°C) 

ΔHI 

(J/g) 

Tm onset 

(°C) 

Tm  

(°C) 

Tm end  

(°C) 

ΔHm 

(J/g) 

as-received 85.4 168.9 4.2 242.8 254.9 261.7 31.4 

21 days 77.5 185.8 4.3 249.8 258.0 268.8 37.4 

35 days 76.3 188.7 3.6 249.9 257.6 265.8 37.3 

56 days 76.1 194.5 3.35 252.5 260.7 266.3 42.8 
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Figure 2. DSC thermogram of as-received and unaged PET, curves have been shifted in relation to 

each other in order to better visualize the results. 

The first endothermic peak temperature (TI) increases from 168.4 to 185.1 °C for PET 

as-received and 56 days aged, respectively. On the other hand, the change in enthalpy of 

this process (ΔHI) initially increases slightly to later decrease to 3.35 J/g with a continuous 

widening of the peak. 

The softening point of the second endothermic peak (Tm) and the change in enthalpy 

(ΔHm) associated with this process increase with the aging of the material from 254.9 °C, 

31.4 J/g to 260.6 °C and 42.8 J/g for PET specimens as-received and aged for 56 days, re-

spectively. This is significantly less than the temperature change of the first endothermic 

peak. A little difference in the sample aged for 35 days can be observed. In this case there 

is no increase in ΔHm, with a simultaneous slight widening of the peak. 

The amount of crystallinity in the sample can be determined from the relationship: 

𝜒𝑐 =
𝛥𝐻𝑖

𝛥𝐻0
∙ 100% (2) 

where: 𝛥𝐻0 is the heat of the melting of a sample consisting only of the crystalline phase, 

Δ𝐻𝑖  is the heat of melting first (i = I) or second (i = m) endothermic peak. 

The values of the heat of melting of a purely crystalline sample reported in the liter-

ature differ quite significantly, affecting the determination of the degree of crystallinity in 

the sample. The values vary from 117.7 to 140 J/g [5,22,26,32,35]. The heat of melting of a 

purely crystalline sample value of 140 J/g was used for further calculations. The calculated 

degree of crystallinity formed during primary (χcm) and secondary (χcI) crystallization on 

the basis of the relationship (2) are included in Table 3. During the first phase of the aging 

process (up to 21 days), the growth of crystallites can be observed (previously formed 

during primary and secondary crystallization). At the same time, the structure of the crys-

tallites formed during the secondary crystallization is significantly improved, which is 

demonstrated by an increase in the melting point by almost 17 °C. Further aging causes a 

slight decrease in the number of the poorer quality crystallites from the secondary crys-

tallization, with an increase in the amount of the first crystallization crystallites. Two rea-

sons for this phenomenon can be distinguished, which are partially dependent on each 

other. The first one concerns the lower temperature stability of this type of crystallite and 

the second one occurs from a degradation process expressed by index CI (Figure 1). 
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Table 3. Degree of crystallinity formed during primary (χcm) and secondary (χcI) crystallization. 

Aging Time χcI (%) χcm (%) 

as-received 3.0 22.4 

21 days 3.1 26.7 

35 days 2.6 26.6 

56 days 2.4 30.6 

The dynamic storage (E′), loss modulus (E″) and Tan Delta (tan δ) curves as-received 

PET were presented in Figure 3. Below 0 °C degrees, the β-relaxation process begins, 

which has the maximum effect on the parameters E’, E” and tan δ at around −70 °C causing 

an increase in these parameters from 2600.8 MPa, 48.9 MPa and 0.02 at 0 °C to 3242.3 MPa, 

129.3 MPa and 0.04 at −70 °C, respectively. This change is attributed to torsional vibrations 

of the main chain correlated over a length corresponding to one monomer only at the 

amorphous phase [37–39]. However, it has been shown in [40] that a more complex pro-

cess can occur in which movements of carbonyl groups (<−70 °C) and phenyl rings (<0 °C) 

play a role. As the temperature increases, there is α-relaxation associated with the typical 

glass transition process. During this process, the loss modulus curves reached a maximum 

at about 187.2 MPa at temperature 97.3 °C, while the maximum tan δ value is reached at 

a temperature 12.6 °C higher. Above this temperature, on the tan δ curve, there is a second 

maximum (TI = 179.6 °C) associated with the melting of the crystallites formed during the 

second crystallization. A further increase in temperature causes a decrease in both the 

storage and the loss modulus. However, the storage modulus falls more strongly, which 

causes Tan Delta to increase significantly near the melting point. 

 

Figure 3. DMA thermogram of as-received PET sample (storage modulus, loss modulus and tan δ 

vs. temperature). 

Figure 4 shows the storage modulus, loss modulus and Tan Delta dependences on 

temperature and ageing, respectively. The storage modulus behaviour in Figure 4a shows 

that aged PET samples possessed a slightly higher storage modulus compared to unaged 

PET above the glass transition temperature (Tg). A sharp decrease in the modules was 

observed corresponding to the glass transition at around 90 °C. The behaviour of the loss 

modulus with temperature for the PET specimen is presented in Figure 4b. PET after ac-

celerated ageing had a lower maxima of peak at loss modulus compared to unaged PET. 

The Tan Delta behaviour is shown in Figure 4c. At the glass transition temperature point, 

Tan Delta values decreased with the aging of PET samples. Above Tg, a second smaller 
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maximum associated with cold crystallisation is visible. The value of this maximum is 

significantly higher for the aged material and is shifted towards higher temperatures. 
(a) (b) 

  
(c) 

 

Figure 4. DMA thermogram of unaged and after ageing PET sample; (a) storage modulus, (b) loss modulus and (c) tan δ 

vs. temperature. 

The glass transition temperature (Tg) estimated based on the temperature maxima in 

the loss modulus, and Tan Delta cold crystallisation temperature are presented in Table 

4. 

Table 4. PET parameters obtained using the DMA method 

Aging Time 
Tg (loss modulus) 

(°C) 

Tg (tan δ) 

(°C) 

TI (tan δ) 

(°C) 

as-received 96.3 109.2 179.5 

21 days 96.2 110.9 189.7 

35 days 97.0 113.5 192.3 

56 days 100.9 115.7 197.9 

Aging of PET causes an increase in the content of the crystalline phase in the material, 

an increase in Tg, TI and Tm (Tables 2 and 4), which translates into the mechanical proper-

ties of the material (Figures 5 and 6, Table 5). This process is particularly evident in the 

stress-strain curves obtained during the tensile test using the universal testing machine 

Instron 8862 and the climate chamber at higher temperatures of 50 and 75 °C (Figure 5). 

From a ductile material that breaks at a deformation greater than 18% and a stress of 47 

MPa, the material becomes a very brittle material due to aging and breaks at a deformation 

of about 1.2% and a stress 32 MPa at a temperature of 75 °C (Table 5 and Figure 6). This 

phenomenon also occurs at lower temperatures, but is less visible. 
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(a) (b) 

  
(c) (d) 

  

Figure 5. (a) Stress-strain curves for different temperatures of as-received PET; (b) stress-strain 

curves for different temperatures of 21 days aged PET; (c) stress-strain curves for different temper-

atures of 35 days aged PET; (d) stress-strain curves for different temperatures of 56 days aged PET. 

Table 5. Yield stress (σY) and tensile stress at break (σb); dark grey background colour—yield stress values determined as 

for metals; light grey background colour—similar or the same yield and tensile stress values resulting from the change of 

material properties and its brittle fracture. 

Temper-

ature 
As-Received 21 Days Aged 35 Days Aged 56 Days Aged 

T (°C) σY (MPa) σb (MPa) σY (MPa) σb (MPa) σY (MPa) σb (MPa) σY (MPa) σb (MPa) 

25 84.8 82.7 78.6 78.4 75.2 75.2 40 40 

50 74.5 67.2 72.8 72 67.7 67.5 39.6 39.6 

75 51 47.3 39.1 57.8 37.1 56.3 32 32 
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(a) (b) 

  
(c) (d) 

  

Figure 6. Young modulus (bars) and strain fracture (line) (a) as received; (b) 21 days aged; (c) 35 days aged; (d) 56 days 

aged. 

The increase in the amount of the crystalline phase and the crosslinking between 

monomers causes a decrease in the mobility of the monomers in relation to each other and 

a significant reduction in the mobility of individual groups in the monomers, causing an 

increase in the stiffness of the sample manifested by an increase in Young’s modulus and 

a decrease in the elongation at break of the specimen. After 21 days of aging, the values of 

Young’s modulus at 25 and 50 °C came closer to each other (Figure 6). There has been a 

marked increase in E at the highest temperature of 75 °C. However, this does not exceed 

3 GPa. In the case of the longest aged PET (56 days), not only is the material brittle, but 

the temperature has practically no effect on the elongation at break in the specimen. In 

contrast, yield stress (σY) and tensile stress at the break (σb) of the specimen decrease with 

both an increasing temperature and the aging process (Table 5). 

The type of fracture slightly changed with aging time for the PET samples tested at 

room temperature. For the as-received PET sample, the smooth area (known as the mirror 

zone) characterized by a slow, subcritical crack growth can be observed (Figure 7). The 

mirror zone directly transforms into hackle regions with a rough surface and are clearly 

visible in Figure 8 as outward divergent lines pointing along the crack propagation direc-

tion. The roughness of the observed hackle regions is the effect of both the occurrence of 

plastic flow on the fracture surface and the presence of non-coplanar crack surfaces. A 

similar fracture as for as-received PET samples was noticed for samples subjected to aging 

during 21 and 35 days and mechanically tested at room temperature. Whereas the clearly 

different structure was observed for 56 days aging PET (Figure 8). There are only hackle 

regions with a lot of voids. The plasticity of this variant strongly decreases and is near the 

zero versus about 4% for as-received PET. Therefore, there was definitely a greater impact 

on the type of PET sample fracture observed when the tensile temperature was increased. 

The fracture of the as-received PET sample tested at 50 °C and 75 °C was characteristic of 
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plastic flow (Figure 7). This can be clearly seen in Figure 8 as a smooth textured region 

along the strain direction. Moreover, some voids are visible. The aging time of 21 and 35 

days strongly influences the fracture topography. The conducted light microscope obser-

vations reveal the mirror zone and hackle regions for both aging time variants mechani-

cally tested at 50 °C as well as at 75 °C. Furthermore, SEM observations reveal the complex 

structure of fractures (Figure 8). They consist of the hackle regions with a planar surface, 

smooth textured areas and parabolic markings. The fracture structure for 56 days of aging 

PET samples are independent on tensile temperature. When both variants are visible, only 

the hackle regions correspond with the high brittleness showed in Figure 8b. 

T[°C] as-received 56 days aged 

25
 

  

50
 

  

75
 

 
 

Figure 7. Photo of as-received PET and 56 days aged PET specimen fracture surface tested at different temperatures. 
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(a) as-received (b) 21 days aged 

  
(c) 35 days aged (d) 56 days aged 

  

Figure 8. SEM micrographs of specimen fracture surface of as-received PET and 56 days aged PET. The tension test was 

carried out at 75 °C. Aging time; (a) as-received; (b) 21 days; (c) 35 days; (d) 56 days. 

4. Discussion 

Semi-crystalline polyethylene terephthalate has a complex structure. PET consists of 

lamellar crystals embedded in an amorphous matrix. Some of the chains pass through the 

crystals (tie-molecules), binding them together [41,42], whereas lamellar crystals are ar-

ranged in stacks form higher order structures. The behaviour of a material depends on the 

internal structure, on both the crystalline and amorphous parts as well as on the structure 

of the connections between these parts [43]. In turn, the deformation of the polymer is 

always associated with a change in the microstructure of the material. The polymer com-

plex structure during tension or compression of a sample gives rise to several phenomena, 

including the shear of lamellar crystals binding together (up to tie-molecule breaking), 

lamellar crystal rotation, interlamellar separation and homogeneous or inhomogeneous 

deformation of spherulites [44]. The complex structure results in a state of constant strain 

rather than constant stress in the loaded material. Strobl and co-workers distinguished 4 
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characteristic points linking the macroscopic response of a tensile specimen to the phe-

nomena occurring in it [45–47]. In the range of the small strain up to the elastic limit (ε = 

0.02–0.04) was noticed the onset of isolated inter- and intralamellar slip processes. Next, a 

change into a collective activity of slips occurs up to ε = 0.1–0.2, which lies slightly above 

the yield point. For larger deformations, fragmentation of lamellar crystals and the begin-

ning of fibril formation and chain disentanglement was observed. 

Young’s modulus and yield stress depend on the level of crystalline phase content in 

the sample and increase with its content [47]; the skeleton formed by the crystalline part 

plays a major role in this respect [48,49]. This was also partially confirmed in the presented 

studies. In the first period of the aging process (21 days), the content of the crystalline 

phase increased by 4.4% and later also by about 3%. An increase in Tg, Tm and TI, density 

indicates an increase in the crystalline phase and slight scissors of the molecule chains. 

This means that as a result of the aging process, the crystallite blocks are consolidated and 

the skeleton stiffness increases. The increase in the stiffness of the skeleton was achieved 

by an increase in the order inside the lamellar crystals and an increase in the energy of the 

weakest interactions to the level in which the increase in temperature to 50 °C did not 

affect these bonds. 

At ambient temperature, Young’s modulus changed relatively little, while at 50 °C it 

increased in the first period by 0.4 GPa, and later these changes have been much smaller 

(about 0.12 GPa). However, these bonds are so weak that they do not significantly change 

E at 75 °C, while yield stress and tensile stress at break decrease with both the increasing 

temperature and the time of the aging process, which is in contradiction to the results 

presented in [47] and results from the polymer degradation process. 

The values of maximum strains suggest that only at 75 °C can fragmentation of la-

mellar crystals and the fibril formation can occur, but only for as-received and 21 days-

aged materials. In other cases, only the collective activity of slips or the onset of isolated 

inter- and intralamellar slip processes may occur. The increase in ordering in the lamellar 

crystals, as well as their growth, causes the lamellar crystals not to fragment. As Darras 

and Séguéla have shown, it is not so much the size of the lamellae that matters as their 

thickness [50] and the degree of ordering. Moreover, in the process of stretching, tie-mol-

ecules embedded in the lamellar crystals are responsible for stress concentration in the 

crystals in which they are embedded [43]. This can be explained by the fact that tie-mole-

cules embedded in the lamellar crystals create a complex stress field around their fixing. 

This field can interact with a field from another tie-molecule accelerating the fragmenta-

tion process. An increase in lamellar crystal thickness causes an increase in the average 

distance between the anchor points of tie-molecules on opposite sides of the crystals, and 

thus the interaction of the fields decreases. Besides, with aging, the ordering in the lamel-

lar crystal increases its strength. In such a situation, the process of fracture of tie-molecules 

near their anchor point in the lamellar crystal and slip processes is responsible for speci-

men breakage. From the presented tests, it can be seen that the collective activity of slips 

depends on temperature, while the onset of isolated inter- and intralamellar slip processes 

does not depend on temperature (Figure 6). 

Finally, it should be noted that the complex structure of PET causes all of the dis-

cussed phenomena to occur in the material during experimental tests, but with different 

intensities. Therefore, the photos of the PET specimen fracture surface (Figures 7 and 8) 

show both areas associated with ductile and brittle cracking. 

5. Summary 

The influence of the thermo-oxidative aging semi-crystalline polyethylene tereph-

thalate process on the thermal and mechanical properties was analysed. The research 

shows that as a result of aging, the amount of the crystalline phase increases by about 8%, 

which translates into the properties of the aged material. The glass transition and melt 

temperature of lamellar crystals formed during first and second crystallisation increase 

with aging. The tests were showing an increase in Young’s modulus and a decrease in 
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elongation at break as a result of aging in the temperature range from 25 to 75 °C. This 

phenomenon was particularly visible during tests at 75 °C and during the morphological 

observation of the fracture surface, where the fracture character of the material changes 

from ductile to brittle. In the case of the material aged for the longest time, the temperature 

has a negligible influence on the elongation at break. This is due to the increase in the 

thickness of the lamellar crystals as well as the increase in its degree of ordering. The pre-

sented results were justified by an increase in the strength of the skeleton formed by the 

crystalline and the degree of homogeneity of the lamellar crystals, especially those formed 

during the second crystallization, as well as its thickness. 
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