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Abstract: A study of indium-incorporated copper selenide thin-film deposition on a glass substrate
using the successive ionic adsorption and reaction method (SILAR) and the resulting properties is
presented. The films were formed using these steps: selenization in the solution of diseleniumte-
trathionate acid, treatment with copper(II/I) ions, incorporation of indium(III), and annealing in an
inert nitrogen atmosphere. The elemental and phasal composition, as well as the morphological and
optical properties of obtained films were determined. X-ray diffraction data showed a mixture of
various compounds: Se, Cu0.87Se, In2Se3, and CuInSe2. The obtained films had a dendritic structure,
agglomerated and not well-defined grains, and a film thickness of ~90 µm. The band gap values
of copper selenide were 1.28–1.30 eV and increased after indium-incorporation and annealing. The
optical properties of the formed films correspond to the optical properties of copper selenide and
indium selenide semiconductors.

Keywords: SILAR; selenium; copper selenide; indium selenide

1. Introduction

While the majority of the world’s energy supply is generated from non-renewable
fossil fuels, such as oil, coal, and natural gas, there are a number of disadvantages in using
them, such as rising prices, increasing environmental concerns over climate change, and
security concerns due to dependency on imports from a limited number of countries that
have substantial fossil fuel supplies. As a result, governments and businesses increas-
ingly support renewable energies such as wind, hydroelectric, geothermal, biomass, and
solar power.

Solar power is proven to be one of the most promising and popular renewable energy
sources today since it has several advantages over other renewable energy sources. Solar
power generates energy with very limited environmental impact. Its peak energy output
matches the peak energy demand time, making it a perfect supplement for already existing
power grids. Solar power plants are very easy to scale up, as the energy generating capacity
is directly dependent on the plant’s size and the number of modules installed. Solar power
production facilities can be installed in environmentally sensitive and remote locations,
such as national parks and remote homes, where no power grid and other energy sources
are available. Solar cells have no moving parts, thus they require little service and operate
noise free. The worldwide production of solar power has been increasing exponentially
during the last decades [1].

Copper indium selenide is a widely used thin-film substance in solar energy and
photovoltaic applications. Over the years, it has attracted a lot of attention due to its
desired physical properties. CuInSe2 has a low direct band gap (1.04 eV) [2], a high
absorption coefficient (>105 cm−1) [2], and a high thermal resilience [3]. It shows no
performance degradation under intensive solar radiation [4]. Currently, maximum CuInSe2
efficiencies of 23.3% were achieved in thin-film layers, and 22.9% in solar cells [5]. Due
to continuous improvements in the efficiency of CuInSe2 cells, it is now widely used in
photovoltaic technologies.
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CuInSe2 films can be formed using various deposition methods. Chemical deposi-
tion methods include spin-coating [6], electrochemical deposition [7], and chemical bath
deposition [8], while physical deposition methods include electron beam evaporation [9],
sputtering [10], molecular beam epitaxy [11], physical vapor deposition [12], printing [13],
etc. Films which are formed using physical deposition methods are usually more uniform
and of better quality; however, expensive, high-temperature, and low-pressure equipment
is often needed. Furthermore, these methods offer low scalability for large-area coating
and often require a toxic H2Se atmosphere to anneal. This results in a toxic work environ-
ment and lower cost efficiency due to wasted reagents. Chemical deposition methods are
a more convenient way to deposit CuInSe2, due to not needing hazardous selenization
processes and not requiring expensive instrumentation. In addition, it is much easier
to make films with a large surface area. Thus, two wet chemical deposition methods,
such as chemical bath deposition (CBD) [14,15] and successive ionic layer adsorption and
reaction (SILAR) [16,17], are widely studied and used to deposit thin semiconductor films
on various substrates. However, one of the drawbacks of the CBD method is the waste
of the solution after each deposition. This also leads to the formation of a precipitate in
the solution and complications in controlling the process. By using the SILAR method,
thin-film deposition occurs by contacting the substrate with a chemical bath containing the
appropriate ions, thus avoiding the formation of precipitate. D. Kishore Kumar et al. have
shown [18] that the SILAR method provides phase purity of a tin selenide layer formed
and used in solar cells. In addition, this method allows the thickness, morphology, and
composition to be controlled, which is very important for the optical properties of a thin
film [19].

The films formed using chemical deposition methods often require annealing to obtain
a crystalline layer and improve properties.

The incorporation of elements has been found to be an effective way to modify
the properties of semiconductors and improve the conversion efficiency of solar energy.
Indium is considered to be one of the most efficient elements that can be used to improve
the conductivity of thin films.

This work studies the deposition of In-incorporated CuxSe films on a glass substrate
using the three-step SILAR method and subsequent annealing in a nitrogen atmosphere.
To understand the reaction pathways, composition, and properties of obtained films, X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy
(SEM), energy dispersive X-ray spectroscopy (EDX), atomic absorption spectroscopy (AAS),
and ultraviolet-visible spectroscopy (UV-Vis) measurements were carried out.

2. Materials and Methods
2.1. Materials

All chemicals used are pure commercial reagents from Sigma–Aldrich (Sigma-Adrich
Chemie GmbH, Taufkirchen, Germany): KHSO3 (≥98.0%), H2SeO3 (99.99% trace metals
basis), CuSO4·5H2O (99.99% crystals and lumps), hydroquinone (≥99% flakes), and InCl3
(98% reagent grade).

Thomas® environmental glass slides with one side sandblasted (20 × 20 mm2) were
used for film deposition.

2.2. Treatment Methods

Before the thin-film deposition process, glass slides were thoroughly cleaned with
liquid soap, washed with distilled water, and then bathed ultrasonically in acetone using
the Sonoswiss SW 3 H cleaner in sweep mode at 40 ◦C for 10 min. After cleaning, glass
slides were dried before use.
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In-incorporated CuxSe films were deposited in three stages and then annealed. The
first step was selenization at 60 ◦C for 180 min in diseleniumtetrathionate acid solution,
which is produced by mixing of 1 mol/L KHSO3 and 0.4 mol/L H2SeO3 (1:1) [20]:

2H2SeO3 + 5KHSO3 → H2Se2S2O6 + 2K2SO4 + KHSO4 + 3H2O (1)

Elemental selenium is deposited by submerging glass substrate into H2Se2S2O6 so-
lution, which decomposes into elemental selenium and seleniumtrithionate via reaction
(2) [21]:

Se2S2O6
2− → Se + SeS2O6

2− (2)

The deposited selenium film was washed in distilled water, and then submerged in
copper(II/I) ion solution at 40 ◦C for 10 or 20 min, and 60 ◦C for 5 or 10 min. Cu(II/I)
salt solution was prepared using a solution of 0.4 mol/L CuSO4 and a reducing agent,
hydroquinone (1%), therefore being a mixture of univalent and divalent copper salts. Cu(I)
ions react with elemental selenium forming copper selenide via reaction (3):

Se + 2xCu+ → CuxSe + xCu2+ (3)

Copper selenide films were washed in distilled water and then treated with 0.1 mol/L
InCl3 solution at 40 ◦C for 20 min. Obtained films were washed again in distilled water
and dried over CaCl2. The final step was film annealing at 100 ◦C for 12 h in an inert N2
atmosphere. The deposition scheme is shown in Figure 1.
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Figure 1. Schematic representation of In-incorporated CuxSe film on glass synthesis.

2.3. Investigative Methods

X-ray diffraction analysis was conducted with a D8 Advance diffractometer (Bruker
AXS, Karlsruhe, Germany) at 40 mA tube current and 40 kV voltage. 6◦ 1/min scanning
speed was used with coupled two theta/theta scan type. Data was recorded with provided
software package DIFFRAC.SUITE (Diffract.EVA.V4.3., Bruker, Karlsruhe, Germany) and
analyzed using Search Match and Microsoft Office Excel.

X-ray photoelectron spectroscopy analysis was made using the upgraded Vacuum
Generator (VG) ESCALAB MKII spectrometer (Waltham, MA, USA), with an added XR4
twin anode. Thermo VG Scientific Avantage software (5.918, Thermo Fisher Scientific,
Waltham, MA, USA) was used to record data. Data were analyzed in Microsoft Office Excel.

Scanning electron microscopy analysis of In-incorporated CuxSe film morphology
was carried out with a Quanta 200 FEG microscope. Bruker XFlash 4030 detector (Bruker
Corporation, Billerica, MA, USA) was used to perform energy dispersive X-ray analysis.
Detected elements were quantified using ZAF method.

Atomic absorption spectroscopy analysis by atomic absorption spectrometer Shi-
madzu AA-7000 (Tokyo, Japan) was used to determine Se, Cu, and In amounts in In-
incorporated CuxSe films deposited on glass. A mixture of concentrated HNO3 and
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distilled water (1:1) was used to dissolve films. Acetylene–air combination was used as
flame fuel. Amount (µmol/cm2) of Se, Cu, In in film was calculated using measured data.

To measure optical absorption spectra of 400–900 nm, Perkin Elmer Lambda 35
UV/VIS (Waltham, MA, USA) spectrometer with fitted diffuse reflectance sphere Lab-
sphere RSA-PE-20 was used. Band gap Eg was calculated by plotting (αhν)2 against
photon energy hν, extrapolating linear part of the plot until abscissa axis intersection
((αhν)2 = 0). Then, band gap value Eg was equal to hν at intersected part.

3. Results and Discussion

XRD, XPS, SEM/EDX, and AAS analyses were used in order to better understand the
reaction pathways when using the SILAR deposition method, and to learn more about film
composition during various formation steps.

3.1. XRD Analysis

Copper selenide and indium-incorporated CuxSe films were formed on a glass sub-
strate with a single-side matte finish. Figure 2 shows the XRD patterns of selenide films on
glass for various formation stages. Graph (a) shows XRD patterns after the treatment of
selenium films in copper(II/I) ion solution. Here, four peaks of hexagonal klockmannite
Cu0.87Se (♦) at 2θ = 26.6, 28.1, 31.2, 50.0◦ (JCPDS: 83-1814) could be seen. Samples that
were treated both longer (20 min vs. 10 min) and at higher temperature (60 ◦C vs. 40 ◦C)
have slightly more intense peak values, indicating that more copper selenide was formed.
This suggests that copper(I) ions react with elemental selenium, forming copper selenide
as shown in Equation (3). Second graph (b) shows the XRD patterns after incorporation
of indium(III). It could be seen from the graph that a brand-new peak of cubic indium
selenide In2Se3 at 2θ = 46.0◦ (JCPDS: 20-492) appears in all XRD patterns. Indium(III) ions
may react with copper selenide, forming indium selenide, according to reaction (4):

3CuSe + 2In3+ → In2Se3 + 3Cu2+ (4)

Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

water (1:1) was used to dissolve films. Acetylene–air combination was used as flame fuel. 
Amount (μmol/cm2) of Se, Cu, In in film was calculated using measured data. 

To measure optical absorption spectra of 400–900 nm, Perkin Elmer Lambda 35 
UV/VIS (Waltham, MA, USA) spectrometer with fitted diffuse reflectance sphere Lab-
sphere RSA-PE-20 was used. Band gap Eg was calculated by plotting (αhν)2 against photon 
energy hν, extrapolating linear part of the plot until abscissa axis intersection ((αhν)2 = 0). 
Then, band gap value Eg was equal to hν at intersected part. 

3. Results and Discussion 
XRD, XPS, SEM/EDX, and AAS analyses were used in order to better understand the 

reaction pathways when using the SILAR deposition method, and to learn more about 
film composition during various formation steps. 

3.1. XRD Analysis 
Copper selenide and indium-incorporated CuxSe films were formed on a glass sub-

strate with a single-side matte finish. Figure 2 shows the XRD patterns of selenide films 
on glass for various formation stages. Graph (a) shows XRD patterns after the treatment 
of selenium films in copper(II/I) ion solution. Here, four peaks of hexagonal klockmannite 
Cu0.87Se (◊) at 2θ = 26.6, 28.1, 31.2, 50.0° (JCPDS: 83-1814) could be seen. Samples that were 
treated both longer (20 min vs. 10 min) and at higher temperature (60 °C vs. 40 °C) have 
slightly more intense peak values, indicating that more copper selenide was formed. This 
suggests that copper(I) ions react with elemental selenium, forming copper selenide as 
shown in Equation (3). Second graph (b) shows the XRD patterns after incorporation of 
indium(III). It could be seen from the graph that a brand-new peak of cubic indium sele-
nide In2Se3 at 2θ = 46.0° (JCPDS: 20-492) appears in all XRD patterns. Indium(III) ions may 
react with copper selenide, forming indium selenide, according to reaction (4): 

3CuSe + 2In3+ → In2Se3 + 3Cu2+ (4)

 
Figure 2. XRD patterns of CuxSe and In-incorporated CuxSe films on glass substrate: (a) treated with copper(II/I) ion solu-
tion, (b) treated with indium(III) salt solution, (c) annealed in nitrogen atmosphere. Treatment with copper(II/I) ion solu-
tion: 1—10 min at 40 °C; 2—20 min at 40 °C; 3—5 min at 60 °C; and 4—10 min at 60 °C. 

Ion exchange takes place due to the lower solubility of In2Se3 (solubility product is 
5.6 × 10–92) than of CuSe (1.4 × 10−36) [22]. Similarly, samples that were treated longer and 

20 25 30 35 40 45 50 55 60

In
te

ns
ity

, a
.u

.

2θ, degree

1

3

4

◊◊◊

◊

◊

◊◊

◊
◊

2

◊
◊

◊

◊

◊

◊

a

◊

◊ – Cu0.87Se (83-1814)

20 25 30 35 40 45 50 55 60

In
te

ns
ity

, a
.u

.

2θ, degree

1

3

4

◊
◊◊

◊

◊

◊
◊

◊ ◊

2

◊
◊

◊

◊

◊

◊

b

◊●

●

●

●

◊ – Cu0.87Se (83-1814)
● – In2Se3 (20-492)

20 25 30 35 40 45 50 55 60

In
te

ns
ity

, a
.u

.

2θ, degree

1

3

4

2

◊
◊

◊

c

◊●

●

*

*

*

*

*

*

▲

▲

▲

▲
▲

▲

▲

▲

○

○

○

○

○

○

◊◊◊

○○

◊

* – Se (73-465)
◊ – Cu0.87Se (83-1814)
● – In2Se3 (20-492)
○ – In2Se3 (17-356)

▲ – CuInSe2 (23-207)

Figure 2. XRD patterns of CuxSe and In-incorporated CuxSe films on glass substrate: (a) treated with copper(II/I) ion
solution, (b) treated with indium(III) salt solution, (c) annealed in nitrogen atmosphere. Treatment with copper(II/I) ion
solution: 1—10 min at 40 ◦C; 2—20 min at 40 ◦C; 3—5 min at 60 ◦C; and 4—10 min at 60 ◦C.

Ion exchange takes place due to the lower solubility of In2Se3 (solubility product is
5.6× 10−92) than of CuSe (1.4× 10−36) [22]. Similarly, samples that were treated longer and
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with higher temperatures have slightly more intense peaks, indicating that more indium
selenide was formed.

Finally, the samples were annealed in an inert nitrogen atmosphere at 100 ◦C to obtain
better crystalline properties. Annealing promotes reactions between solid phases and
crystallization of amorphous phases:

2CuSe + In2Se3 → 2CuInSe2 + Se (5)

A number of new peaks can be seen in graph (c). Two intensive diffraction peaks
at 2θ = 23.5, 29.7◦ and one weaker peak at 56.3◦ of hexagonal selenium (JCPDS: 73-465)
are clearly observed. Evidently, amorphous elemental selenium crystallized during the
annealing process. Two new peaks at 2θ = 41.2, 45.3◦ (JCPDS: 17-356) of the new phase of
In2Se3 indium selenide appear. The new phase may change the previous phase of cubic
indium selenide due to annealing. This is suggested by the disappeared peaks of cubic
indium selenide in samples 1 and 2 and the smaller peaks in 3 and 4, compared to graph (b).
The other two new peaks of CuInSe2 cubic copper indium selenide phase at 2θ = 43.7, 51.8◦

(JCPDS: 23-207) are found in the XRD patterns. A new phase of copper indium selenide
may be formed during the solid phase reaction according to Equation (5). After annealing,
the peaks of the hexagonal klockmannite phase are no longer found in samples 1 and 2.
This could also be explained by Equation (5), as klockmannite was used in copper indium
selenide formation.

3.2. XPS Analysis

The high-resolution XPS spectra are shown in Figure 3. Spectra were recorded at three
regions corresponding to Se, Cu, and In. The data are presented in graph (a) for non-etched
samples and in graph (b) for 30 s etched samples using an argon gas gun. Etching was
necessary because the formed oxides, salt residues from solutions, and other residues could
have been on the film surface.

Firstly, the glass substrate was submerged into a selenopolythionic acid solution and
a reddish elemental selenium film was formed. The band gap of selenium film was 1.60 eV
(Figure 6a) and corresponded to the values found in the literature. The band gap values
of formed copper selenide films were in the range of 1.28–1.30 eV (Figure 6b) and are
similar to the Cu2Se band gap Eg = 1.1–1.27 eV and Cu2−xSe band gap Eg = 1.4–2.2 eV
(Table 2). After incorporation of In(III), the band gap values of those films increased to
Eg = 1.32–1.38 eV (Figure 6c). After annealing, the band gap values of films increased again
to Eg = 1.44–1.48 eV (Figure 6d). This is similar to the mixed phase of Cu-In-Se materials
Eg = 1.17–1.24 eV and to the band gap value of In2Se3 Eg = 1.55 eV (Table 2). The annealing
process allowed selenium to crystallize; therefore, the increase in band gap value could be
due to the higher band gap value of selenium.

The peaks corresponding to the Se3d3/2 spectra region have binding energies of
55.5–55.8 eV. These peaks correspond to elemental-selenium-binding energy values of
55.7 eV [23]. The peaks in Cu2p1/2 and Cu2p3/2 regions are slightly more intense in
samples treated with a solution of copper(II/I) ions at a higher temperature, demonstrating
a greater amount of deposited copper-containing compounds. This can be seen better on
etched samples. The high-resolution spectra indicate that the binding energy values are
932.2–932.4 eV for the Cu2p3/2 region, which equates to CuSe (932.27 eV) [24], CuInSe2 (931.8–
932.49 eV) [25], Cu2Se (931.9–932.5 eV) [26], and Cu2O (932.3–932.5 eV) [27,28]. The peaks at
952.2–952.4 eV found in the Cu2p1/2 region correspond to CuInSe2 (952.31 eV) [25] and Cu2O
(952.5 eV) [28]. The In3d5/2 spectra region has the peaks at 445.1–445.9 eV, and these binding
energy values correspond to In2Se3 (445.1 eV) [29], In(OH)3 (445.0–445.2 eV) [30], and InCl3
(445.9 eV) [31]. The NIST XPS does not have any entries matching the In3d3/2 spectra region,
making results inconclusive. All XPS spectra show that all the samples that were etched have
more intense peaks than non-etched samples. This is especially noticeable in the peak values
of Cu2p and, to a lesser degree, In3d. This suggests that the deeper films contain more Se, Cu,
and In, while the surface of films contain more impurities, residues of salts, and oxides. The
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full spectrum of XPS analysis revealed some impurity elements, O and Cl. The presence of
oxygen can be explained by exposure to the atmosphere and the formation of oxides, as well
as hydrolysis. The residual element Cl may come from the InCl3 precursor solution.
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Figure 3. XPS spectra of In-incorporated CuxSe non-etched (a) and etched (b) films. Treatment with
copper(II/I) ion solution: 1—10 min at 40 ◦C; 2—20 min at 40 ◦C; 3—5 min at 60 ◦C; and 4—10 min
at 60 ◦C.

In our opinion, Cu2Se could be formed on the surface due to a dense selenide film,
which prevents the penetration of Cu(I) ions and interaction with elemental selenium. The
formed CuxSe distinguishes the reacting substances (Cu+ and Se) from one another, thus
the subsequent formation process is only possible due to the diffusion of reactants through
the selenide film. Consequently, Cu2Se could form on the surface of the film. In a deeper
layer, the formation of CuSe is possible due to the solid-phase reaction of copper selenide
with selenium. Elemental selenium as an oxidizer and CuxSe react toward a decrease in
the x value via reactions (6) and (7):

yCuxSe + (x − y)Se→ xCuySe (6)
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Cu2Se + Se→ 2CuSe (7)

3.3. SEM/EDX Analysis

The color of the prepared films on the glass substrate changes from transparent to red
during reaction (2), when the elemental selenium is deposited, and to a dark gray when
copper selenide and indium-incorporated copper selenide films are formed (reactions (3)–(5)).

Structural features and surface morphology of the deposited films were analyzed
using SEM, images from which are shown in Figure 4 graphs (a,b,c,d). Magnifications of
1000 (b,d) and 4000 (a,c) were used. The micrographs show a compact structure of films
composed of single-type grains. The individual grains have a dendritic structure; grains
are agglomerated and not well defined.
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EDX spectroscopy was used to study the elemental composition of obtained films.
Peaks in EDX spectra shown in Figure 4 graphs (e,f) indicate atomic mass ratios of each
element in the film. EDX spectra shows that the surface of the film, which was treated
with copper(II/I) ion solution at a higher temperature (60 ◦C vs. 40 ◦C), contains more
copper, a similar amount of indium, and less selenium. The lower peak of selenium could
be explained by the formation of more copper containing compounds, such as Cu0.87Se
and CuInSe2, due to a higher temperature and covering of elemental selenium. Besides
selenium, copper, and indium, traces of other elements such as oxygen, chlorine, and silicon
were found. The presence of oxygen may be explained by the dendritic film structure
absorbing oxygen from the atmosphere. Silicon is part of the glass substrate itself, and the
residual amount of chlorine may be brought in during the step of In-incorporation.

To estimate the thickness of In-incorporated copper selenide films, cross-section im-
ages were taken. The micrographs revealed the film size to be similar for all samples, about
90 µm (Figure 5). It is possible that the temperature and duration of the initial deposition
of selenium film determines the thickness of the film.
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3.4. AAS Analysis

The AAS analysis method was used to assess atomic amounts of Se, Cu, and In in
obtained films. The data is shown in Table 1 and it coincides with the data obtained
using the XRD, XPS, and EDX methods. All samples have similar amounts of selenium
because all of the samples were deposited using the same selenization temperature and
duration. The temperature and duration of the treatment with copper(II/I) ion solution
have a major effect on the amounts of copper in the formed indium-incorporated copper
selenide films. A longer treatment with copper ion solution and an increased temperature
allows more copper to react with deposited elemental selenium, resulting in copper-rich
films. The sample that was treated for 10 min at 40 ◦C had less copper than the 20 min one,
additionally the sample treat for 5 min at 60 ◦C had less copper compared to the 10 min
samples. Likewise, the 40 ◦C sample (0.50 µmol/cm2) had less copper than the 60 ◦C sample
(0.78 µmol/cm2), both samples were treated for 10 min. The AAS analysis data lines up
with the XRD data shown in Figure 2. A longer treatment with copper(II/I) ion solution
at higher temperatures yields films with a larger amount of copper selenide (hexagonal
klockmannite, Cu0.87Se), because the peaks are more intense. Furthermore, all samples have
similar amounts of indium because of the same conditions of indium(III) incorporation.
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Table 1. Amount of Cu, Se, and In in In- incorporated CuxSe films on glass.

Copper(II/I) Ion Solution Treatment Conditions Amount of Elements, µmol/cm2

Temperature, ◦C Duration, min Cu Se In

40 ◦C
10 0.50 2.86 0.26
20 0.59 2.85 0.27

60 ◦C
5 0.69 2.95 0.29

10 0.78 2.89 0.32

3.5. Optical Properties

Optical transitions in semiconductors play an important role in their characterization.
Optical properties were studied by measuring the absorption spectra of films and calcu-
lating the Tauc plot. It shows the energy of the light hν versus absorption quantity (αhν)n,
where α is the absorption coefficient of the studied film material. In order to calculate the
energy bandgap (Eg) of the obtained films the Tauc plot was used [32–34]:

α =

(
A
hν

)(
hν− Eg

)n (8)

where A is the parameter that depends on transition chance and n is the value that depends
on transition type. The number n = 2 denotes direct band gap transition and n = 1

2 denotes
indirect band gap transition. The resulting plot has a distinct linear segment that indicates
the beginning of the light absorption spectra. The intersection of the extrapolated linear
part with the abscissa axis shows the band gap value Eg. Extrapolating the linear region to
the abscissa yields the energy of the optical band gap of the material.

The band gap values of the prepared semiconductor films were found to be in a range
of 1.28–1.48 eV. This corresponds to the absorption start at 840–970 nm. These band gap
values are similar to the compounds identified by XPS and XRD analysis. The band gap
values of various semiconductors are shown in Table 2.

Table 2. The band gap values of selenium, copper selenide, copper indium selenide, and indium
selenide found in the literature.

Semiconductor Material Band Gap Eg, eV Reference

Se 1.60 eV [35]
CuSe 1.80–2.10 eV [36]

Cu2-xSe 1.4–2.2 eV [37]
Cu2Se 1.1–1.27 eV [38]

CuInSe2
CuIn3Se5
CuIn5Se8

1.04 eV
1.17 eV

1.22–1.24 eV
[39]

In2Se3 1.55 eV [40]
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4. Conclusions

The SILAR method was successfully used to deposit CuxSe and In-incorporated
CuxSe films. The aqueous solutions of H2SenS2O6-type acids were suitable as a selenium
precursor. The films were formed using three steps: the deposition of selenium film, the
formation of copper selenide film, and the formation of indium–copper selenide film
by incorporating and annealing. A number of phases were identified by XRD analysis:
hexagonal klockmannite, cubic indium selenide, hexagonal selenium, indium selenide,
and cubic copper indium selenide. A mixture of various compounds in the films was
confirmed by XPS analysis. The SEM analysis showed that the films have a dendritic
structure, agglomerated and not-well-defined grains, and a film thickness of ~90 µm. The
AAS and EDX analyses showed that the films contained similar amounts of selenium and
indium, while samples treated at a higher temperature and for a longer duration with the
solution of copper(II/I) ions had more copper. The analysis of optical properties showed
that the band gap values of copper selenide are 1.28–1.30 eV. The band gap values of
indium-incorporated copper selenide increased by 5% (1.32–1.38 eV), and increased again
by another 5% after annealing (1.42–1.48 eV). The optical properties of the formed films
match the optical properties of copper selenide and indium selenide semiconductors.

Author Contributions: Conceptualization, A.I. and I.A.; methodology, A.I.; software, A.I.; vali-
dation, R.I.; formal analysis, A.I.; investigation, A.I.; resources, I.A. and R.I; data curation, I.A.;
writing—original draft preparation, A.I.; writing—review and editing, A.I. and R.I.; visualization,
A.I.; supervision, I.A. All authors have read and agreed to the published version of the manuscript.
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