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Abstract: The gamma radiation shielding ability for CaO-K2O-Na2O-P2O5 glasses were experimen-
tally determined between 0.0595 and 1.41 MeV. The experimental MAC results were compared
with theoretical results obtained from the XCOM software to test the accuracy of the experimental
values. Additionally, the effect of increasing the P2O5 in the glass composition, or reducing the Na2O
content, was evaluated at varying energies. For the fabricated glasses, the experimental data strongly
agreed with the XCOM results. The effective atomic number (Zeff) of the fabricated glasses was also
determined. The Zeff values start out at their maximum (12.41–12.55) at the lowest tested energy,
0.0595 MeV, and decrease to 10.69–10.80 at 0.245 MeV. As energy further increases, the Zeff values
remain almost constant between 0.344 and 1.41 MeV. The mean free path (MFP) of the fabricated
glasses is investigated and we found that the lowest MFP value occurs at the lowest tested energy,
0.0595 MeV, and lies within the range of 1.382–1.486 cm, while the greatest MFP can be found at the
highest tested energy, 1.41 MeV, within the range of 8.121–8.656 cm. At all energies, the KCNP40
sample has the lowest MFP, while the KCNP60 sample has the greatest. The half value layer (HVL)
for the KCNP-X glasses is determined. For all the selected energies, the HVL values follow the order
of KCNP40 < KCNP45 < KCNP50 < KCNP55 < KCNP60. The HVL of the KCNP50 sample increased
from 0.996 to 2.663, 3.392, 4.351, and 5.169 cm for energies of 0.0595, 0.245, 0.444, 0.779, and 1.11 MeV,
respectively. The radiation protection efficiency (RPE) results reveal that decreasing the P2O5 content
in the glasses improves the radiation shielding ability of the samples. Thus, the KCNP40 sample has
the best potential for photon attenuation applications.

Keywords: radiation shielding glasses; radiation protection efficiency; mean free path; XCOM software

1. Introduction

Glasses are increasingly being used as protective materials in applications that utilize
radiation to absorb incoming photons that may harm workers and patients surrounding the
radioactive source. Radiation is currently being used in hundreds of applications spanning
several fields, including medicine and energy generation. Despite the benefits of radiation,
precautions must be taken when dealing with radioactive sources as high energy photons
can be extremely harmful to the human body [1–6].
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As a rule of thumb, people should spend the least time in contact with the radiation
source as possible and should remain as far away as possible. However, when this is
not possible, or when additional measures are needed, shielding provides an effective
means to protect workers and patients [7–9]. For this purpose, several types of materials
are commonly used, depending on the application. To line the walls of X-ray rooms, for
instance, concrete is typically used as the absorber, due to its effective attenuation ability
of X-rays and its practicality. Although in some cases concrete can be an ideal material,
since concrete is prone to cracking and loses its water content after long-term exposure to
radiation, other materials are sometimes needed [10,11].

Glasses can be used as radiation shields by incorporating metal oxides into their
composition. Heavy metal oxides are typically the most effective, as their high density
increases the density of the glass system, which generally correlates with better attenuation
features [12–16]. There are three types of metal oxides that can be introduced into a glass
composition: a glass former, a glass modifier, and a glass intermediate. Glass formers form
the backbone of the glass network, while glass modifiers alter the composition of the glass
but do not form part of the backbone of the network.

Phosphate glasses, or glasses containing P2O5, are currently being used in biomedical
applications and as a fast ion conducting materials. Phosphate acts as a network former
when introduced to a glass system, forming a polymer-like structure of a regular tetrahe-
dron [PO4] 3− groups linked together by covalent bonds in chains and rings. These glasses
offer several desirable properties including low optical dispersions, high thermal expansion
coefficients and low glass transition temperatures. They are also great attenuators against
a wide range of wavelengths, possess a high dielectric constant, and a low phonon energy.
Despite these advantages, few studies have been performed investigating the radiation
shielding parameters of these glasses [17,18].

Phosphate glasses with no other additives have a low chemical durability and are
highly volatile, making pure phosphate glasses no suited for radiation shielding applica-
tions. However, other metal oxides can be added to their composition to improve these
properties and make them viable for these uses. Metal oxides such as CaO, K2O, and Na2O
act as network modifiers that help stabilize the phosphate glass so its radiation shielding
properties can be tested [19,20].

In addition to the phosphate glasses, other kinds of glasses can be used for the
radiation protection aims. For instance, heavy metal oxides are among the most common
glasses used in this regard. This is because of the high density values of such glass systems,
and accordingly the superior attenuation features compared to other glass systems [3–6,9].
In addition, borate glasses with PbO, Bi2O3 or BaO are also found to be potentially used
for this purposes, especially when incorporating high amounts of the aforementioned
oxides [3]. Silicate glasses are also important in the radiation protection field due to the
ease of preparation as well as good transmission of light [12].

The mass attenuation coefficient (MAC) is experimentally evaluated for a certain
medium to assess the shielding ability of it. The MAC of a medium describes its general
shielding capability and factors out its density. The accuracy of the determined MAC
values must be precise, as other parameters are calculated from this parameter. Thus,
for this purpose, the MAC values are typically compared with the theoretical values of
the tested materials and the percent difference is analyzed. Once the MAC results are
deemed as reliable, other quantities such as the half value layer (HVL) and mean free path
(MFP) are evaluated [21–23]. The radiation protection efficiency is widely determined
for understanding the ability of the medium to block out photons and thus evaluate the
efficiency of the medium as a safe radiation protective material.

In this investigation, the radiation shielding ability for CaO-K2O-Na2O-P2O5 glasses
were experimentally determined between 0.0595 and 1.41 MeV.

These glasses do not include PbO or Bi2O3; on the other hand, the current samples
are bioactive in nature and include CaO and P2O5, and these samples are likely to find
uses in the medical area where the radiation is employed, thus the radiation shielding



Materials 2021, 14, 3772 3 of 11

characteristics of these glasses are worth reporting. Furthermore, the Ca and K elements’
K-absorption edges occur in the low energy area, which improves the X-ray attenuation
properties of these glasses. The experimental MAC was compared with theoretical data
obtained from the XCOM to test the accuracy of the experimental values. Additionally, the
effect of increasing the P2O5 in the glass composition, or reducing the Na2O content, was
evaluated at varying energies.

2. Materials and Methods
2.1. Methodology for Glasses Preparation

The present glasses have been prepared by the method of the melt quenching. A
weighing balance with an accuracy up to four decimal places was used for the present
work. To obtain the uniform mixture, the mixing of the P2O5, Na2O, CaCO3 and K2O oxides
is done in an agate mortar. The mixture was then transferred to the alumina crucible. The
alumina crucible was placed in a muffle furnace (Purchased from Ambala, Haryana, India.)
at 1000 ◦C to obtain a uniform melt of the mixture. The melted mixture was transferred
to a graphite mold for annealing in a muffle furnace temperature 320 ◦C for 2 h. These
samples are used to perform the experimental studies using a narrow beam geometrical
setup for measuring the gamma ray shielding parameters. The density of prepared glasses
was calculated by Archimedes’ principle [24–26]. The samples are coded as:

CaKNaP40: 20 CaO-10 K2O-30 Na2O-40 P2O5 (density = 2.334 g/cm3)
CaKNaP45: 20 CaO-10 K2O-25 Na2O-45 P2O5 (density = 2.286 g/cm3)
CaKNaP50 20 CaO-10 K2O-20 Na2O-50 P2O5 (density = 2.251 g/cm3)
CaKNaP55: 20 CaO-10 K2O-15 Na2O-55 P2O5 (density = 2.209 g/cm3)
CaKNaP60: 20 CaO-10 K2O-10 Na2O-60 P2O5 (density = 2.184 g/cm3)

2.2. Radiation Attenuation Coefficient Determination

The main components in this measurement were the detector, radioactive point source,
lead collimator and the glass samples or an absorber needed for measuring. The schematic
diagram of these components is illustrated in Figure 1. The High Pure Germanium (HPGe)
Detector of model: GC1520 (Manufacturer of radiation detection and analysis instrumen-
tation, Meriden, USA) was used. The relative efficiency of the detector was 15% and the
resolution (FWHM) at 1.33 MeV was 2 keV. Three point sources were used in the mea-
surement to cover a wide range of energies. The Am-241 point source is a very important
source that emits a line in low energy (59.54 keV), and the initial activity of this source
was 259 kBq. Cs-137 point source emits two lines (32, 661.6 keV) but the line due to X-ray
emission (32 keV) was totally absorbed and therefore the most probable line and higher
emission probability is (661.6 keV), the initial activity of this source is 385 kBq. Eu-152 is
a multi-line source and covered more energies from low to high energy. The lines were
chosen according to the higher emission probability (121.78, 244.69, 344.28, 964.13 and
1408.1 keV), the initial activity of this source is 290 kBq. The reference date of all three point
sources was 1 June 2009 [27,28].

The narrow beam method was used in measurements by the lead collimator. The
detector first was calibrated and the background was measured using Genei 2000 software
(V3.3, Mirion Technologies (Canberra), Inc., Canberra, Australia) [29]. The measurement
occurred within and outside the glass sample with different sources to obtain the net
peak area or the count rate of the line which represent the intensity of this line. So, the
intensity of the line outside the absorber (I0) and within the absorber (I) can be calculated.
By knowing the thickness of the glass absorber (x), the linear attenuation coefficient (LAC)
easily estimated via the relation [30].

LAC = −
ln
(

I
I0
)

x
(1)



Materials 2021, 14, 3772 4 of 11
Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 1. The schematic diagram of the setup used for the determination of the attenuation coeffi-

cient. 

The narrow beam method was used in measurements by the lead collimator. The 

detector first was calibrated and the background was measured using Genei 2000 software 

(V3.3, Mirion Technologies (Canberra), Inc.) [29]. The measurement occurred within and 

outside the glass sample with different sources to obtain the net peak area or the count 

rate of the line which represent the intensity of this line. So, the intensity of the line outside 

the absorber (I0) and within the absorber (I) can be calculated. By knowing the thickness 

of the glass absorber (x), the linear attenuation coefficient (LAC) easily estimated via the 

relation [30]. 

0

ln( )I
I

LAC
x

= −  
(1) 

The MAC can be calculated experimentally by dividing the LAC on the density of an 

absorber (ρ). The MAC examined theoretically by the XCOM program for all present glass 

samples using the chemical composition of each sample. Other related parameters were 

Figure 1. The schematic diagram of the setup used for the determination of the attenuation coefficient.

The MAC can be calculated experimentally by dividing the LAC on the density of
an absorber (ρ). The MAC examined theoretically by the XCOM program for all present
glass samples using the chemical composition of each sample. Other related parameters
were investigated such as HVL, TVL, and MFP, as well as RPE. The HVL and TVL are the
thickness layers of an absorber needed to reduce the count rate of a line a half and a tenth
of its original value, respectively, and are given by the following equations [31].

HVL =
Ln2
LAC

(2)

TVL =
Ln10
LAC

(3)

The mean-free path can be estimated by Equation (4) [32].

MFP =
1

LAC
(4)



Materials 2021, 14, 3772 5 of 11

The shielding efficiency of an absorber sample can be investigated using a parameter
called the radiation protection efficiency (RPE) and given by the next equation [33].

RPE = (1− I
I0
)× 100 (5)

3. Results and Discussion

In Figure 2, the experimental mass attenuation coefficient (MAC) was compared
with the theoretical XCOM data against increasing energy for the five fabricated glasses.
Additionally, the values for both methods are given in Table 1. The aim of this comparison
is to validate the experimental method, an important step, as the experimental MAC results
will be used to determine the other parameters. In the four subfigures, the experimental
results are represented by a black square and the XCOM results by the red line. For
the CKNP40, CKNP45, CKNP50, CKNP55, and CKNP60 glasses, the experimental data
strongly agreed with the XCOM results. The results in Table 1 imply that the experimental
setup is highly precise and accurate and is an effective way to determine the MAC of these
glasses. To illustrate the percent difference between the results, the relative difference
between the MAC determined by the two methods was graphed in Figure 3. The figure
suggests that for all glasses analyzed, the percent difference between the values is within
2%. This figure reaffirms the validity of the experimental method used to obtain the MAC
values. The high MAC of these glasses in the low energy region is due to the presence of a
K-absorption edge for some elements in the composites such as Ca and K at low energies.
In addition, at low energies, the photoelectric effect is the dominant one.

Table 1. The measured mass attenuation coefficient and XCOM results for the fabricated glasses.

Energy
(keV)

CKNP40 CKNP45 CKNP50 CKNP55 CKNP60

Experimental XCOM Experimental XCOM Experimental XCOM Experimental XCOM Experimental XCOM

59.54 0.317 ± 0.030 0.310 0.303 ± 0.022 0.310 0.303 ± 0.038 0.309 0.302 ± 0.041 0.309 0.313 ± 0.022 0.308

121.80 0.156 ± 0.011 0.158 0.155 ± 0.011 0.158 0.155 ± 0.026 0.158 0.155 ± 0.033 0.158 0.052 ± 0.030 0.158

244.70 0.113 ± 0.009 0.116 0.116 ± 0.025 0.116 0.117 ± 0.014 0.116 0.114 ± 0.038 0.116 0.113 ± 0.028 0.116

344.30 0.099 ± 0.021 0.101 0.103 ± 0.040 0.101 0.101 ± 0.025 0.101 0.099 ± 0.022 0.101 0.099 ± 0.021 0.101

444.00 0.090 ± 0.035 0.091 0.091 ± 0.009 0.091 0.092 ± 0.014 0.091 0.089 ± 0.030 0.091 0.093 ± 0.019 0.091

661.70 0.077 ± 0.007 0.076 0.077 ± 0.026 0.076 0.075 ± 0.022 0.076 0.078 ± 0.025 0.076 3.819 ± 0.017 0.076

778.90 0.069 ± 0.008 0.071 0.069 ± 0.031 0.071 0.069 ± 0.027 0.071 0.071 ± 0.018 0.071 0.071 ± 0.028 0.071

964.10 0.063 ± 0.025 0.064 0.065 ± 0.030 0.064 0.062 ± 0.013 0.064 0.063 ± 0.012 0.064 0.063 ± 0.012 0.064

1112.00 0.061 ± 0.009 0.059 0.059 ± 0.024 0.060 0.061 ± 0.009 0.060 0.059 ± 0.014 0.060 0.059 ± 0.010 0.060

1408.00 0.052 ± 0.011 0.053 0.052 ± 0.009 0.053 0.054 ± 0.010 0.053 0.302 ± 0.041 0.309 0.313 ± 0.022 0.308

Figure 4 demonstrates the effective atomic number (Zeff) of the chosen glasses. The Zeff
values start out at their maximum (12.41–12.55) at 0.0595 MeV and decrease to 10.69–10.80
at 0.245 MeV. At low energies, the values are at their highest thanks to the photoelectric
effect. As energy further increases, the Zeff values remain almost constant between 0.344
and 1.41 MeV. This relatively constant trend can be explained by the elements of the
fabricated glasses (Ca, K, Na, P and O), which have close atomic numbers. This result is
consistent with recent studies evaluating the Zeff of ceramic containing Mg and Si, which
they also found to be constant at these energies [34]. At all energies, the Zeff values are
between 10.66 and 12.55, which makes sense since the lowest atomic number within the
composition is 8 for O and the highest is 20 for Ca.

The mean free path (MFP) of the fabricated glasses is plotted in Figure 5. The lowest
MFP value occurs at the lowest tested energy, 0.0595 MeV, and lies within the range of
1.382–1.486 cm, while the greatest MFP can be found at 1.41 MeV, within the range of
8.121–8.656 cm. This upward trend occurs because higher energy radiation can penetrate
the incident material easily. At higher energies, the dominance of the photoelectric effect
decreases compared to the Compton interaction [35]. This alteration causes a decrease
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in photon attenuation since the Compton interaction is weakly dependent on the energy
(E) as well as the atomic number, and only occurs between the incoming photons and
an outer shell electron of an atom within the glasses. In addition, at all energies, the
KCNP40 sample has the lowest MFP, while the KCNP60 sample has the greatest. For
example, at 0.245 MeV, KCNP40 has an MFP equal to 3.710 cm and KCNP60 has an MFP
equal to 3.956 cm. Meanwhile, at 1.11 MeV, the MFP’s of KCNP40 and KCNP60 are equal
to 7.202 and 7.676 cm, respectively. These results are directly related to the density of
the glasses, as more interactions will occur between photons and the atoms of a denser
material, increasing attenuation. In other words, increasing the density of a material causes
an increase in the chances of interaction between the incoming radiation and the shield.
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The half value layer (HVL) is a common factor used in the radiation shielding studies [36].
A lower HVL represents a more space-efficient, and thus better, radiation shield [37]. In
Figure 6, we graphed the HVL for the KCNP-X glasses. For all the selected energies, the HVL
values follow the order of KCNP40 < KCNP45 < KCNP50 < KCNP55 < KCNP60. In other
words, the KCNP40 glass has the lowest HVL, and the best shielding ability, while the
KCNP60 sample has the highest HVL, and the least desirable shielding ability. Additionally,
the influence of the HVL against increasing energy was analyzed. It was observed that
the HVL increases with raising the energy. The HVL of the KCNP50 sample increased
from 0.996 to 2.663, 3.392, 4.351, and 5.169 cm for energies of 0.0595, 0.245, 0.444, 0.779, and
1.11 MeV, respectively. This increasing trend occurs because photons with higher energies
collide less often with atoms in the material and tend to pass through the glasses more
often, which leads to an increase in HVL. Thus, the glasses are more space-efficient at lower
energies but are less space-efficient at higher energies.
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In Figure 7, we compared the HVL for the KCNP-X glasses with other glasses at
0.662 MeV. The glasses used for the comparison is reported in [38,39]. Apparently, all the
KCNP-X glasses have lower HVLs than rider and Osmani glasses, while PHP and RS 253
have almost the same HVL as KCNP40 and RS 323 G19 possesses a lower HVL than all the
KCNP-X glasses.
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The radiation protection efficiency (RPE) of the KCNPX samples is graphed against
increasing photon energy in Figure 8. For all tested energies, RPE decreases with increas-
ing energy [40]. For the KCNP45 sample, for example, its RPE decreases from 51% at
0.0585 MeV to 23% at 0.245 MeV, 19% for E = 0.444 MeV, 15% for E = 0.779 MeV, and 12% for
E = 1.41 MeV. For the KCNP55 sample, meanwhile, its RPE is equal to 49%, 23%, 18%, 14%,
and 11% for the previous energies. This decreasing behavior occurs since higher energy
photons penetrate via the samples easily, decreasing the amount of photons attenuation by
the shields, and decreasing RPE. This result also indicates that the KCNPX specimens are
more efficacious against lower energy photons. When the RPE values are evaluated at a
single energy, the KCNP40 sample has the greatest RPE, while the KCNP60 sample has the
least. Finally, since the KCNP40 sample has the greatest Na2O content, this glass has the
best possibility for radiation shielding utilizations.

Materials 2021, 14, x FOR PEER REVIEW 10 of 12 
 

 

evaluated at a single energy, the KCNP40 sample has the greatest RPE, while the KCNP60 

sample has the least. Finally, since the KCNP40 sample has the greatest Na2O content, this 

glass has the best possibility for radiation shielding utilizations. 

 

Figure 8. The radiation protection efficiency for the fabricated glasses. 

4. Conclusions 

The radiation shielding ability for CaO-K2O-Na2O-P2O5 glasses was experimentally 

examined between 0.0595 and 1.41 MeV. The experimental data strongly agreed with the 

XCOM results. The Zeff values start out at their maximum (12.41–12.55) at 0.0595 MeV and 

decrease to 10.69–10.80 at 0.245 MeV. The lowest MFP value occurs at the lowest tested 

energy, 0.0595 MeV, and lies within the range of 1.382–1.486 cm. The KCNP40 sample has 

the lowest MFP, and the KCNP60 sample has the greatest MFP. The values follow the 

order of KCNP40 < KCNP45 < KCNP50 < KCNP55 < KCNP60. The HVL of the KCNP50 

sample increased from 0.996 to 5.169 cm between 0.0595 and 1.11 MeV. The RPE demon-

strated that decreasing the P2O5 content in the glasses improves the radiation shielding 

ability of the samples. Thus, KCNP40 has the most potential for radiation protection ap-

plications. 

Author Contributions: Conceptualization, A.K. and M.E.; methodology, M.I.S.; validation, A.K. 

and M.E.; investigation, A.K.; writing—original draft preparation, M.I.S., A.H.A., B.A., A.V.T. and 

D.I.T.; writing—review and editing, A.M.E.-K. and M.E.; supervision, A.M.E.-K.; project admin-

istration, A.V.T.; funding acquisition, B.A. and A.H.A. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint 

Abdulrahman University through the Fast-Track Research Funding Program. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 8. The radiation protection efficiency for the fabricated glasses.

4. Conclusions

The radiation shielding ability for CaO-K2O-Na2O-P2O5 glasses was experimentally
examined between 0.0595 and 1.41 MeV. The experimental data strongly agreed with the
XCOM results. The Zeff values start out at their maximum (12.41–12.55) at 0.0595 MeV and
decrease to 10.69–10.80 at 0.245 MeV. The lowest MFP value occurs at the lowest tested
energy, 0.0595 MeV, and lies within the range of 1.382–1.486 cm. The KCNP40 sample has
the lowest MFP, and the KCNP60 sample has the greatest MFP. The values follow the order
of KCNP40 < KCNP45 < KCNP50 < KCNP55 < KCNP60. The HVL of the KCNP50 sample
increased from 0.996 to 5.169 cm between 0.0595 and 1.11 MeV. The RPE demonstrated that
decreasing the P2O5 content in the glasses improves the radiation shielding ability of the
samples. Thus, KCNP40 has the most potential for radiation protection applications.
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