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Abstract: In view of various explanations regarding the pH response of the nanocomposite of gold
nanoparticles (AuNPs) modified with polyacrylic acid (PAA) molecules in reported literature, in this
work, AuNPs with a size of 20 nm saturatedly loaded with PAA molecules (AuNPs-PAAs) were used
to investigate the following aspects of this issue. We investigated the effects of pH on the stability of
AuNPs-PAAs in the presence of salt, CTAB, poly (sodium styrenesulfonate) (PSS), ethanol, and free
PAA, respectively. Common techniques were undertaken to evaluate the stability, including UV-Vis
spectroscopy, Zeta potential analysis, and TEM. The results show that AuNPs-PAAs could respond to
pH variations, having a reversible aggregation-to-disaggregation, accompanying their Zeta potential
change. The proposed corresponding mechanism was that this reversible change was attributes to
the net charge variation of AuNPs-PAAs induced by a reversible protonation-to-deprotonation of
PAA rather than the conformational change. It was found that salt, CTAB, PSS, and free PAA could
strengthen the dispersity of AuNPs-PAAs, even though their absolute Zeta potential values were
decreased to small values or dropped to nearly zero. This abnormal phenomenon was explained
by solvation. It was also found that AuNPs-PAAs have an opposite pH response in aqueous and
ethanol solutions, justifying the solvation effect. All these results revealed the conformational
stability of PAAs immobilized on AuNPs. The methods and the findings of this investigation give
some new insights to understand the pH-response of AuNPs-PAAs composites and the design of
AuNPs-PAAs-based functional sensors.

Keywords: immobilized polyacrylic acid; gold nanoparticles; conformational change; intermolecular
hydrogen-bonding; reversible aggregation

1. Introduction

Gold nanoparticles (AuNPs) have attracted a great deal of attention due to their unique
physical and chemical properties. They are easily modified using functional molecules.
Multifarious stimuli-responsive polymers have been widely used to modify AuNPs. Poly-
acrylic acid (PAA) is a typical stimuli-responsive polymer that can respond to external pH
changes. The carboxyl groups on the PAA chain protonate when the pH in the medium
is lower than its pKa, resulting in decreased electrostatic interactions and increased in-
tramolecular hydrogen bonding [1]. As a result, it undergoes step changes in chain confor-
mation, passing from open, fully solvated coils to desolvated globular conformations (but
not fully collapsed) [2]. Naturally, PAAs coated on AuNPs are expected to show similar
pH-dependent conformational changes to free PAAs, and thus induce a reversible change
in the aggregation behavior of AuNPs-PAAs composites.

Although a large amount of research focuses on the pH response of AuNPs-PAAs,
there are different opinions on their aggregation behavior as well as the corresponding
mechanisms. Based on the results of Zeta potential and DLS determination, Jans et al. [3].
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suggested that PAA molecules immobilized on the surface of AuNPs have a conformational
change with pH. They believed that PAA chains anchored on the surface of AuNPs were
protonated in the range of pH 2–4 and adopted a coiled state. Similarly, Brubaker et al. [4]
pointed out that PAA molecules on the surface of AuNPs have a stretched conformation at
a higher pH due to hydrogen bonding between the partially protonated PAAs and water
molecules, while PAA molecules tend to adopt the collapsed conformation due to reduced
hydrogen bonding at a lower pH. On the contrary, Vaknin et al. [5] believed that there was
no interaction among AuNP-PAAs at pH ≤ 3 in the bulk phase, implying that there was no
hydrophobically conformational change of PAAs on AuNPs. Kitchens et al. [6] attributed
the larger hydraulic radius of AuNPs-PAAs at a lower pH to the aggregation of AuNPs-
PAAs due to the decreased charge induced by the protonated PAAs, while attributing the
smaller size of AuNPs-PAAs at a higher pH to an increased electrostatic interaction induced
by deprotonated PAAs. Obviously, they attributed the aggregation of AuNPs-PAAs at a
lower pH to lower static interactions rather than the hydrophobic interactions caused by
the conformational change of PAAs.

In addition to this, there are also some inconsistent reports about the stability of
AuNPs-PAAs in the presence of salts. Jans et al. [3] believed that the combination of
Na+ ions with water molecules bound to PAAs chains reduced the thickness of the PAAs
corona on AuNPs-PAAs, resulting in the aggregation of AuNPs-PAAs in presence of
0.15 mM NaCl. However, the experimental results obtained by Kitchens et al. [6] indicated
that AuNPs-PAAs maintained a stable state, even in 0.2 M of borax–hydrochloric acid
buffer solution. They ascribed this special stability to the steric hindrance and electrostatic
repulsion provided by PAAs immobilized on the negatively charged AuNPs.

The following questions could be drawn from the above discussions. Should the
change in aggregation behavior of AuNPs-PAAs with pH be attributed to a static interaction
or a hydrophobic interaction? Is the presence of salt beneficial or not to the stability of
AuNPs-PAAs? As a matter of fact, the conformational change of PAAs responding to pH
depends on various factors, such as the molar mass of PAAs, ionic strength in the medium,
and solvents [2]. The study revealed that shorter PAA chains (chain length N < 23) tended
to be locally stiffer compared to larger ones (chain length N > 46) regardless of the degree
of ionization. Monovalent ions, including Li+, Na+ and K+, could promote the formation
of a compact structure of PAAs [7]. However, it was found that salt plays the dual role
of screening electrostatic interactions and regulating the polymer charge [8]. On the one
hand, the increase in the ionic strength results in a decrease in the strength and range of the
electrostatic interactions, but, on the other hand, it results in a larger charge of the polymer
molecules because of the screening effect of the salt. Additionally, there are some special
effects for immobilized PAA molecules. For example, both immobilized and PAAs with
a charged density affect the mobility of water molecules and counterions in PAAs brush,
which, in turn, affects the mobility of PAAs [9]. Recently, Srivastava et al. explicitly stated
that solvents also affect the electrostatic interaction of polyelectrolytes [10]. In summary,
there are multiple factors affecting the pH-dependent conformational change of PAAs
and the aggregation behavior of AuNPs-PAAs, and these reasons lead to complications in
revealing the mechanism of AuNPs-PAAs aggregation caused by pH.

Here, the changes in aggregation behaviors of AuNPs-PAAs in various special media
were determined in situ to reveal the possible relation between these changes and the
electrostatic interactions or conformation changes. The special media include a negatively
charged polymer (poly (sodium styrenesulfonate) (PSS)), a positively charged surfactant
(cetyltrimethyl ammonium bromide (CTAB)), a weak polar solvent (ethanol), a salt (NaCl),
and a pH-sensitive polymer (PAA). The findings indicate that there is a strong interaction
among PAAs immobilized on AuNPs, which strongly inhibits the conformational change of
PAA. The aggregation behavior of AuNP-PAAs is mainly related to electrostatic interactions
rather than the hydrophobic interactions between PAAs with collapsed conformation.
The protocols and the findings of this investigation give some new insights to understand
the pH response of AuNPs-PAAs and for the design AuNPs-PAAs-based functional sensors.
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2. Experimental Section
2.1. Materials and Instruments

Tetrachloroauric (HAuCl4·4H2O, purity ≥ 99.9%), ethyl alcohol, and chlorhydric acid
(HCl) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). NaCl,
cetyltrimethyl ammonium bromide (CTAB), and trisodium citrate (AR) were from TIANLI
Chemical Reagents Ltd (Tianjin, China). Polyacrylic acid terminated by SH (SH-PAAs,
Mn = 104 g/mol, Mw/Mn = 1.07) was obtained from Xi’an ruixi Biological Technology
Co., Ltd (Xi’an, China). Poly (sodium styrenesulfonate) (PSS, 20 wt.% solution in H2O,
M.W. = 70,000) was acquired from J&K scientific Ltd (Beijing, China). Milli-Q water was
used in all the experiments. All used glassware was treated with aqua regia, rinsed in
Milli-Q water, and oven-dried prior to use.

UV-Vis spectra were recorded with a Lambda 35 UV-Vis spectrometer (PerkinElmer,
Waltham). Effective surface charges were measured using a ζ potential analyzer (Malvern
Instruments Zetasizer, Worcestershire, UK). Field emission scanning electron microscopy
(FESEM) images were recorded on a FESEM (Hitachi, SU-8020). Transmission electron
microscopy (TEM) images were recorded on a JEM-2100 instrument (JEOL, Tokyo, Japan)
with an accelerating voltage of 200 kV (20 µL of the sample was dropped onto a carbon-
coated Cu grid and air-dried).

2.2. Preparation of a Series of Mixtures for Characterization

Synthesis of citrate-capped AuNPs: The citrate- capped AuNPs (~25 nm in diame-
ter, ~3 × 1012 NPs/mL in concentration) were synthesized using a previously reported
method [11]. The detailed process about the preparation of the AuNPs and the correspond-
ing size distribution is in the Supplementary Materials (Figure S1).

Preparation of AuNPs solution: Fifty milliliters of prepared AuNPs solution was
centrifuged at 4 ◦C (12,000 rpm, 20 min), diluted to the same volume after removing the
supernatant, and denoted as AuNPs.

Preparation of AuNP-PAAs/PAAs solution: AuNPs modified with SH-PAA molecules
were prepared by mixing 2 mL of centrifuged AuNPs and 1 mL of SH-PAA molecules
aqueous solution (0.004 g/mL) and oscillated for 12 h. The resultant solution was denoted
as AuNP-PAAs/PAAs solution (in presence of free PAAs).

Preparation of AuNP-PAAs/PAAs solution with different pHs: Adjusting the pH of
3 mL of AuNPs-PAAs/PAAs solution by alternately adding 40 µL of 0.5 M HCl and 20 µL
of 1 M NaOH 3 times, respectively. Their corresponding UV-Vis spectra and Zeta potentials
were recorded after each adjustment.

Preparation of AuNPs-PAAs solution: By centrifuging 3 mL of AuNP-PAAs/PAAs
at 4 ◦C (15,000 rpm, 20 min), the characteristic peak ascribed to PAA appeared in the
UV region of the UV-Vis spectrum of the supernatant. By repeating (twice) centrifuging-
washing cycles until this peak disappeared, the pH of the solution was determined to be 4.
The obtained solution was denoted as AuNPs-PAAs.

Preparation of AuNPs-PAAs solution with different pHs: Introducing 40 µL of 0.5 M
of HCl into 3 mL of AuNPs-PAAs solution, the change in the UV-Vis spectrum with time
and photographs of the mixture were recorded. When the spectrum and color of the
mixture did not change significantly over time, that is, it achieved equilibrium, the pH was
measured. Then, 20 µL of 1 M NaOH was added, similar to the operation after adding
HCl; the spectrum, color of the solution, and terminal pH at equilibrium were recorded.
The acid-base adjustment process was repeated 5 times.

For comparison, AuNP solutions with different pHs were prepared. Two milliliters
of prepared AuNPs solution was centrifuged at 4 ◦C (12,000 rpm, 20 min) and diluted
to the same volume after removing the supernatant. This step was repeated two times
and its spectrum was recorded after the addition of 1 mL of MQ water. Then, the pH of
the mixture was measured and then adjusted 3 times using 40 µL of 0.5 M HCl and the
absorption spectra were monitored.
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Preparation of AuNPs-PAAs solution containing PSS molecules: A total of 40 µL of
PSS solution (2%) was added three times to 3 mL of AuNPs-PAAs, and the corresponding
UV-Vis spectra and Zeta potentials were examined. Then, the pH of the mixture was
adjusted to 1.5 and 0.5, in sequence, and their absorption spectra and Zeta potentials
were monitored.

Preparation of AuNPs-PAAs solution containing CTAB: A total of 40 µL of CTAB
solution (0.01186 M) was added 17 times to 3 mL of AuNPs-PAAs and the corresponding
UV-Vis spectra and Zeta potentials were recorded. Then, the pH of the mixture was
measured and then adjusted 7 times using 40 µL of 0.5 M HCl and their absorption spectra
and Zeta potentials were monitored.

Preparation of AuNPs-PAAs ethanol solution: By centrifuging the mixture of AuNPs-
PAAs/PAAs at 4 ◦C (15,000 rpm, 20 min), the obtained residue was diluted using ethanol
to 3 mL. Then, the pH of the mixture was adjusted 7 times using 20 µL of NaOH (1 M) and
the corresponding spectra were recorded each time. A total of 40 µL of 0.5 M HCl was
introduced 9 times in sequence and the same characterizations were repeated.

Preparation of AuNPs-PAAs solution containing NaCl: A total of 40 µL of 0.5 M
NaCl was introduced 13 times to 3 mL of AuNPs-PAAs solution, and the corresponding
UV-Vis spectra and Zeta potentials were collected. For comparison, the same experiment
procedures were carried out for AuNPs.

3. Results and Discussion

The effect of acidity-basicity on the aggregation behavior of AuNPs-PAAs: Figure 1
shows the change in the UV-Vis spectrum for AuNPs-PAAs solution with acidity and
basicity. For AuNPs-PAAs solution, a shoulder peak at 650 nm appears in addition to
the characteristic peak of the surface plasmon resonance (SPR) absorption of AuNPs at
530 nm. According to the preparation process of AuNPs-PAAs, the excess SH-PAAs
and free citrate in the AuNPs-PAAs solution were removed by centrifugation [12]. As a
result, the ionic concentration of the AuNPs-PAAs solution was inevitably decreased.
Additionally, this centrifugal separation caused a decrease in pH from about 6 to 4 (being
lower than that of pKa of PAA of about 6 [13]). The decrease in the ionic strength and
pH caused the Zeta potential of AuNPs-PAAs to decrease [14]. In this case, AuNPs-PAAs
could aggregate to some extent, which resulted in the shoulder peak appearance at 650 nm.
After addition of HCl for the first time (HCl1), the carboxyl groups of the PAA molecules on
the AuNPs further protonated [15] and the electrostatic repulsion between AuNPs-PAAs
was reduced. Consequently, the shoulder peak ranging from 600 to 750 nm, representing
the aggregated state of AuNPs, was more obvious than that before the addition of HCl,
and the SPR absorption peak at 530 nm was related to the dispersed state of AuNPs
that shifted towards red and decreased. Interestingly, after introducing NaOH solution
(NaOH1), the shoulder peak disappeared, accompanied by the increase in the characteristic
SPR peak at 530 nm. This reversed change in the UV-Vis spectrum should be attributed to
the deprotonation of PAA; the dispersion of AuNPs-PAAs then increased due to increase
in electrostatic repulsion.

In addition to the spectra in the visible region giving information regarding the change
in aggregation behavior of AuNPs-PAAs with pH, the UV region provided information
about the change in the related species with pH. For the wavelength ranging from 200
to 350 nm, the change in the peak is ascribed to the charge transfer between AuNPs
and ligands [16]. It can be seen that the intensity of the peak around 300 nm due to d-d
transitions of AuCl4− is reversibly dependent on pH [17]. When the pH of the medium is
higher than 5, AuCl4− is predominant; it transforms to HAuCl4 in case of a pH lower than
5 [18]. As a result, the intensity of the shoulder peak located at about 300 nm increased
with the addition of NaOH solution, and decreased with the introduction of HCl.
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Figure 1. The change in the UV-Vis spectrum of AuNPs-PAAs solution with the alternate adding of
acid and base. The numbers after the name of HCl and NaOH represent the sequences of adding
HCl and NaOH.

Additionally, after four cycles of pH adjustment it is clear that this spectral change is
completely reversible and that the reversibility enhances with increasing cycles. This may
relate to the increased ionic strength, which will be explored later. The above spectral
reversible variation is visually reflected by the reversible color changes, the repeated
conversion between blue and red, of corresponding samples, shown at the top of Figure 1.
Similar phenomena have also been reported [3,19], and the prevailing explanation is the
reversible protonation and deprotonation of the carboxylic group of PAAs. To verify
that this reversible change of PAAs could cause the reversible change in the electrostatic
interaction of AuNPs-PAAs, the Zeta potential of the AuNPs-PAAs solution, before and
after the addition of an acid and base, were detected.

As shown in Figure 2, the Zeta potential of AuNPs-PAAs solution under alternating
pH adjustments changed markedly with time, which closely relates to the reversible
aggregation of AuNPs-PAAs discussed above. In Figure 2A, the Zeta potential of the
AuNPs-PAAs solution climbs from −50 mV (point a) to −5.0 mV (point b) within 5 min
after the addition of 40 µL of 0.5 M HCl, and then declines to −20 mV (points c and d).
After adding another 40 µL of 0.5 M HCl, as shown in Figure 2B, the Zeta potential of the
AuNPs-PAAs solution further increases within 5 min from −20 mV (point d) to −10.0 mV
(points e and f). Then, after the addition of 20 µL NaOH, the Zeta potential of the AuNPs-
PAAs solution rapidly drops from −20 mV (point f) to −45 mV (point g). The above results
obviously indicate that the addition of acid reliably leads to a decrease in the absolute
value of Zeta potential, and the addition of alkali results in the opposite result. We found
that the presence of PAA layers on AuNPs allows aggregation to have a reversible response
to acid and alkali, which can be seen in the Supporting Information (Figure S2).
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The different changing trends of Zeta potential after addition of HCl and NaOH
solutions shown in Figure 2A,B are relevant to the physical chemistry properties of AuNPs-
PAAs. At the initial stage of adding HCl solution (a and b), the added protons rapidly
gathered on the surface of the PAAs layer on the AuNPs-PAAs with higher negative charges
(−50 mV). Thus, the absolute value of the Zeta potential rapidly decreased in this stage
(from −50 mV (point a) to −15 mV (point b)), and then the protons gradually diffused from
the surface to the inside of the PAA palisades to protonate PAAs. Although the protonation
of PAA reduces the quantity of charge of AuNPs-PAAs, which reduces the absolute value
of the Zeta potential, there are also some factors that could cause an opposite result. In fact,
accompanying the decrease in the quantity of charge of AuNPs-PAAs, the positively
charged counter ions that adsorbed around the surface of AuNPs-PAAs also decreased,
and the charge density of AuNPs-PAAs increased due to the dehydration shrinkage of the
protonated segments of PAAs [9,20,21]. This process is relatively slow due to the presence
of hydrogen bond networks and the shrinkage in the protonated segments of the PAAs.
As a result, the Zeta potential decreased slowly from point b (−5 mV) to point c (−18 mV).

In particular, if the protonation of PAAs immobilized on AuNPs causes a conforma-
tional change, forming a compact structure along the axial direction, it will inevitably
lead to a compression of the electric double layer. Consequently, the absolute value of
the Zeta potential for AuNPs-PAAs would decrease. However, the experimental results
were the opposite. Therefore, we speculated that protonation could not cause a significant
conformational change of PAAs anchored to AuNPs.

For the slow decrease in the absolute Zeta potential value from point d (−18 mV)
to point e (−10 mV), this was related to the further protonation of AuNPs-PAAs after
the first protonation. As previously mentioned, there were hydrogen bond networks and
shrinkage in the protonated segments of PAAs after the addition of HCl solution the first
time. Therefore, the absolute value of the Zeta potential rapidly achieved stability after
dropping to 10 mV due to the second protonation being inhibited by the first protonation.

For the addition of 20 µL NaOH to the second protonated AuNPs-PAAs solution
after 25 min, the Zeta potential of the AuNPs-PAAs rapidly dropped from −10 mV to
−45 mV within 5 min (from point f to g). This change was attributed to the fact that NaOH
neutralizes, not only the protons adsorbed around the surface of the AuNPs-PAAs, but also
the protonated carboxyl groups of PAAs [15]. As a result, the charge of the AuNPs-PAAs
increased and the aggregated AuNPs-PAAs solution was re-dispersed due to the increased
electrostatic repulsion, and PAAs palisades became loose, which is conducive to OH−

diffusion. Thus, the absolute value of the Zeta potential of AuNPs-PAAs increased rapidly.
The variational trends of Zeta potential with the addition of acid and alkali well

correspond to the explanations for the results of the UV-Vis spectra shown in Figure 1.
Namely, the aggregation behaviors of the AuNPs-PAAs are mainly ascribed to the change
in electrostatic interactions rather than the conformation of PAAs. Based on the above
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discussions, we put forward a mechanism of the effect of acid on the Zeta potential of
AuNPs-PAAs, as shown in Figure 3.
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Figure 3. A possible mechanism on the variation of AuNPs-PAAs Zeta potential with addition of acid.

The effect of PSS on the aggregation behavior of AuNPs-PAAs: To verify the change in
the charge characteristics of AuNPs-PAAs with acid using the above-proposed mechanism,
the interactions between negatively charged PSSs and AuNPs-PAAs in presence of HCl
were investigated, and the corresponding results are shown in Figure 4. Clearly, the UV-
Vis spectra and the Zeta potential of AuNPs-PAAs hardly change relative to the PSS
concentration. This fact agrees with a universal model of electrostatic interaction that there
is no interaction between negative charged PAAs and negatively charged PSSs. After the
addition of HCl, although the absolute Zeta potential value of AuNPs-PAAs solution
containing PSS molecules decreased from 50.9 to 28.93 mV, the corresponding UV-Vis
spectrum scarcely changed. After further addition of HCl, the absolute Zeta potential value
scarcely changed (from 28.9 mV to 27.0 mV) and a weak shoulder peak ranging from 600 to
700 nm appeared in the corresponding UV-Vis spectrum. Interestingly, for the AuNPs-PAAs
solution containing PSS molecules, the absolute Zeta potential value decreased evidently,
but the corresponding characteristic UV-Vis absorption peak ascribed to the aggregation
of AuNPs-PAAs barely occurred. These findings are completely different from those
indicating that the decrease in absolute Zeta potential value leads to the aggregation of
AuNPs-PAAs in the absence of PSS molecules. This difference implies that the conformation
of PAAs immobilized on the surface of AuNPs in an acidic medium does not change
significantly. If the protonated PAAs have a hydrophobically coiled conformation in
acidic medium, the interaction between the negative charged PSSs and AuNPs-PAAs is
impossible. According to our proposed mechanism, shown in Figure 3, the results shown
in Figure 4 could be explained. In an acidic medium, the strong hydrogen bonds among
the immobilized PAAs causes them to stand upright on the surface of AuNPs, which could
absorb protons to have a certain positive electricity. In this case, the negatively charged
PSS molecules could adsorb on the surface of AuNPs-PAAs to inhibit the aggregation of
AuNPs-PAAs, even at a lower absolute Zeta potential value. Of course, acidity that is too
high leads to a further reduction in absolute Zeta potential value, which is also inevitably
causes a slight aggregation of AuNPs-PAAs.
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The effect of CTAB on the aggregation behavior of AuNPs-PAAs: To further verify
that the immobilized PAAs have no conformational property, the interaction of between
the positively charged CTAB molecules and AuNPs-PAAs in presence of HCl was investi-
gated. Figure 5A presents the change in the UV-Vis spectrum of AuNPs-PAAs with CTAB
content. As previously described, an obvious shoulder peak appeared around 650 nm in
the spectrum for the AuNPs-PAAs solution before adding CTAB. Interestingly, this peak
representing the aggregation of AuNPs-PAAs gradually decreased and finally disappeared
with increasing CTAB content. After the addition of HCl, the absorbance around 650 nm
further decreased. These results implied that PAAs on the surface of AuNPs have no
properties of conformational transformation in these cases. If the protonated PAAs have
a hydrophobically coiled conformation in acidic medium, the positive charged CTAB
could not inhibit the aggregation of AuNPs-PAAs. Based on our proposed mechanism
in Figure 3, the results in Figure 5 could be reasonably explained. A study showed that
when CTAB molecules with large cationic heads adsorb on a hydrophilic surface, both the
hydrophilic environment and steric hindrance could limit its adsorption density. Thus,
the conversion from hydrophilic to hydrophobic with the increase in CTAB concentration
would not occur [22]. In our opinion, under lower concentrations of CTAB, a few CTAB
molecules adsorb sparsely on the surface of AuNPs-PAAs through electrostatic interactions.
Then, the tails of the freshly added CTAB molecules insert into sparsely adsorbed alkyl
chains through hydrophobic interactions, forming a loose bilayer structure. With the help
of hydrophobic interactions, newly added CTAB molecules continue participating in the
construction of a CTAB bilayer until forming a compact one. In this process, the charge
of AuNPs-PAAs transfers from negative to positive, and the Zeta potential increases with
the increase in CTAB content. Consequently, the aggregation of AuNPs-PAAs could be
continually restrained. Accordingly, the shoulder peak ranging from 600 to 800 nm con-
stantly decreased. In this case, the negatively charged carboxyl groups of the PAAs were
neutralized by introducing HCl, which led to the further increase in the Zeta potential of
the AuNPs-PAAs. Accordingly, the shoulder peak ascribed to the aggregation of AuNPs-
PAAs disappeared, and the characteristic peak attributed to highly dispersed AuNPs-PAAs
appeared. The determined corresponding results of the Zeta potential shown in Figure 5B
confirm the above assumption. On the basis of above-discussed points, Figure 6 depicts a
proposed effect mechanism for CTAB on the Zeta potential of AuNPs-PAAs.
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The effect of ethanol on the aggregation behavior of AuNPs-PAAs: To reveal the
charged properties of AuNPs-PAAs in acidic and alkali medium, the aggregation behavior
of AuNPs-PAAs in a lower polar solvent, ethanol, was investigated. Figure 7 shows the
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change in the UV-Vis spectra of AuNPs-PAAs in ethanol medium with NaOH and HCl
concentrations. Figure 7A indicates that the characteristic SPR peak of AuNPs-PAAs in
ethanol medium is still located at 520 nm and there is no apparent absorption above 600 nm.
This spectral feature is different from that of AuNPs-PAAs aqueous solution, shown in
Figure 1. It was reported that ethanol is less capable of accepting protons compared with
water [23]. This means that the dissociation ability of PAAs decreases in ethanol, and the
absolute value of the Zeta potential decreases. As a result, the aggregation of AuNPs-
PAAs should enhance. However, the UV-Vis spectrum in Figure 7A does not show this
conjectural phenomenon (black curve), indicating that the special dispersed state of the
AuNPs-PAAs in ethanol medium might relate to other reasons. For the AuNPs-PAAs
solution used, the pH was around 4. In this case, PAAs were incompletely ionized and
ethanol has a solvation effect on them [24,25], accounting for the relatively stable dispersion
of AuNPs-PAAs in ethanol [26]. Namely, in this case, the solvation PAAs with extended
conformation played a decisive role in the stability of AuNPs-PAAs.
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When NaOH solution was continually introduced, the SPR peak of AuNPs-PAAs
was located at around 520 nm and was slightly red-shifted; the absorbance in the long
wavelength ranging from 600–900 nm gradually increased. This phenomenon was the
opposite of that observed in the corresponding water phase (Figure 1). It has been reported
that the electrostatic interaction is inversely proportional to the dielectric constant [27,28].
Therefore, added Na+ ions interacting with negatively charged carboxyl groups in PAA
chains enhanced its ionic strength, which in turn resulted in the aggregation of AuNPs-
PAAs in an ethanol medium.

The change in the UV-Vis spectra of the NaOH-treated AuNPs-PAAs solution with
the addition of HCl is shown in Figure 7B. Contrary to adding an alkali solution, with the
addition of HCl, the UV-Vis absorbance above 600 nm continuously decreased and the
spectral profile finally coincided with that of well-dispersed AuNPs-PAAs. This is because,
in this case, hydrogen bonding networks formed between protonated carboxyl groups
and ethanol molecules, increasing the solvation effect of ethanol. Thus, the aggregated
AuNPs-PAAs gradually redispersed. As a consequence, the spectrum blue-shifted with
HCl content in ethanol medium.

It is worth noting that, generally, there is an abrupt change in physical chemistry
properties during the conformational transformation of PAAs [29]. However, there is no
abrupt change in the UV-Vis spectra of AuNPs-PAAs in ethanol medium in the case of
introducing NaOH and HCl. This further verifies that there is no conformational change in
this case. According to the above investigation, a possible mechanism on the effects of acid
and alkali on the aggregation of AuNPs-PAAs in ethanol medium was proposed and is
shown in Figure 8.
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The effect of salts on the aggregation behavior of AuNPs-PAAs: Considering the
effect of salts on PAA conformation change, the UV-Vis spectral changes of AuNPs-PAAs
with salts may offer some information on the conformational change of immobilized
PAAs, as shown in Figure 9A. As we can see, the intensity of the shoulder peak ranging
from 600 nm to 750 nm gradually decreased with increasing NaCl content, implying that
the dispersity of the AuNPs-PAAs was enhances. However, the corresponding abso-
lute value of the Zeta potential of the AuNPs-PAAs became lower (insert in Figure 9A).
This phenomenon contradicted the general conclusion that reduced absolute potential
values strengthen the aggregation of AuNPs. As we all know, the electrostatic screening
effect of salt could lead to AuNPs aggregation [30]. The results shown in Figure 9B agree
with this conclusion. This abnormal phenomenon could be explained by the following.
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After introducing NaCl, Na+ ions entering the PAA layer bind to the water molecules
bound on the PAAs chains, enhancing intermolecular interactions among PAA chains.
Therefore, the rigidity of the PAA chain is enhanced [31,32], which makes it hard to have
a conformational change. Most importantly, the concentration of Cl−1 ions around the
surface of AuNPs-PAAs increases with salt concentration [33,34]. Accordingly, the solvated
layer thickness of the AuNPs-PAAs surface increases with increased salt concentration,
and the space among the AuNPs-PAAs increased, which is conducive to the dispersion of
AuNPs-PAAs. This explanation agrees with the fact that the intensity of the shoulder peak
ranging from 600 nm to 750 nm for AuNPs-PAAs solution decreased with increasing salt
concentration (Figure 9).

As for the detailed changes in the Zeta potential and the UV-Vis spectrum with
salt, these findings could be reasonably explained. Although NaCl content continuously
increased, the surface potential of the AuNPs-PAAs solution barely changes. Generally,
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the addition of salt causes more counter ions to adsorb on PAA chains and the net charge
of the AuNPs-PAAs decreases [31]. However, here, the Zeta potential generally maintained
a constant value of −35 mV when NaCl content further increased. This phenomenon may
likely relate to the special property of PAAs immobilized on AuNPs. Unlike free PAAs,
for immobilized PAAs, the electrostatic interactions between Na+ ions and the negatively
charged PAAs is controlled by the interaction between PAAs chains. As previously stated,
PAAs are densely loaded on the surface of AuNPs, which limits the diffusion of Na+

ions into PAAs palisades on AuNPs. This situation agrees with the Poisson–Boltzmann
theory [35]. For the colloid saturatedly loaded with polyelectrolyte, the effective surface
charge of the colloid adsorbing more charged species is less than that of bare particles,
and the effective surface charge of the polyelectrolyte-immobilized colloid is less liable to
be affected by salt concentration. Figure 10 shows a schematic diagram of the effect of salt
on the Zeta potential of the AuNPs-PAAs.
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The effect of free PAAs on the aggregation behavior of AuNPs-PAAs: In view of free
PAAs having the function of pH-dependent conformation change, we expect to explore
the interaction between free PAAs and immobilized PAAs on AuNPs to get some useful
information regarding the conformation of the immobilized PAAs.

As shown in Figure 11, although there is a reversible change in the UV-Vis spectrum
with acid-alkali alternative adjustment for AuNPs-PAAs/PAAs, both the absorbance peak
position and the intensity scarcely changes. Even more surprisingly, in acidic medium,
although the Zeta potential is around −5 mV (Figure 12), the color of the mixture still
remains red (insets in Figure 11) and, the UV-Vis spectral profile does not significantly
change. We believe that the special stability of AuNPs-PAAs/PAAs is relevant to the failed
conformation change of immobilized PAAs. Because if both the immobilized PAAs and
free PAAs had the conformational change in acidic medium, the aggregation of AuNPs-
PAAs/PAAs would enhance due to the hydrophobic interaction between the free PAAs
and immobilized PAAs.
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Figure 12. The change in UV-Vis spectra of AuNPs-PAAs in presence of free PAAs with time after
adding HCl.

As mentioned above, PAAs anchored on AuNPs are more prone to form intermolecular
hydrogen bonds in acidic media, making it hard for them to have an obvious conforma-
tional change. In this situation, the protonated carboxyl groups on free PAA chains could
interact with those on immobilized PAAs on the surface of AuNPs through hydrogen bonds.
As a result, the free PAAs are adsorbed on the surface of AuNPs-PAAs, preventing them to
not only undergo the conformational change but also AuNPs-PAAs to aggregate. This sol-
vation PAA layer around AuNPs was reportedly ascribed to a certain hydrophilicity of the
hydrogen bond network [36]. According to the above discussions, a proposed mechanism
on the effects of acid–base on the aggregation behavior of AuNPs-PAAs/PAAs is depicted
in Figure 13. The proposed picture for the interaction between AuNPs-PAAs and PAAs in
acidic medium agrees with the UV-Vis spectra shown in Figure 11 and the corresponding
Zeta potentials shown in Figure 12.
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4. Conclusions

In summary, to reveal the mechanisms of the reversible color change of polyacrylic
acid-modified AuNPs responding to pH, various factors affecting the pH-response of
AuNP-PAA solutions, including salt, CTAB, sodium polystyrene sulfonate, ethanol, and free
PAA, were investigated. Based on the results, the following conclusions could be drawn.
(1) The PAAs terminally immobilized on the surface of AuNPs could respond to pH varia-
tions, resulting in a reversible aggregation-to-dispersion change in AuNPs-PAAs. In an
aqueous solution, AuNPs-PAAs solution shows an aggregated state (in blue) in acidic
medium while a dispersed state (in red) in alkaline medium. This transformation is com-
pletely reversible. The aggregation-to-dispersion change of AuNPs-PAAs induced by acidic
and alkaline media in an ethanol medium is opposite to that in water. (2) The reversible
aggregation of AuNPs-PAAs induced by pH change is attributable to the change in Zeta
potential on the surface of AuNPs-PAAs rather than the conformational change of PAAs.
Under acidic conditions, the protonation of PAAs reduces the absolute Zeta potential value
of AuNPs-PAAs, leading to the aggregation of AuNPs-PAAs. In an alkaline medium,
the deprotonation of PAA increases the absolute Zeta potential value of AuNPs-PAAs,
resulting in dispersion of AuNPs-PAAs. (3) The factors, salt and CTAB, which could induce
aggregation of AuNPs could facilitate the dispersion of AuNPs-PAAs. This difference is
attributable to the ionic strength-dependent solvated PAAs layer of the AuNPs. (4) The
interaction among immobilized PAAs on AuNPs should not be neglected, because this
interaction strongly restrains their conformational change. (5) The existence of free PAAs
in AuNPs-PAAs solution significantly inhibits pH response compared with that of AuNPs-
PAAs. The formation of the free PAA adsorbed layer on AuNPs-PAAs inhibits, not only
their own conformational change, but also the aggregation of AuNPs-PAAs. (6) The aggre-
gation of AuNPs-PAAs depends, not only on the Zeta potential, but also on the thickness
of the solvation layer around the AuNPs. The protocols and the findings involved in this
investigation give some new insights to understand the pH-response of AuNPs-PAAs and
the design of AuNPs-PAAs-based functional sensors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14133679/s1, Figure S1: TEM images for AuNPs (A) and corresponding size distribution
for AuNPs (B), Figure S2: Photographs of the dried aggregates for AuNPs-PAAs (A) and AuNPs (B)
before (left) and after adding NaOH solution (right), Figure S3: SEM images for the dense aggregates

https://www.mdpi.com/article/10.3390/ma14133679/s1
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formed by AuNPs-PAAs (A) and AuNPs (B), and TEM images for the corresponding sample A (C)
and B (D) after NaOH solution treatment.
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