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Abstract: Composition-dependent interdiffusion coefficients are key parameters in many physical
processes. However, finding such coefficients for a system with few components is challenging due
to the underdetermination of the governing diffusion equations, the lack of data in practice, and
the unknown parametric form of the interdiffusion coefficients. In this work, we propose InfPolyn,
Infinite Polynomial, a novel statistical framework to characterize the component-dependent interdif-
fusion coefficients. Our model is a generalization of the commonly used polynomial fitting method
with extended model capacity and flexibility and it is combined with the numerical inversion-based
Boltzmann–Matano method for the interdiffusion coefficient estimations. We assess InfPolyn on
ternary and quaternary systems with predefined polynomial, exponential, and sinusoidal interdif-
fusion coefficients. The experiments show that InfPolyn outperforms the competitors, the SOTA
numerical inversion-based Boltzmann–Matano methods, with a large margin in terms of relative
error (10x more accurate). Its performance is also consistent and stable, whereas the number of
samples required remains small.

Keywords: Gaussian process; nonparametric Bayesian; interdiffusion coefficient; Boltzmann–Matano
analysis

1. Introduction

In many industrial processes that involve diffusion, e.g., alloy solidification, heat
treatment, coating and electric packaging, the characterization of composition-dependent
interdiffusion coefficients is a crucial task, as it quantifies a diffusion process clearly.
The classic approach is based on Boltzmann-Matano analysis [1,2] which transforms the
diffusion system into a linear system of equations. However, the Boltzmann–Matano
analysis is only applicable to a binary system and becomes problematic for a system with
more than three components, as it generates an under-determined system of equations that
mathematically does not yield a unique solution. To address such a challenge, a number of
methods have been developed over the years. Kirkaldy et al. [3] introduced the Kirkaldy–
Matano method and provided extra equations to the linear system by adding additional
M diffusion paths with intersection points. Although the results have been shown to
be accurate, this method cannot generalize well to a multi-component system because
the difficulty in experimentally generating intersection points grows drastically with the
number of components M + 1 [4]. Alternatively, methods based on one diffusion couple
were proposed. Dayananda and Sohn [5] suggested integrating over certain composition
ranges along the diffusion path to evaluate an average interdiffusion coefficient. Cermak
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and Rothova [6] later extended this method by choosing an infinitely small integration
interval. Nevertheless, as is pointed out by Cheng et al. [7], the integration approach can
lead to ill-conditional problems. A pseudobinary approach is introduced by considering
only two components diffused into the diffusion zone. This method takes advantage of its
time independence in the first-order linear equations and thus is very efficient when the
pseudobinary condition is strictly satisfied in experiments. In practice, such experimental
conditions may be difficult to meet, and in addition, for a multi-component system with a
limited number of experimental samples, the linear equations are not capable of eliminating
the extra solutions [8,9]. Separately, Zhang and Zhao [10] suggested a forward-simulation
approach by iteratively optimizing the interdiffusion coefficients with repeated forward-
simulations, similar to the classic inference approach for inverse problems. Although such
a method is shown to be accurate and stable, it incurs an overwhelming computational
cost because each iteration requires a complete diffusion simulation with a fine spatial-
temporal grid.

Another branch of the one-diffusion-couple method lies in assuming a polynomial
functional form for the interdiffusivities. Ideally, with a proper design of the polynomial
function, one can compute the coefficients of the polynomial functions to estimate the
interdiffusion using a numerical inverse method [11]. This numerical inverse approach is
adopted by Chen et al. [4] to include the atomic mobility [12] to study the diffusion in the
solution phase of a multicomponent system. To improve the efficiency of the numerical in-
verse method, Cheng et al. [13] recast the original parabolic inverse problem [11] as a linear
multi-objective optimization to improve computation efficiency while maintaining similar
accuracy. The optimization algorithm places weak limits on the experimental samples and
is applied to interdiffusivities of solid solution as well as various alloy systems [14,15].
This approach was recently improved by Qin et al. [16], who suggest solving an under-
determined linear system using compress sensing, a popular regularization technique,
to increases stability against high order polynomial functions. However, the L1 penalty
imposed by compress sensing may introduce inappropriate prior assumptions, leading to
inferior overall performance. We will see this issue in detail in the later experiment section.

Despite the notable performance and the popularity of the polynomial functional
interdiffusion coefficient approaches, they share a fatal issue—how does one design the
polynomial functions? Considering a quadternary system (M = 3), we have 3× 3 polyno-
mial functions requiring careful designs; modifying one function will affect the results of the
other two. The challenge grows quadratically with the number M. Without proper design
and repeated validations, the polynomial approach will lead to overfitting or underfitting,
making this approach infeasible in practice.

One way to resolve this challenge is to use a complicated enough model with many
polynomial terms and utilize classic Bayesian inference techniques [17] to estimate the
posterior of the polynomial coefficients. In particular, Girolami [18] proposed an interesting
Markov chain Monte Carlo (MCMC) for nonlinear and complex differential equations
where the fully analytic expressions for the posterior distribution do not exist, which is
similar to our problem. Despite its elegance and great accuracy, an MCMC approach
often suffers from slow convergence and poor mixing, making it less practical for complex
applications. To improve inference efficiency, the approximate Bayesian computation (ABC)
and their variations, e.g., MCMC ABC and sequential Monte Carlo ABC (SMC ABC) are
put forth by Alahmadi et al. [19]. However, despite being accurate and easy to implement,
these types of sampling methods do not scale well with the number of parameters to
be inferred. With unknown polynomials, the large number of parameters makes such
methods impractical even with the latest accelerated variations [20,21].

Recently, the Gaussian process (GP) [22] has been utilized in dealing with data that
are generated from a system of differential equations. As a back-box regression model, GP
is proposed for fast parameter posterior estimations with the derivative information of
the differential equations even with partially observed data [23]. The explicit derivative
information is further utilized to improve a general GP’s performance for data that are
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generated from differential equations [24]. The derivative in a given system of differential
equations is further harnessed through a constraint manifold such that the derivatives of
the Gaussian process must match an ordinary differential Equation (ODE) [25]. Despite
their success, these works generally require explicitly known differential equations to work.
Thus, they cannot directly be implemented for our problem.

A closely related work is [26], where GP is used as a generalization for a parametric
function for binary images. However, their work cannot be directly implemented in our
problem because our systems of equations will lead to a mixture of GPs that are augmented
by the derivative of concentrations, whereas there is normally only one GP to estimate in
most of the previous works [23–27].

To address the challenge of stable characterization of the interdiffusion coefficients,
we introduce InfPolyn (Infinite Polynomial), a nonparametric Bayesian framework for the
characterization of composition-dependent interdiffusion coefficients.

In particular, we first extend the general polynomial fitting method with an infinite
number of polynomial terms. We then integrate out the polynomial coefficients with a
Gaussian prior to derive a nonparametric functional form for the interdiffusion coefficients.
To further improve our model with prior assumptions of an interdiffusion system, we intro-
duce a diagonal-dominant prior for the functions of the interdiffusion coefficients. Unlike
most Bayesian fitting problems, the interdiffusion coefficients are not known/observable
to us. Thus, we introduce latent variables, the virtual ghost interdiffusion coefficients to
address this issue. Finally, we derive a tractable joint likelihood function for model training.
We compare InfPolyn with the state-of-the-art Matano-based numerically inverse methods
and their variations. In ternary and quaternary systems with polynomial, exponential,
and sinusoidal interdiffusion coefficients, InfPolyn shows a significant improvement over
the competitors in terms of relative errors. In most of the experiments, our model shows
an excellent performance with only 40 EPMA measurements, which is very desirable in
practical interdiffusion coefficient estimations.

Essentially, InfPolyn is a functional estimation method tailored for the characterization
of interdiffusion coefficients by imposing a mixture of the SOTA nonparametric models, GPs,
and particular prior knowledge. Unlike the classic Bayesian inference approaches [18,19],
InfPolyn does not require a time-consuming sampling process and is thus much more
efficient. The highlights of this work for interdiffusion coefficient characterizations are
as follows:

• InfPolyn does not require assumptions for the particular functional form of the inter-
diffusion coefficient; it is robust against overfitting and underfitting.

• InfPolyn does not require a significant number of training data.
• Prior knowledge of the interdiffusion system can be added easily in the framework

of InfPolyn.

We hope the success of the nonparametric Bayesian framework can inspire more
interesting applications in other interdiffusion coefficient estimation methods, e.g., the
forward-simulation approach [10], in the material community. Thus, we publish our code
and will maintain it as an open source toolbox on Github (https://github.com/wayXing/
InfPolyn, accessed on 26 June 2021).

The rest of this paper is organized as follows. The interdiffusion coefficient estimation
problem is introduced in Section 2, followed by a brief summary of the Matano–Boltzmann
numerical inverse method with polynomial functions in Section 3. Our method is presented
in Section 4, including the derivation, prior knowledge assumptions, and model training.
The comparisons to the other SOTA methods through ternary and quandary systems are
demonstrated in Section 5. Finally, Section 6 summarizes our work.

https://github.com/wayXing/InfPolyn
https://github.com/wayXing/InfPolyn
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2. Statement of the Problem

We firstly formulate our problem mathematically as a foundation of this work. Con-
sider a general one-dimensional diffusion system with (M + 1) components. According to
Fick’s second law [28], the diffusion process is fully characterized by

∂ci

∂t
= ∇

(
M

∑
j=1

Dij∇cj

)
, i = 1, . . . , M, (1)

where ∇ is the partial derivative operator, ci is the concentration of i component (note that
the concentration is a function of space and time ci(t, x)); Dij is the interdiffusion coefficient
w.r.t. the concentration gradient of component j. In many textbook examples, Dij is
assumed constant, but in practice, Dij depends on the concentrations of all components c =

(c1, · · · , cM)T . Our goal is to find Dij(c) for all i, j = 1, · · · , M with, ideally, a concentrations
profile C = (c(te, x1)

T , · · · , c(te, xN)
T)T ∈ RN×M at some terminal time te and spatial

locations {xn}N
n=1, where N is the number of sampling points at different locations. To avoid

clutter, we denote cn = c(te, xn). One may notice that an important factor, temperature, is
not considered in the formulation. This is due to the general process of the experiment. To
conduct the experiment and obtain the concentration profile, one first bonds two blocks
of materials together and holds them at certain temperatures to activate interdiffusion at
the initial interface. The annealing procedure may last from hours to days, depending on
the speed of forming an interdiffusion zone wide enough for analysis. The temperature
remains constant during the long-lasting annealing process except for the beginning and
ending stages, which take short time. Thus, the temperature is considered constant for
the interdiffusion coefficient characterizations. To fabricate just one diffusion couple,
around 50–100 sample points are often selected in a line parallel to the direction of element
diffusion within the interdiffusion zone. Each sample point is analyzed through electron
probe micro-analysis (EPMA), which requires several minutes for the equipment to detect
the concentrations. As a result, the experiment is time-consuming, and only a small amount
of samples, i.e., small N, can be provided.

3. Boltzmann–Matano Polynomial Interdiffusion Coefficients

We follow the original work of the Boltzmann–Matano method [2], which is widely
used to extract concentration-dependent interdiffusion coefficient {Dij} from experimen-
tal concentration profiles. The Boltzmann–Matano method first integrates Fick’s law of
diffusion (1) in time to obtain the following system,

1
2t

∫ ci

0
(x− x0)dci = −

M

∑
j=1

Dij∇cj, i = 1, . . . , M, (2)

where ci denotes the terminal concentration of i components, ∇cj is the concentration
gradient, and x0 is the known Matano plane, defined by∫ x0

−∞
(1− c(x))dx =

∫ +∞

x0

c(x)dx. (3)

For a binary system, i.e., M + 1 = 2, there is only one composition-dependent inter-
diffusion coefficient D11 to determine with one diffusion couple. Based on Equation (2),
we can can directly compute D11(cn) for n = 1, · · · , N and then use any curve-fitting
method to characterize the function of D11(c). For a ternary system, i.e., M = 2, we need
to determine Dij(c) for i = {1, 2} and j = {1, 2}. For each sample cn, we can write only
two equations whereas there are four unknown parameters. This is an underdetermined
system of equations to solve and will lead to multiple solutions. An effective and efficient
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solution is to assume a continuous function of interdiffusivity in a polynomial form, e.g.,
an independent quadratic form,

Dij(c) = w(0)
ij +

M

∑
i=1

(
w(i)

ij ci + w(M+i)
ij (ci)2

)
, (4)

where w is the weight coefficient in the polynomial function. Denote the flux of the

L.H.S. of Equation (2) as u: we have ui = (ui
1, · · · , ui

N), where ui
n =

∫ ci(xn)
0 (x− x0)dci/2t.

Estimation of Dij for j = 1, · · · , M can then be computed by solving the system of equation

ui
n = −

M

∑
j=1

Dij(cn)∇cj
n, (5)

where Dik(cn) is the polynomial function fully determined by its weight coefficients given
a particular functional form and cn. All weight coefficientsW = {wk

ij} in the polynomial
functions can be computed by solving the optimization problem,

argmin
W

N

∑
n=1

∥∥∥∥∥ui
n +

M

∑
j=1

Dij(cn)∇cj
n

∥∥∥∥∥
2

, (6)

where ‖·‖2 denotes the L2 norm, which can be replaced with other norms.

Remark 1. Since the estimation of Dij(c) for each i = 1, · · · , M only depends on ui and is
computed independently, we omit the index i and reformulate the Matano–Boltzmann method with
polynomial interdiffusion coefficients to avoid clutter,

argmin
W

N

∑
n=1

∥∥∥∥∥un +
M

∑
j=1

dj
n∇cj

n

∥∥∥∥∥
2

= argmin
W

N

∑
n=1

∥∥∥un +∇cT
n dn

∥∥∥2
, (7)

where un is the flux for any arbitrary component, and ∇cj
n is the concentration gradient for j

component, both of which are computed from the profile C; dj(cn) is the j column of any arbitrary
row of Dij(c) that matches the chosen flux at concentration cn; dn =

(
d1(cn), · · · , dM(cn)

)T is
the collection. We aim to reveal dj(c) for j = 1, · · · , M.

Optimization for Polynomial Fitting

Equation (7) is a convex optimization problem provided that we have N ≥ 3(K + 1)M
EPMA samples and we use a K-order polynomial function of Equation (4) for all dj(c);
the closed-form solution is presented in the Appendix A. This is certainly impractical for
large M and/or K. In this case, regularization techniques, e.g., L2-norm minimization or
compress sensing, can be implemented to solve such an underdetermined system. The
polynomial fitting approach with regularization is efficient in terms of computational
time, space complexity, and implementation simplicity, thanks to many excellent software
solutions, e.g., l1-magic, SPGL1, and SeDuMi [29–31].

4. InfPolyn for Interdiffusion Coefficients

The challenge of the discussed polynomial based approach is the lack of guidelines
on how to build the model, i.e., the selection of the order of the polynomial and the
polynomial form. It is unclear how many polynomial terms are needed for each diffusion
coefficient such that the model is not overfitting or underfitting. Although regularization
techniques [16] can be implemented, the underlying assumptions of regularization are
unclear, which can lead to unexpected performance. We need a systematic way to specify
the diffusion coefficients with correct prior knowledge in order to achieve better results.
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To this end, we propose a nonparametric Bayesian approach that is flexible enough to
capture the complex nonlinear relation while restricting itself from overfitting the data by
integrating all possible solutions.

4.1. Infinite Order Polynomial Model

To start with, we write the polynomial regression, e.g., Equation (4), in a compact form,

dj(c) = wT
j φj(c) + β j, (8)

where the polynomial terms are denoted compactly as φj(c) =
(
c1, (c1)2, · · · , c2, (c2)2, · · ·

)T,
where φj(·) is the predefined feature mapping that encodes the the polynomial functional
form. Essentially, we can project the concentration c onto an r−dimensional feature
space using an arbitrary mapping φj(c) ∈ Rr. Note that the constant term can also be
absorbed into the feature mapping by setting the first element as 1. In the linear model
case, the feature mapping is simply φj(c) = (1, cT)T .

Obviously, this polynomial approach is only accurate and stable when we roughly
know the functional form of φj(c). Furthermore, it requires a large number of parameters
{wj, β j} to be estimated. Rather than estimating the weight parameters, we consider a
matrix Gaussian prior for the weight vector wj,

wj ∼ N (0, Ωj) =
1√

(2π)r|Ωj|
exp

(
−wT

j Ω−1
j wj

2

)
, (9)

where, Ωj ∈ Rr×r indicates the correlation between the weight components. We then
integrate out the weights and directly work with the marginal, which admits a closed-
form solution,

p(dj|c) =
∫

p(dj|wj, c)p(wj)dwj

=
∫ (

wjφ(c) + β j,
)
N
(
wj|0, Ωj

)
dwj

= N
(

β j,
(
φj(c)

)TΩjφj(c)
)

.

(10)

This is also known as the Gaussian process (GP) [22]. If we use a countably infinite
feature space, i.e., r → ∞, we formally define a sum over infinite polynomial terms. Thus,
we call our model InfPolyn, infinite polynomial. Our model now becomes a nonparametric
model that contains no explicit parameters wj. The model parameters are now encoded in(
φj(c)

)TΩjφj(c), which indeed indicates a inner product in the the feature space spanned
by φj(c).

4.2. Kernel Formulation

Note that Ωj is p.s.d. by its definition, and we can encode the inner product using a

compact function, i.e., k j(c, c′) =
(
φj(c)

)TΩjφj(c). This is known as the kernel trick, which
works by replacing the explicit feature mapping and covariance with a kernel function
k j(c, c′) to indicate an inner product in the feature space. Different kernels can capture
different functional features. For instance, a periodic kernel can capture periodic functions
such as sinusoidal functions. If we do not know the explicit form of the kernel function,
which is true in most cases, the automatic relevance determination (ARD) kernel,

k j(c, c′) = θj0 exp
(
−(c− c′)T

(
I� (θ̃T

j θ̃j)
)−1

(c− c′)
)

, (11)

is commonly adopted as it generally provides good performance in most cases, especially
in regression problems [22]. In this formulation, � denotes the Hadamard product, I is
an identity matrix, θj0 is the scaling factor for the kernel function, and θ̃j ∈ RM×1 is a
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vector with scaling factors for each input components, i.e., the concentrations of different
elements. We denote θj = (θj0, θ̃T

j )
T for clarity. These parameters θj are known as the

hyperparameters because they control the random process (10) statistically rather than in a
determinant way (e.g., the aforementioned polynomial fitting). In this work, we use the
ARD kernel throughout unless stated otherwise.

4.3. Ghost Interdiffusion Coefficients

Given that dj(c) is a Gaussian process as stated in Equation (10), any number of obser-
vations form a joint Gaussian distribution, based on which a closed-form likelihood can be
easily calculated. Unfortunately, unlike the classic regression problems, we do not have any
direct observations of dj(c), and we cannot directly obtain the optimized hyperparameters
{θj, β j}. To resolve this problem, we borrow the pseudo-inducing points idea [32] and
introduce a set of virtual ghost interdiffusion coefficients, {hjg = dj(zjg)}G

g=1, that are

sampled from the function dj(c) for virtual concentrations {zjg}G
g=1. These latent variables

must form a joint Gaussian distribution (because they are sampled from a Gaussian process
of (10)),

hj ∼ N
(

β j1, Kj
)
, (12)

where hj = (hj1, · · · , hjG)
T is the collection of the ghost interdiffusion coefficients and

[Kj]gg′ = k j

(
zjg, zjg′

)
is the covariance matrix computed through the kernel function and

the latent locations Zj = {zjg}G
g=1. Normally, hj and Zj are latent variables that need to be

integrated out during the model training and predictions.

4.4. Diagonal-Dominating Prior

Following Occam’s razor, if the dominant diagonal diffusion coefficients Dii(c) for
i = 1, · · · , M can fully explain the diffusion process, it is reasonable to suppress the non-
diagonal diffusion coefficients Dij(c) for i 6= j to encourage a simpler model. To inject
this preference of model, we design a special Laplace prior for the mean value for each
Gaussian process of (12),

β j ∼ Laplace(0.01(1−δ(i,j)), 0.1), (13)

where δ(·, ·) is the delta function and i is the row that matches the choice of dj(c). We
use a Laplace prior rather than a Gaussian prior to encourage sparsity of the diffusion
concentration for non-diagonal locations. The particular prior parameters may be adjusted
according to a different system to reflect our prior knowledge.

4.5. Joint Model Training

With each interdiffusion coefficient dj(c) fully specified previously, the observed flux
un can be recovered by

un = fn + εn = ∇cT
n d(cn) + εn, (14)

where we use the noise term εn to capture the model inadequacy, uncertainty, and noise
as a Gaussian distribution, εn ∼ N (0, σ2), for the observed flux; fn denotes the unknown
true flux.

Eventually, the last piece of this work is the the estimation of the posterior of all
hyperparameters Θ = {θj}M

j=1, B = {β j}M
j=1, Z = {Zj}M

j=1, H = {hj}M
j=1, and σ. Although

MCMC can be directly implemented to compute all model parameter posteriors, the com-
putational time is overwhelming considering the large number of hyperparameters and
the efficiency of an MCMC procedure. Instead, we opt for the maximum a posterior (MAP)
approach. The log posterior decomposes as the log likelihood and the prior information,

argmax
Θ,B,Z,H,σ

(L(Θ, B, Z, H, σ) + log p(B)), (15)
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where L(Θ, B, Z, H, σ) = log p(u) is the log likelihood of our model, which can be com-
puted by comparing the predicted flux f and the observed flux u. More specifically, the log
marginal likelihood can be computed by

log p(u) = log
∫

p(u|f)p(f)df. (16)

To complete the integration in Equation (16), we first notice that

p(u|f) = N (u|f, σ2I) (17)

is simply a Gaussian; p(f) is a mixture of M Gaussians, which is also Gaussian because

p(f) =
M

∑
j=1
∇cTdj(c) =

M

∑
j=1
∇cTN (µj, Qj)

=
M

∑
j=1
N
(
∇cj � µj,∇cjQj∇(cj)T

)
= N (µ, Q).

(18)

In this equation, µj = β j1 + kj(Kj)
−1(hj − β j1) is the predicted interdiffusion expecta-

tions for j; Qj = K̂j − K̃jK−1
j K̃T

j is the covariance matrix, with [K̃j]ng = k j(cn, zjg) ∈ RN×G

being the covariance between C and Zj and [K̂j]nn′ = k j(cn, cn′) ∈ RN×N being the covari-
ance for C. µ = ∑M

i=1 µi �∇ci is the joint expectations; Q = ∑M
i=1∇cjQj∇(cj)T is the joint

covariance matrix. Substituting Equations (17) and (18) into Equation (16) to derive the
joint log likelihood, we get,

log p(u) = −1
2
(µ− u)T

(
Q + σ2I

)−1
(µ− u)− 1

2
log |Q + σ2I| − N

2
log(2π). (19)

We can now use any optimization techniques, e.g., gradient descent, to finish the
MAP optimization. Although the fully independent training conditional (FITC) approx-
imation [33] can be used to force Qj to be a diagonal matrix and thus to enable quick
computations [32], due to the multiplier ∇cj, Q is generally non-diagonal, and this com-
putation acceleration will not work in our case. The main computation for the joint
likelihood (19) is the inverse of joint covariance matrix

(
Q + σ2I

)−1 and it log determinant
log |Q + σ2I|. Using an LU decomposition trick [22], we can compute these two terms at
time complexity O(n3) and space complexity O(n2). For the interdiffusion problem, most
of the time we have N ≤ 100 EPMA samples, making our method practically efficient.

4.6. Interdiffusion Coefficients Predictions

With all model parameters being optimized, we can derive the posterior of the diffu-
sion coefficients for any concentration c∗ as

dj(c∗) = N (µ
j
∗, vj
∗),

µ
j
∗ = β j1 + (k∗j )

T(Kj)
−1(hj − β j1),

vj
∗ = [Kj]∗∗ − (k∗j )

T(Kj)
−1k∗j ,

(20)

where k∗j =
(
k j
(
[c∗, zj1

)
, · · · , k j

(
c∗, zjG

))T is the covariance between c∗ and the other ghost
coefficient locations zjg and [Kj]∗∗ = k j(c∗, c∗). The derivation details are shown in the
Appendix A for clarity.
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5. Results

In practical experiments, the interdiffusion coefficients are unknown and uncontrol-
lable, leading to difficulties for unbiased evaluations. Thus, we first assess InfPolyn on
numerical examples of ternary (M = 2) and quaternary (M = 3) systems. To imitate a real
system but not to lose generality, we use polynomial and exponential functions to construct
the interdiffusion coefficient functions. To give an example, the fourth-order polynomial
function in a two-component system is represented as

Dij(c1, c2) = a0
ij +

2

∑
m=1

am,1
ij cm +

2

∑
m=1

am,2
ij (cm)2 +

2

∑
m=1

am,3
ij (cm)3 +

2

∑
m=1

am,4
ij (cm)4, (21)

where for each coefficient in the polynomial at,r
ij , the superscript r represents the degree of

polynomial and the value of them are generated independently from uniform distributions
U (0, 1). We put constraints on the high order terms to prevent the diffusion coefficients
from increasing/decreasing drastically with the concentrations c; the diffusion matrix is
considered symmetric to ensure numerical stability for the diffusion simulations. Note that
this symmetric structure prior information is not injected into InfPolyn or other competing
models. For the ternary system, the initial conditions for the forward simulation are

c1(t = 0, x) = 0.6 · 1(0.5− x) (22)

c2(t = 0, x) = 0.4 · 1(x− 0.5), (23)

where 1(z) denotes the Heaviside step function, which equals to 0 when z < 0 and equals
to 1 when z ≥ 0. Similarly, for the quaternary system, we defined the initial condition as

c1(t = 0, x) = 0.6 · 1(0.5− x) (24)

c2(t = 0, x) = 0.25 · 1(x− 0.5) (25)

c3(t = 0, x) = 0.15 · 1(x− 0.5). (26)

With the defined initial condition and the interdiffusion coefficient functions, we use
a finite difference (DF) diffusion forward solver to simulate a diffusion process until the
terminal time and obtain the terminal concentration profile C. To remain numerically
stable and accurate, we use a second-order central difference for space and a fourth-order
Runge–Kutta for time. The forward simulation solver uses a spatial step ∆x = 0.000625,
which suggests 1601 grinds points on the space domain [0, 1], the terminal time is set
to 104 ∆t.

We then take equally spaced samples from the terminal concentration profile to mimic
the EPMA process to provide the terminal concentration profile C. Unless stated otherwise,
the terminal concentration profile consists of 40 samples. Since we are concerned with the
center areas where the diffusion process is significant, the EPMA samples are limited in
the range of [0.44, 0.56] in order to avoid numerical error closed to the boundaries for all
Boltzmann–Matano method. All variables are considered dimensionless in the experiments.
To evaluate the performance for different methods, we follow Cheng et al. [13] and use the
relative error (RE),

REij(c) =
D̃ij(c)− Dij(c)

Dij(c)
, (27)

where D̃ij(c) and Dij(c) are the predicted and truth interdiffusion coefficients for con-
centration c, respectively. As a Boltzmann–Matano numerical inversion-based method,
InfPolyn are compared with the other SOTA Boltzmann–Matano numerical inversion-based
methods, i.e., the polynomial interdiffusion methods [13] with 3rd and 4th orders of the
polynomial, the compress sensing approach [16] combined with 4th-order polynomial (high
order model enough to capture the subtle changes), and the L2 regularization approach,
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which replaces the L1 penalty term in the work of Qin et al. [16] with an L2 penalty term,
combined with a 4th-order polynomial function.

5.1. Case Study 1: Polynomial Diffusion Coefficients

In this case study, we assess InfPolyn in a ternary system and a quaternary with
4th-order polynomial interdiffusion coefficients:

Dij(c) = am,0
ij +

M

∑
m=1

4

∑
r=1

am,r
ij (cm)r, (28)

where each coefficients am,r
ij are randomly generated using independent uniform distribu-

tions. To ensure the symmetrical structure of matrix Am,r, we force am,r
ij = am,r

ji by taking
their average. In a general interdiffusion process, the interdiffusion coefficients are supposed
to be smooth and close to constants, which also prevents instability in the numerical for-
ward solver. To ensure this prior knowledge, we constrain the polynomial coefficients by
am,r

ij ∼ U (0, 1)10(r−5). The particularly used values are shown in the Appendix A. The REs
for x ∈ [0.4, 0.6] for the ternary and the quaternary system are shown in Figures 1 and 2. We
omit areas outside [0.4, 0.6] because the REs are just extended flat lines without interesting
information. As expected, the 4th order polynomial method has a strong model capacity and
it can thus achieve few lowest REs at as is shown in some figures within Figures 1 and 2. How-
ever, if we look at the whole area of interest, the overall performance is the worst among
all methods. In particular, due to the overfitting issue, the 4th order polynomial method
shows a highly fluctuational performance, which is highly depreciated for real applica-
tions. It is not surprising to learn that the 3rd-order polynomial approach shows slightly
fewer fluctuations but also fewer lowest REs. This is indeed the aforementioned dilemma
of model selection for the polynomial based methods. Similar to results shown in [16],
adding a regularization term of L1 can ease the overfitting issue and greatly overcome the
performance fluctuation issue in both Figures 1 and 2. Unfortunately, the improvement
comes with the price of low model capacity, leading to a rather flat-fitting RE. The 4th-order
polynomial method combined with a L2 regularization term shows a similar improvement.
It is, however, difficult to tell which regularization terms are better. The L1 regularization
works better with the ternary system in Figure 1, whereas the L2 approach outperforms
the L1 with a large margin in most cases of Figure 2. The inconsistency of performance for
the L1 and L2 regularization approaches certainly hinders their applications for practical
problems. In contrast, guided by the correct priors and benefited from the nonparametric
nature, InfPolyn shows a consistent and accurate fitting and outperforms the competitors
by a significant margin. Thanks to the model flexibility of InfPolyn, it can capture the
dramatic changes in the center while maintaining a good fitting in the other flat areas. In
all cases, InfPolyn can not only remain stable (indicated by a smooth RE curve) but also
achieve the lowest REs in most areas. Furthermore, note that the diagonal interdiffusion
coefficients in general show a lower relative error. This is because, in the simulation set-
ting, the diagonal interdiffusion coefficients play a dominant role in the diffusion process.
For the non-diagonal interdiffusion coefficients, the REs are amplified by being divided by
smaller true interdiffusion coefficients.
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Figure 1. The relative errors (REs) of predictive diffusion coefficients D̃ij(c(x)) in the center areas
x ∈ [0.4, 0.6] for the evaluated methods in a random ternary system.

Figure 2. The relative errors (REs) of predictive diffusion coefficients D̃ij(c(x)) in the center areas
x ∈ [0.4, 0.6] for the evaluated methods in a quadternary system.
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5.2. Case Study 2: Exponential Diffusion Coefficients

In general, the diffusion coefficients can be highly complex that they are not in polyno-
mial forms. To imitate such challenging situations, in this case study, we assess InfPolyn in
ternary and quaternary systems with the following interdiffusion coefficient that combines
an exponential term and a sinusoidal term,

Dij(c) = a0
ij +

M

∑
m=1

am,1
ij exp(−cm)−

M

∑
m=1

am,2
ij cos(cm), (29)

where the functional coefficients am,r
ij are similarly sampled from different uniform dis-

tributions, i.e., a0
ij ∼ U (0, 1) × 10−5, am,1

ij ∼ U (0, 1) × 10−6, and am,2
ij ∼ U (0, 1) × 10−6.

Similarly, to ensure the forward diffusion stability, we use the previous approach to ensure
the symmetrical structure of matrices A0, Am,1, and Am,2. The used exact values of the
functional coefficients are shown in Appendix A. The model performances measured by
REs are shown in Figures 3 and 4.

Figure 3. The relative errors (REs) of predictive diffusion coefficients D̃ij(c(x)) in the center areas
x ∈ [0.4, 0.6] for the evaluated methods in a ternary system.

In this case study, the 3rd-order polynomial slightly outperforms the 4th-order poly-
nomial approaches in most cases in both Figures 3 and 4. Nevertheless, the performance
of both 3rd-order and 4th-order polynomial approaches are depreciated due to the fluc-
tuation across the domain. Furthermore, note that REs for the polynomial approaches in
Figure 4 are flat and smooth, indicating that a rich model capacity does not necessarily
lead to performance fluctuations in all cases. The L1 and L2 regularization combined with
4th-order polynomial degenerate the model performance rather than improving them in
many cases in Figure 4. This shows evidence that inappropriate implicit prior assumptions
caused by the L1 and L2 regularization terms can hurt model performance. It might be
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possible to circumvent this issue by adjusting the penalty weight. However, this will create
a new issue of how to properly decide the value of the penalty weight, taking us back to
the dilemma of model selections. In contrast, InfPolyn shows a consistent and accurate
performance; it outperforms the competitors by a large margin for all cases except for D̃31
of the quaternary system in the left area in Figure 4. We would also like to point out that
many methods actually fail the quaternary system in Figure 4 as their REs are larger than 1,
meaning a total prediction failure.

Figure 4. The relative errors (REs) of predictive diffusion coefficients D̃ij(c(x)) in the center areas
x ∈ [0.4, 0.6] for the evaluated methods in a quadternary system.

5.3. Case Study 3: Uncertainty Quantification Analysis

Finally, to assess the consistency of InfPolyn, we conducted a ternary system exper-
iment in Case Study 1 based on five distinct random polynomial coefficient sets, which
assemble five different diffusion coefficients, and show the performance statistics. To
also investigate the influence of the number of the EPMA samples, we ran each experi-
ment with {20, 30, 40, 50} EPMA samples. The minimum number of the EPMA samples
was 20 because the 4th-order polynomial has 18 coefficients and thus requires at least
18 EPMA samples to work. For each experiment with the given EPMA samples, the model
performance was evaluated by average relative error (ARE),

AREij =

∫
X REij(c(x))dx∫

X dx
(30)

where X indicates the whole spatial domain. We show the statistics of ARE11 and ARE22
over the five different diffusion coefficients in Figure 5 using the Tukey box plot. The
distinct fact we immediately see is the superiority of InfPolyn compared to the competitors
in terms of accuracy and consistency. We then notice that the performance does not improve
gradually with the increasing number of EPMA samples for all methods except for the
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4th-order polynomial. We believe that each method can already approach reasonable
diffusion coefficients (by minimizing the loss function) with only 20 EPMA samples. In this
case, more samples will not bring improvement, whereas the performance can fluctuate
with different EPMA concentration profiles. Comparing the fluctuations, InfPolyn shows a
modest level of changes, whereas the most unstable one is the 4th-order polynomial with L2

regularization. The most stable method for both D̃11 and D̃22 is the 3rd order polynomial,
which can indicate a lack of model capacity or an underfitting issue. The only exception of
performance improvement is the 4th order polynomial, which improves with more EPMA
samples. This is a clear sign of overfitting, which can be addressed by introducing more
training data. This explains the overfitting phenomena we previously encountered in Case
Studies 1 and 2. Will the performance keep improving and outperform InfPolyn with
the trend shown in Figure 5? It may happen with more than 200 EPMA samples, which
becomes infeasible in practice. Furthermore, the decreasing trend should slowly disappear
at some point, which is already happening for D̃22.

It is also noticeable that the L1 and L2 regularization techniques indeed can improve
the performance of a 4th-order polynomial by a large margin for all cases with a different
number of EPMA samples, which is consistent with the finding in [16].

Figure 5. The Tukey box plot of average relative error of D̃11 (top) and D̃22 (bottom) based on
computation using concentration profile consisting {20, 30, 40, 50} EMPA samples.
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5.4. Case Study 4: Experiment Verification

To present the practical applicability of InfPolyn, we then apply it to the reproduction
of the interdiffusion flux from experiment data of the Mg-Al, Mg-Al-Zn, and Mg-Al-Zn-
Cu systems collected from the previous literature [13]. These experimental data include
composition profiles of the annealed diffusion couples of Mg-Al at 781 K for 36,960 s, Mg-
Al-Zn at 868 K for 5400 s, and Mg-Al-Zn-Cu at 755 K for 75,530 s. Since the experimental
measurements are taken non-uniformly on the spatial domain for all of the components,
they are reprocessed with local polynomials interpolation techniques to provide values
on a uniform grid, which is the common preprocessing for the Matano-based approaches.
The derivative and integral terms in the Matano equation are then obtained. Given all the
preprocessed data as inputs, we then randomly take all of the samples, half of the samples,
and a quarter of the samples from the diffusion systems to test the robustness of the testing
methods. As shown in Figure 6, the curves for all three cases computed by InfPolyn fit
well with the experimental data, which lie in the 95% confident areas, indicating a good
uncertainty quantification for the predictions. As for the half size and the quarter size
training data, the left areas induce oscillations in some intervals. However, InfPolyn still
captures the major tendency of the fluxes with slightly increasing uncertainty.
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Figure 6. The actual and predicted diffusion fluxes for the Mg-Al, Mg-AL-Zn, and Mg-Al-Zn-Cu
system (from left to right columns) using 100%, 50%, and 25% of all available samples (from top to
bottom rows).

6. Conclusions

In this paper, we propose InfPolyn, a novel nonparametric Bayesian framework
to estimate the interdiffusivity coefficients and demonstrate its superiority in terms of
accuracy and consistency by combining it with the numerical inverse Boltzmann–Matano
method [13]. This also becomes the limitation of InfPolyn because the numerical inverse
Boltzmann–Matano method has certain limitations. For instance, it cannot generalize to a
wide variety of complicated 2D diffusion processes and complex engineering interdiffusion
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scenarios, e.g., in semiconductors. Nevertheless, InfPolyn can be combined with other
methods (such as the forward-simulation approach [10]) to fulfill its potential in the
estimations of interdiffusion coefficients. This is outside the scope of this paper and we
thus leave it for the future work.

The main novelty of our work is the nonparametric Bayesian framework that allows
automatic model selections (resistant to overfitting and underfitting) and meaningful prior
knowledge injections. The problem of recovering interdiffusion predictions from concentra-
tions is an ill-posed inverse problem. Thus, the injection of proper priors is a necessary way
to recover the ground-truth diffusion coefficients. Unlike methods such as [16] that impose
nonphysical priors, our method provides an easy way to inject intuitive priors; e.g., the
diagonal diffusion coefficients normally plays a dominant role in an interdiffusion process.
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Appendix A. A Gaussian Processs and Its Predicted Posterior

Consider training points yi = η(ξξξ i), i = 1, . . . , M and design points ξξξ i. In a GP model,
we place a prior distribution over η(ξξξ) indexed by ξξξ:

η(ξξξ)|θθθ ∼ GP
(
m(ξξξ), c(ξξξ, ξξξ ′|θθθ)

)
(A1)

with mean and covariance functions:

m0(ξξξ) = E[η(ξξξ)], c(ξξξ, ξξξ ′|θθθ) = E[(η(ξξξ)−m0(ξξξ))(η(ξξξ
′)−m0(ξξξ

′))] (A2)

in which E[·] is the expectation operator. The hyperparameters θθθ are estimated during the
learning process. The mean function can be assumed to be a identical constant, m0(ξξξ) ≡ µ,
by virtue of centering the data. Alternative choices are possible, e.g., a linear function of
ξξξ, but rarely adopted unless a priori information on the form of the function is available.
The covariance function can take many forms, the most common being the automatic
relevance determinant (ARD) kernel:

c(ξξξ, ξξξ ′|θθθ) = θ0 exp
(
−(ξξξ − ξξξ ′)Tdiag(θ1, . . . , θl)(ξξξ − ξξξ ′)

)
(A3)

The hyperparameters θθθ = (θ0, . . . , θl)
T . θ−1

1 , . . . , θ−1
l in this case are called the square

correlation lengths. For any fixed ξξξ, η(ξξξ) is a random variable. A collection of values η(ξξξ i),
i = 1, . . . , M, on the other hand, is a partial realization of the GP. Realizations of the GP
are deterministic functions of ξξξ. The main property of GPs is that the joint distribution of
η(ξξξ i), i = 1, . . . , M, is multivariate Gaussian.

Starting from the prior (A1) and using the available data, we obtain a posterior GP
distribution conditional on θθθ, with new mean and covariance functions. Letting t =
(y1, . . . , yM)T , the likelihood of the data (given θθθ) is p(t|θθθ) = N (µ1, C(θθθ)). Here, N (·, ·)
denotes a normal distribution with mean 0 and covariance matrix C(θθθ) = [Cij], in which
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Cij = c(ξξξ i, ξξξ j|θθθ), i, j = 1, . . . , M. The joint distribution of t and η(ξξξ) (for a test input ξξξ) has
the distribution p(η(ξξξ), t|θθθ) = N (µ1, C(θθθ)′), where:

C′(θθθ) =
[

C(θθθ) c(ξξξ)
c(ξξξ)T c(ξξξ, ξξξ|θθθ)

]
(A4)

in which c(ξξξ) = (c(ξξξ1, ξξξ|θθθ), . . . , c(ξξξM, ξξξ|θθθ))T . Conditioning on t provides the conditional
predictive distribution at ξξξ [22]:

η(ξξξ)|t, θθθ ∼ GP(m′(ξξξ|θθθ), c′(ξξξ, ξξξ ′|θθθ))

m′(ξξξ|θθθ) = µ1 + c(ξξξ)TC(θθθ)−1(t− µ1)

c′(ξξξ, ξξξ ′|θθθ) = c(ξξξ, ξξξ ′|θθθ)− c(ξξξ)TC(θθθ)−1c(ξξξ ′)

(A5)

The expected value E[η(ξξξ)] is given by m′(ξξξ|θθθ), and c′(ξξξ, ξξξ|θθθ) is the predictive variance.
The hyperparameters θθθ are normally obtained from point estimates [34,35]. The maximum
likelihood estimate (MLE), for example, is found by maximizing the log of the likelihood:

θθθMLE = arg maxθθθ

(
−M

2
log(2π)− 1

2
(t− µ1)TtTC(θθθ)−1(t− µ1)− 1

2
ln |C(θθθ)|

)
. (A6)

Appendix A.1. Solving a Ternary System Using Boltzmann–Matano Inverse Method

Consider a ternary system where we take EPMA samples at four random locations,
[c1(xn), c2(xn)],(n = 1, . . . , 4), on the “true” concentration-distance curve at a terminal
time. By substituting them into the Boltzmann–Matano equations, we have

∂c1
∂x |x1 0 ∂c2

∂x |x1 0
0 ∂c1

∂x |x1 0 ∂c2
∂x |x1

∂c1
∂x |x2 0 ∂c2

∂x |x2 0
0 ∂c1

∂x |x2 0 ∂c2
∂x |x2

∂c1
∂x |x3 0 ∂c2

∂x |x3 0
0 ∂c1

∂x |x3 0 ∂c2
∂x |x3

∂c1
∂x |x4 0 ∂c2

∂x |x4 0
0 ∂c1

∂x |x4 0 ∂c2
∂x |x4




D11
D21
D12
D22

 =



u1|x1

u2|x1

u1|x2

u2|x2

u1|x3

u2|x3

u1|x4

u2|x4


. (A7)

We assume second-order polynomials for the functional relationships between diffusion
coefficients and concentrations,


D11
D21
D12
D22

 =


α
(0)
11 + α

(1)
11 c1 + α

(2)
11 c2 + α

(3)
11 c2

1 + α
(4)
11 c2

2

α
(0)
21 + α

(1)
21 c1 + α

(2)
21 c2 + α

(3)
21 c2

1 + α
(4)
21 c2

2

α
(0)
12 + α

(1)
12 c1 + α

(2)
12 c2 + α

(3)
12 c2

1 + α
(4)
12 c2

2

α
(0)
22 + α

(1)
22 c1 + α

(2)
22 c2 + α

(3)
22 c2

1 + α
(4)
22 c2

2

 =

[
φ 0
0 φ

][
a1
a2

]
, (A8)

where

φ =
[
I c1I c2I (c1)2I (c2)2I

]
(A9)

=

[
1 0 c1 0 c2 0 (c1)2 0 (c2)2 0
0 1 0 c1 0 c2 0 (c1)2 0 (c2)2

]
(A10)

ai =
[
α
(0)
1i α

(0)
2i α

(1)
1i α

(1)
2i α

(2)
1i α

(2)
2i α

(3)
1i α

(3)
2i α

(4)
1i α

(4)
2i

]T
, i = 1, 2. (A11)

We can now simply solve the linear system of equations to obtain the polynomial coeffi-
cients (and thus the diffusion coefficients as functions of the polynomials). The procedure
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is the same with more EPMA samples or higher orders of polynomials. The only difference
is that we may solve an overdetermined system with the criteria of minimizing the L2 loss.

Appendix A.2. Experimental Details

Tables A1 and A2 show the experimental setting of functional coefficients in Case
Study 1; Tables A3 and A4 show the experimental setting of functional coefficients in Case
Study 2.

Table A1. The polynomial coefficients in the random ternary interdiffusion system, where aij

represents the entries in the coefficient matrix on position {i, j}, i = 1, 2, j = 1, 2.

A a11 a21 a22

A0 6.05× 10−5 4.81× 10−6 5.12× 10−5

A1
1 3.08× 10−6 4.18× 10−7 3.28× 10−6

A1
2 1.82× 10−6 6.42× 10−7 2.86× 10−6

A2
1 8.83× 10−7 6.07× 10−8 1.07× 10−7

A2
2 2.96× 10−7 4.21× 10−8 9.63× 10−7

A3
1 4.09× 10−8 2.82× 10−9 1.26× 10−8

A3
2 1.19× 10−8 7.29× 10−9 1.10× 10−8

A4
1 1.26× 10−8 5.02× 10−10 1.66× 10−9

A4
2 6.04× 10−9 6.34× 10−10 1.09× 10−8

Table A2. The polynomial coefficients in the random quaternary interdiffusion system, where aij

represents the entries in the coefficient matrix on position {i, j}, i = 1, 2, 3; j = 1, 2 , 3.

A a11 a12 a13 a22 a23 a33

A0 2.03× 10−5 6.50× 10−6 5.15× 10−6 7.13× 10−5 3.58× 10−7 3.27× 10−5

A1
1 9.15× 10−6 3.13× 10−7 6.87× 10−7 9.46× 10−6 1.35× 10−7 1.76× 10−6

A1
2 9.56× 10−6 8.08× 10−7 3.01× 10−7 1.61× 10−6 4.89× 10−7 1.18× 10−6

A1
3 2.01× 10−6 9.05× 10−7 2.47× 10−7 5.48× 10−6 7.41× 10−7 2.95× 10−6

A2
1 2.61× 10−7 7.28× 10−8 6.95× 10−8 2.18× 10−7 5.91× 10−8 1.58× 10−7

A2
2 5.90× 10−7 2.23× 10−8 4.55× 10−8 7.08× 10−7 5.79× 10−8 3.94× 10−7

A2
3 2.17× 10−9 2.96× 10−8 5.60× 10−8 8.11× 10−7 3.82× 10−8 6.70× 10−8

A3
1 9.00× 10−8 2.45× 10−9 2.52× 10−10 9.00× 10−8 5.90× 10−9 2.48× 10−8

A3
2 2.70× 10−8 2.57× 10−9 2.11× 10−9 6.50× 10−10 6.48× 10−9 6.01× 10−9

A3
3 8.04× 10−8 2.55× 10−9 3.11× 10−9 8.91× 10−8 2.76× 10−9 1.03× 10−8

A4
1 4.82× 10−9 3.18× 10−10 1.87× 10−10 9.07× 10−9 2.45× 10−10 3.91× 10−9

A4
2 6.58× 10−9 9.28× 10−10 2.44× 10−10 2.05× 10−9 6.07× 10−10 7.94× 10−9

A4
3 9.38× 10−9 1.30× 10−10 9.50× 10−10 9.17× 10−9 6.05× 10−10 1.46× 10−9

Table A3. The table shows the setting for coefficient matrix of polynomials function and Ai and A
′

i
represents the entries in each coefficient matrix on position {i}, i = 1, 2; j = 1, 2.

A a11 a21 a22

A0 6.15× 10−5 5.08× 10−7 5.46× 10−5

A1 1.25× 10−7 3.77× 10−7 8.50× 10−8

A2 9.09× 10−7 3.51× 10−7 9.08× 10−7

A
′
1 4.85× 10−7 2.85× 10−8 7.39× 10−7

A
′
2 4.67× 10−7 7.29× 10−7 8.27× 10−7
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Table A4. The table shows the setting for coefficient matrix of exponential function and Ai and A
′

i
represents the entries in each coefficient matrix on position {i}, i = 1, 2, , 3; j = 1, 2 , 3.

A a11 a12 a13 a22 a23 a33

A0 4.82× 10−5 4.61× 10−6 4.17× 10−6 4.26× 10−5 4.34× 10−6 6.27× 10−5

A1 8.77× 10−8 8.40× 10−8 1.07× 10−8 9.65× 10−8 8.20× 10−8 2.62× 10−8

A2 5.15× 10−8 8.39× 10−9 1.87× 10−8 9.39× 10−8 1.55× 10−8 9.78× 10−8

A3 6.81× 10−8 2.67× 10−8 2.23× 10−8 7.68× 10−9 5.41× 10−9 3.78× 10−8

A
′
1 3.45× 10−8 3.79× 10−8 3.48× 10−8 3.11× 10−9 1.42× 10−8 5.00× 10−8

A
′
2 1.21× 10−9 3.53× 10−8 6.64× 10−8 7.51× 10−8 2.52× 10−8 5.45× 10−8

A
′
3 6.21× 10−8 3.77× 10−8 6.93× 10−8 1.23× 10−9 6.45× 10−8 1.75× 10−8
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