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Abstract: An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing
(AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM
samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0◦, 45◦

and 90◦—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in
the same directions relative to the plate rolling direction. The microstructures of the samples were
significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM
and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra)
compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought
alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45◦,
where SLM samples showed higher strength than both EBM and wrought alloy on that direction.
The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by
clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.

Keywords: additive manufacturing; electron beam melting; selective laser melting; wrought alloy

1. Introduction

Additive manufacturing (AM) has gained huge popularity in the last decade or so.
Its ability to produce complex shapes, reduce the number of parts, reduce the material
waste, etc. have been the main drive of this technology. According to ASTM, AM can be
devided into seven categories including (i) VAT photopolymerisation, (ii) material jetting,
(iii) binder jetting, (iv) sheet lamination, (v) material extrusion, (vi) powder bed fusion
(PBF), and (vii) directed energy deposition (DED). For metallic materials, Directed Energy
Deposition (DED) and Powder Bed Fusion (PBF) are the only options. Within the PBF
methods, electron beam melting (EBM) and selective laser melting (SLM) are two common
methods to produce metallic parts where the powder is melted and fused by either electron
beam or laser beam. SLM materal is generally stronger and less ductile compared with
EBM [1]. SLM produces martensite due to ambient temperature manufacturing bed with
fast cooling, while EBM produces alpha lath (alpha-beta) structure due to the powder bed
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being maintained at much higher temperature for manufacturing (approximately 700 ◦C
for Ti6Al4V). Manufacturing in SLM is typically carried out under inert gas, while EBM
is performed in vacuum athmosphere with powder bed heated to above stress relieving
temperature, hence, minimising the residual stresses caused during solidification [1,2].
Ductility of SLM-ed parts can be improved by HIP or heat treatment. The details of the
SLM and EBM processes have been described by various authors [3,4].

As far as the metallic material is concerned, some of the metals/alloys which are
readily used for AM including stainless steels (SS316 and SS304), nickel-based alloys
(Inconel 718/625), aluminium alloys (AlSi10Mg, Scalmalloy), Co-Cr alloy, tool steels (H13),
and titanium (Ti6Al4V and CP Ti). The above metallic AM has been reviewed by a few
authors [5–9].

More specifically, evaluation of mechanical properties of AM of Ti6Al4V produced by
EBM and SLM have been reported separately by various authors [10–21]. Limited studies
have been conducted to compare SLM and EBM [22–28], and there has been even more
limited work to directly compare the AM materials with wrought alloys. The reported
results varied. In general, however, SLM produces samples with higher strength (lower
ductility), higher fatigue strength compared to EBM products due to the faster cooling
rates on the former [24–28]. Gao et.al. specifically reported that the higher yield and tensile
strengths of samples produced by SLM compared with those of EBM due to the presence of
α′ martensite on the former. They also reported SLM and EBM samples show comparable
ductility, fatigue strength and hardness [26].

EBM and SLM are the two most common methods to produce metallic componets,
therefore, this investigation was dedicated to focus on the Ti6Al4V samples manufactured
by EBM and SLM, and compared to the traditional wrought alloys. To the best knowledge
of the authors, there has been no publications on a comprehensive comparison between
EBM, SLM and wrought alloys comparing various build directions, hence, the novelty of
this paper. It presents a comparison of surface roughness, microsctructures and mechanical
properties of samples manufactured by EBM and SLM built in the 0◦, 45◦ and 90◦ in the
as-printed conditions, compared with those of wrought alloys (annealed and solution
treated and aged—STA conditions) also in three different directions.

2. Experimental Procedures
2.1. Materials and Sample Directions

The material investigated in this study was Ti-6Al-4V (Ti64) manufactured by three
different processes, i.e., (i) wrought and rolled sheet, hereafter wrought (ii) electron beam
melting-EBM, and (iii) selective laser melting-SLM with a thickness of around 2 mm
(Figure 1). For the wrought alloy, the samples were cut in 0◦ (longitudinal/horizontal),
45◦ and 90◦ (transverse), while the EBM and SLM samples were built also in the same direc-
tions (Figure 1). The particle size of SLM and EBM powders were 5–50 µm and 50–150 µm,
respectively. The powder for EBM was provided by Arcam (AP&C) Co. (ARCAM, Mölndal
Municipality, Gothenburg, Sweden), while the SLM powder was provided by Pyrogenesis
Canada Inc. (Pyrogenesis, Montréal, QC, Canada).

The EBM samples were printed using Arcam Q10plus 5.0 themes with a layer thickness
of 50 µm, speed function of 64, line offset of 0.2 mm and a current of 30 mA which would
give an energy density of around 94 J/mm3. The SLM samples were printed using EOS
GmbH, EOSINT M270 machine using a rotating stripe pattern. Parameters of 190 W laser
power, scanning velocity of 1200 mm/s, hatch distance of 100 µm, and layer thickness of
around 30 µm were used, resulting in a calculated energy density of 53 J/mm3.

The densities of the printed samples were measured by the Archimedes methods.
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Figure 1. Diagram showing samples after printing by SLM (similar printing diagram was reported
for EBM). Note: build orientation is shown by the red arrows.

2.2. Surface Roughness

Surface roughness, Ra, was measured according to layer direction using Taylor Hobson
Ultra 2006 version software. An average of three readings was taken per sample.

2.3. Metallography and Microscopy

Cross-sectional metallography samples were prepared from each material. The sam-
ples were ground were ground using SiC papers with grit size from 100 to 2400, and were
polished up to 0.3 µm diamond paste. A diluted hydrogen peroxide (30%) was used at the
final stage of polishing for a better response to ecthing. The samples were then etched with
Kroll’s reagent (3 mL HF + 6 mL HNO3 + 100 mL water). An optical microcope (Olympus
PME3, Tokyo, Japan), was employed to observed the microctructure. The microscope is
equipped with an image analysis (ImageJ software, version 1.51, NIH, Bethesda, MD, USA).
A scanning electron microscope (Hitachi SU-70 Schottky, Marunouchi, Chiyoda-ku, Tokyo,
Japan) was employed to examine the surface morphology of the as-printed samples and
the fracture surfaces of the tensile tested samples.

2.4. Mechanical Testing

Vicker’s hardness tests were performed on the metallographically-prepared samples
using a load of 300 g and a dwell time of 10 s. A minimum of three hardness indentations
were made for each sample.

Figure 2 shows the schematic drawings of a dog-bone sample for tensile testing. The
samples built by SLM and EBM are shown in Figure 1 while the wrought samples, they were
cut from a rolled sheet, also in three different directions as indicated on Section 2.1. Tensile
tests were conducted on Shimadzu AG-X Plus 300KN load frame with pneumatic grips
and with a speed of 3 mm/min. The machine was equipped with a Correlated Solution 3D
DIC system with a couple of 2.3MP cameras. This non-contact technique was employed
to measure both the overall strains as well as the local strains at the fracture locations.
Prior to the real tensile testing, some trials were conducted at a speed of 0.15 mm/min as
suggested by ASTM, but the time required to test a sample was significantly too long. In
addition, there were no significant differences observed in terms of physical appearance
and tensile data with those tested at 3 mm/min, therefore, all the samples were tested at
a speed of 3 mm/min. The post processing of the DIC was also done by the Correlated
Solution VIC3D.
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Figure 2. (a) Dog-bone sample orientation for the wrought alloy and (b) dimensions for all samples
(in mm).

3. Results and Discussion
3.1. Chemical Composition and Densities

The chemical composition of the samples is presented on Table 1.

Table 1. Chemical composition of the titanium alloys (wt.%).

Ti Al V Mo Cr Fe C O N

Ti64-SLM Bal 6.27 4.15 <0.01 0.02 0.21 0.02 0.12 <0.02

Ti64-EBM Bal 5.97 4.25 <0.01 0.02 0.16 <0.02 0.09 <0.02

Ti64-wrought Bal 6.08 3.98 <0.01 0.02 0.17 0.02 0.05 <0.01

The relative density of the samples were 96–98% for SLM, 96–97% EBM and >99% for
the sheet wrought alloy. These are equal to the density of 4.25–4.34 g/cm3, assuming 100%
is 4.432 g/cm3. Note that porosity is defined as the volume fraction of pores. It is expressed
as p = 1 − ρ/ρT, where ρ is the sample density and ρT is the theoretical density of the
substance [29,30]. The theoretical density of Ti-6Al-4V was 4432 kg.m−3 or 4.432 g/cm3 as
indicated above.

3.2. Surface Morphology and Hardness

Figure 3 shows the surface morphology of the printed samples. They looked similar to
what have been reported previously [27,28]. However, with the reported AM samples, they
did not show any indication of surface cracking as reported elsewhere [27]. It is noticeable
that the particle size of SLM was smaller than those of EBM, i.e., 10–40 µm and 20–70 µm,
respectively. The size of SLM particle was comparable to those used by other researchers,
e.g., 5–50 µm [20] and 25–45 µm [28–33]. Other works with EBM indicated the particle
size of around 82 µm [15], 77 µm [28], 60–70 µm [34,35]. According to Froes [1] the desired
powder size of SLM is 20–75 µm, and 40–150 µm for EBM. The main reason why EBM uses
larger particles is to keep them stick to the building platform instead of “flying around”
(dusting effect) inside the chamber during the printing process [26]. Small size particles
may cause particles spreading in the chamber due to electrostatic discharge [32]. From
Figure 3, it is a also apparent that all surfaces contained partially melted particles which are
attached to the surface on samples from both AM processes which may have contributed
to the surface roughness.
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Figure 3. Surface morphology of samples built by SLM and EBM in various direction.

Comparing the roughness of the AM samples in these experiments with other reports,
they were smoother than those reported by others as described below. Figure 4 shows
the surface roughness of the samples in this investigation was 6–8 µm, 18–23 µm and
0.45–0.6 µm for SLM, EBM and wrought samples, respectively. The relatively rougher
surface on EBM samples is likely due to its larger particle size compared with that of SLM,
particularly those of the partially melted particles which are still intact on the surface. This
is consistent with what was reported by Zhao et al. [28]. A number of articles reported
similar surface roughness for SLM, e.g., 30–40 [19,27]. Meanwhile, Song et al., using
particle size of around 10–31 µm, claimed that with the correct parameters i.e., 110 W and a
scanning speed of 0.4 m/s, a smooth surface of Ti6Al4V can be fabricated with SLM due to
the continuous melting effect [33]. For EBM, surface roughness has been reported to be
around 46 µm [18], 70 µm [27], and up to 130 µm [34]. Furthermore, Fousova et al. [27]
indicated that the larger size of particles in EBM increased the unevennes of the surface.
Froes [1] suggested that SLM parts may have surface roughness of about 10–25 µm, while
EBM could be as high as 50 µm which is as rough as sand casting products. Apart from
the material’s feedstock, i.e., size of particle and improper melting, the surface roughness
may also be associated with post processing such as CNC machined, scan path strategy
and powder morphology [6,36]. For certain applications such as implants, rough surfaces
are sometimes preferred to facilitate bone ingrowth.
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The microstructure of SLM showed a mixture of α’ martensite and acicular α, while
the EBM samples had acicular α and prior β grain boundaries (Figure 5). These findings
are consistent with what has been reported previously [7–12,20,24,27,28]. This is due to the
nature of the processes, i.e., SLM samples were processed in inert gas athmosphere (argon)
couple with high scanning speeds and high thermal gradients leading to fast cooling rates;
while EBM was done in vacuum where the powder bed and the surrounding powder
particles are heated up to 700 ◦C, thus lowering the temperature gradients, hence, a lower
cooling rate than SLM [24]. It is well known that α′ martensite is main strengthening phase
in Ti6Al4V titanium alloys, but is less ductile than acicular α phase [35,36]. Therefore,
following printing, SLM samples are often heat treated to improve its ductility [1,21].
The wrought samples, showed traces of rolling effect as indicated by relatively elongated
(pancake-shaped) grains on the longitudinal plane sample. The structure contained both α′

martensite and acicular α. The difference in the microstructures, coupled with anisotropy
associated the build direction [6,37–39] certainly play a role on the hardness variations as
reported below.
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direction—wrought alloys) are indicated by the red arrows.

SLM hardness ranged from 372 to 391 HV (Table 2 and Figure 6). Thijs et al. [20]
reported hardness values between 350 and 520 HV, and suggested the high hardness values
were obtained at slower scanning speed. For our exeriments, the samples were produced
at a scanning speed of 1200 mm/s, while in Thijs et al. experiments, the scan speeds were
between 50 and 200 mm/s [20].
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Table 2. Average hardness (HV300) for AM samples *.

Samples 0◦ 45◦ 90◦

SLM. 377 391 372
EBM 360 340 319

* Hardness for wrought samples ranged from 350 to 365 HV regardless of the orientatin.
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Figure 6. Hardness values (HV300) of EBM and SLM samples built in different orientations. Hardness
values of wrought samples are indicated.

For EBM, our samples showed slightly lower hardness compared with those of SLM,
i.e., 319–360 HV (Table 2 and Figure 6). This hardness range is comparable to those reported
elsewhere. Murr et al. [11] reported hardness around 360-410 HV, Chern et al. [15] showed
a range of 304–388 HV, Karlsson et al. [17] 300–420 HV; and Galarraga et al. [18], and Hrabe
and Quinn [33] reported 360–380 HV, depending on the built direction and the parameters
used. Hardness of the wrought samples were between the those of EBM and SLM, and
that explained the mixture of the presence of α′ martensite and acicular α on the sample.

3.3. Tensile Tests and Fractography

In general, for the AM samples, SLM showed a slight higher strength in all built direc-
tions than those of EBM but both had comparable ductility. A summary by Lewandowski
and Seifi [29] strongly suggested that samples produced by SLM are stronger than those of
EBM which is in agreement with our results. Tensile strengths are mainly in the range of
800–1000 MPa and 900–1200 MPa for EBM and SLM, respectively [5], although He et al. [40]
claimed to have achieved a tensile strength of SLM up to 1261 MPa.

Figure 7 presents the stress-strain curves of the samples from SLM, EBM and wrought
alloys in all three directions/build orientations, i.e., 0◦, 45◦ and 90◦ where the effect on
strengths is fairly obvious. In the case of SLM, the built direction affect both σy and σu
where 45◦ direction being the strongest and transverse (0◦) being the weakest and least
ductile. This is in agreement with what was reported by Ren et al. [13] and Agius et al. [41].
It is believed that that the residual stress and the pore distribution was responsible for
this (note that following hot isostatic pressing—HIP, the difference was eliminated [9,13]).
For EBM materials, again the 45◦ showed higher strengths compared with 0◦ and 90◦

directions. Although it may not be significant but the elongation was lower in 0◦ compared
with other directions for both AM-produced materials. However, a different effect of
direction was observed on the wrought materials. The strengths were the highest on the
90◦ followed by 0◦ and 45◦. This is understandable as the direction samples were pulled
normal to the grain orientation. A study by Vilaro et al. [21] showed similar finding on the
SLM-built samples, where transverse direction showed a slight higher strength (around
4%) compared to the longitudinal direction. The elongation of wrought samples were
nearly double the elongation of both SLM and/or EBM with the longitudinal (0◦) direction
showed highest ductility than all other samples (Figure 7 and Table 3). Such variations in
the mechanical properties on both the AM-built specimens and the wrought alloys was
arguably associated with the anisotropy of the samples as a result from printing/scanning
or from rolling directions for AM and wrought alloys, respectively [6,37–39]. It should
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also be born in mind that the AM samples had significantly higher surface roughness than
wrought alloys, so the comparative tensile results combined the effects of bulk material
and surface differences.

With regards to the stiffness, the slope in the elastic region on the stress vs. displace-
ment graph showed that SLM had a slightly higher stiffness than both EBM and wrought
samples in all three orientations (Figure 7).
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Table 3. Tensile testing results (three samples were tested for each material in each direction).

Samples/Properties Yield Strength (MPa) Tensile Strength (MPa) Total Elongation (%) Elongation at Fracture
Location (%)

0◦ 45◦ 90◦ 0◦ 45◦ 90◦ 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

SLM 898 990 960 950 1036 1009 4 8 10 5 10 20

EBM 770 810 760 811 847 800 5 6 7 13 12 15

Wrought (as received) 965 814 1021 1016 965 1074 15 12 15 54 50 55

Wrought (STA) * 1052 970 990 1040 1008 1075 10 9 10 N/A N/A N/A

* STA = 960 ◦C/15 min, WQ + 560 ◦C/4 h, AC.

The results from tensile testing represented by the digital image corelation (DIC)
analysis showed a clear indication that wrought materials had more ductility compared
with AM materials (Figures 7–10). EBM samples had elongation of up to 7%, while SLM
samples reached up to 10% and wrought samples experienced elongation up to 15% before
fracture. The relatively lower elongation on EBM samples could be related to the large
grains compared with those of SLM and wrought alloys. While the higher elongation
particularly observed on the 90◦ of SLM samples is, arguably, due to the favourable build
orientation (Figure 1) coupled with smaller grains (Figures 3–5). The wrought alloys
showed highest elongation in all directions due to their uniform grain size and more dense
(no pores) as it has gone through rolling process.

From the DIC images it is also obvious that the highest strain took place in the reduced
sections area, hence, fracture locations. The local strain where fracture took place are
indicated in red, and it showed somewhat higher than the total elongation. While the AM
samples showed negligible necking (Figures 8 and 9), the wrought samples (Figure 10)
clearly showed noticeable necking mechanism prior to fracture, i.e., up to 54% compared
to 19.5% and 14% maximum for SLM and EBM samples, respectively.

Macrographs of the fracture surfaces from tensile test samples are shown in
Figures 11–13. Both SLM and EBM samples showed either flat or 45◦ angle with fairly little
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(or no) evidence of necking, while the wrought samples showed significant necking prior
to fracture where a clear cup and cone shape can be seen on Figure 13.
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The fracture surfaces of all samples showed dimples (Figure 14) resulting from micro-
void coalescence indicating some ductile behavior. Similar features were also reported by
others, for example in [25,26].
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Figure 14. SEM micrographs showing high magnification images of fracture surfaces from SLM,
EBM and wrought alloy samples. Note the presence of pores on the SLM and EBM samples.

Dimples on the wrought samples were more regular and their distribution was also
more uniform. The SLM samples had some small spherical gas pores, while the EBM
samples showed some relatively larger irregular (crack-like) pores. From the shape of the
pores, it can be assumed that the cause of those pores were different, e.g., gas entrapment
around the melt pool on the former [4], and incomplete melting and solidification due to
insufficient energy input on the latter [4]. The difference shapes and size of pores in EBM
and SLM could be associated with the scanning strategy as well as the size of the powder
and /or the parameters used which may produce different energy density. Gong et al. [26]
reported the effect of processing parameters (led to different energy density) which caused
different size and type of defects. Various types of AM defects have been reported such
as balling [4], gas porosity and lack of fusion [42,43]. Shipley et al. further explained
that SLM is particularly prone melt pool instability as well as wrong parameters, it may
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lead to various defects such as balling and porosity (spherical or sharp) being the two
main ones [4]. As for the gas pore, it is likely due to gas entrapment in the melt pool [18].
The lack of fusion, particularly those of sharp-tip, may act as local stress concentration
where cracks could be initiated which lead to a reduced strength [9,42,43] as well as fatigue
properties [9,22,44–47].

4. Summary

A comparison of Ti6Al4V manufactured by SLM and EBM with wrought alloy has
been investigated. Both the SLM and EBM were in the as-printed condition, while the
wrought alloy was in the as-received condition. The summary from this investigation are
as follows:

1. The microstructures of the samples were significantly different with α’ martensite on
the SLM, acicular α on EBM and combination of both on the wrought alloy.

2. EBM samples had higher surface roughness (Ra) compared with both SLM and
wrought alloy. For AM materials, the surface roughness was associated with the size
of the particle and the improper melting.

3. SLM samples were comparatively harder than wrought alloy and EBM.
4. Tensile strength of the wrought alloy was higher in all directions except for 45◦, where

the SLM samples showed higher strength than both EBM and wrought alloy for the
same direction. The ductility of the wrought alloy was consistently higher than both
SLM and EBM indicated by clear necking feature on the wrought alloy samples. The
variations in mechanical properties is believed to be associated with anisotropy on
the samples.

5. All the fracture surfaces showed some dimples indicating with wrought samples had
more uniform dimples than the AM samples. Defects, i.e., porosity and crack-like
defects were present on both SLM and EBM samples.
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