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Abstract: AISI 316L stainless steels are widely employed in applications where durability is crucial.
For this reason, an accurate prediction of its behaviour is of paramount importance. In this work,
the spotlight is on the cyclic response and low-cycle fatigue performance of this material, at room
temperature. Particularly, the first aim of this work is to experimentally test this material and use the
results as input to calibrate the parameters involved in a kinematic and isotropic nonlinear plasticity
model (Chaboche and Voce). This procedure is conducted through a newly developed calibration
procedure to minimise the parameter estimates errors. Experimental data are eventually used also
to estimate the strain–life curve, namely the Manson–Coffin curve representing the 50% failure
probability and, afterwards, the design strain–life curves (at 5% failure probability) obtained by four
statistical methods (i.e., deterministic, “Equivalent Prediction Interval”, univariate tolerance interval,
Owen’s tolerance interval for regression). Besides the characterisation of the AISI 316L stainless
steel, the statistical methodology presented in this work appears to be an efficient tool for engineers
dealing with durability problems as it allows one to select fatigue strength curves at various failure
probabilities depending on the sought safety level.

Keywords: AISI 316L; low-cycle fatigue; plasticity; hardening; softening

1. Introduction

Stainless steels are widely used in different industrial components, ranging from
the energy sector to biomedical applications. Within this class of metals, the AISI 316L
stainless steel stands out for its distinctive corrosion resistance, combined with good
strength, toughness and fatigue properties both at room and medium-high temperatures.
Particularly for the latter property, knowledge of the cyclic plasticity behaviour of the
material is of great importance, especially in the Low-Cycle Fatigue (LCF) regime.

Several papers can be found in the literature where the cyclic plasticity properties of
this type of stainless steel are studied. However, a general mathematical representation of
the entire cyclic response of the material up to failure is yet to be found due to the contrast-
ing results found experimentally, especially at high strain amplitudes. For instance, one of
the early works on the characterisation of this material showed that, below cyclic plastic
strain amplitude of ~0.2%, the material exhibits an initial hardening behaviour followed
by the attainment of a maximum stress amplitude and a subsequent mild softening. A
third stage may appear depending on the strain amplitude, and it is characterised by a
mixed response softening/hardening—sometimes recognised as a plateau when the two
contributions are comparable—until failure [1]. Conversely, the same study emphasises
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that for cyclic plastic strain amplitudes of 0.5% and 1% the hardening regime is not fol-
lowed by any evident softening before failure. Similar behaviour was observed by other
researchers, although they did not report the entire material cyclic response, but only up to
1000 cycles [2]. It is then clear that the cyclic plasticity response of the AISI 316L steel can
be separated into three main regimes, in order of appearance: (i) hardening; (ii) softening;
(iii) secondary hardening/softening.

Further confirmations on this behaviour can be found in the studies of Pham et al. [3,4],
where the third regime (iii) remains essentially of softening type for strain amplitudes
ranging from 0.25% to 0.7%, although some evidence of cyclic stabilisation could be
detected in some cases.

More recently, Zhou et al. [5] tested two AISI 316L steels showing the same nominal
chemical composition and thermal treatment but provided by different suppliers. Similar
qualitative cyclic response was obtained, i.e., a third regime (iii) characterised by a harden-
ing/softening behaviour depending upon the applied plastic strain amplitude; transition
regime between 0.5% and 0.8%. It is worth mentioning that the two tested samples showed
a slightly different initial yield stress (433 MPa vs. 370.4 MPa) in the monotonic tensile
stress. Additionally, the material that showed the lowest yield stress manifested an en-
hanced hardening effect in the third regime (iii). It might therefore mean that the cyclic
response is somehow affected by the pre-hardening of the material.

A recent paper authored by Xue-Fang et al. [6] confirmed the transition from softening
to hardening behaviour when the strain amplitude is high enough. In particular, in their
experiment they found a transition occurring between 0.5% and 0.6%, consistently with
what was reported by other authors.

To the best of our knowledge, the micromechanical and physical mechanisms respon-
sible for this peculiar three-regimes cyclic behaviour have not been extensively investigated
to cover the whole range of strain amplitude that determines the third regime transition.

In austenitic stainless steels, the secondary hardening is often related to a marten-
sitic transformation induced by the plastic strain, but this behaviour is more common
in austenitic stainless steels different from the AISI 316L considered in this work [7,8].
Although in some high-temperature conditions the secondary hardening of AISI 316L
may be attributed to the dynamic strain aging [9,10], at room temperature the underlying
mechanisms appear to be less intuitive. Of particular interest is the explanation provided
by Pham et al. [4] in his experimental and modelling work dealing with strain amplitude
up to 0.7%. Under this circumstance (±0.7% strain loading), starting with an as-received
material containing a certain amount of dislocation in the form of planar structures, regime
(i) is characterised by rapid dislocation densification, particularity in those regions lying
next to the grain boundaries. At the beginning of the softening regime (ii), secondary slip
systems are activated which allow for a rearrangement of the dislocation to form channel-
like structures. Upon further cyclic loading, these channels turn into cellular structures
towards the end of the material life. Given that these cellular structures are very effective
in combatting the movement of dislocations, the softening behaviour observed regime
(ii) may be compensated by a hardening effect, giving rise to regime (iii). Despite the lack of
sufficient evidence in Pham’s experimental data, this explanation regarding regime (iii) is
very likely to be valid for the other sets of experimental data reviewed in this introductory
part of the present paper.

In the case of a mechanical component subjected to loads within the low-cycle regime,
the durability analysis is generally performed with the aid of a numerical simulation. It
is thus essential to rely on a cyclic plasticity model capable of describing the material
behaviour up number of cycles of interest. At that point, the computed strain amplitude,
appropriately evaluated through a failure criterion (for example as done by several au-
thors [11,12]), can be employed to estimate the cycles to failure using the Manson–Coffin
strain–life curve [13].

These strain–life curves can be obtained through a regression analysis of the experi-
mental data. Such a regression procedure establishes a curve that refers to a 50% failure
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probability, which may be not sufficiently conservative for a safe durability design. There-
fore, depending on the application, a lower failure probability may be sought (e.g., 5% or
1%). Starting from the 50% failure probability curve, a statistical analysis can be performed
to obtain the actual so-called ‘design curves’ for any given value of failure probability.

The present study attempts to establish a robust and statistically detailed design
approach when dealing with uniaxial low-cycle fatigue of wrought AISI 316L. In order to
achieve this goal, low-cycle fatigue tests were performed at several strain amplitude levels
to cover the entire case history which has been reported in the literature about the regime
(iii). These low-cycle fatigue results were then employed to (1) explore and model the
cyclic plasticity response using a Chaboche-based kinematic/isotropic hardening model,
suitable to be easily implemented in a commercial FE (finite element) code; (2) evaluate the
Manson–Coffin design curves using different techniques and accounting for uncertainties
by using statistical methods. Besides providing reliable characterisation of the AISI 316L
stainless steel, the present work aims at presenting a statistical approach that may be
particularly useful to deal with metals showing such an uncharacteristic cyclic plasticity
behaviour. Limitations of the approach are also discussed.

2. Plasticity Models: Theoretical Background

One of the goals of this work is to estimate the necessary parameters of cyclic elasto-
plastic models to accurately describe the material behaviour, while maintaining its com-
plexity as low as possible. In this section, a brief overview of the models used to accomplish
this task is given.

Considering the Von Mises criterion and combined kinematic and isotropic model,
the yield surface can be expressed as [14]:√

3
2
(σ′ −X) : (σ′ −X)− R− σy,0 = 0 (1)

where σ′ is the deviatoric stress tensor and σy,0 is the initial yield stress, i.e., the yield stress
prior to any loading that plastically deforms the material. In Equation (1), variables X and
R represent the effects of kinematic and isotropic hardening, respectively. The variable X is
a second-order tensor, called back stress tensor.

The effect of the kinematic hardening is to translate the centre of the yield surface in
the stress space while the size of the surface remains constant. The isotropic hardening
assumes that, at any stage of loading, the centre of the yield surface remains at the origin
and the surface uniformly expand or shrink as plastic strain develops.

As far as the kinematic hardening models are concerned, the most used is perhaps
the nonlinear kinematic model of Chaboche, which is represented by the following expres-
sions [14–16]:

dX =
M

∑
i=1

dXi ; dXi =
2
3

Cidεpl − γiXidp with M = 1, 2, 3, . . . (2)

where each Xi component is independent and follows an Armstrong–Frederick model’s
type; symbol dεpl represent the increment of the plastic strain tensor.

The evolution of a single component Xi is governed by a first linear term (known also
as the Prager model) and a second nonlinear term. The first linear term represents the strain
hardening in which the stress increases proportionally to strain by the hardening modulus
Ci. The second term, on the other hand, is called “recall” term because the nonlinear
recovery parameter γi defines the rate at which the hardening modulus starts to decrease
as the accumulated plastic strain (p) increases. It is this second term that makes this model
nonlinear.
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For uniaxial loading, integrating Equation (2) yields [14–16]:

X =
M

∑
i=1

ζ
Ci
γi

+

(
Xi,0 − ζ

Ci
γi

)
e−ζγi(εpl−εpl,0) (3)

where εpl is the plastic strain and coefficient ζ is +1 or −1 during the loading or unloading
branch, respectively.

If the loading is monotonic and starts from zero stress and strain condition, the initial
state is Xi,0 = 0 and εpl,0 = 0.

Furthermore, the Chaboche model provides the cyclic stress–strain curve as [14–16]:

σa = σy,s +
M

∑
i=1

Ci
γi

tanh
(

γiεpl,a

)
(4)

where σy,s is the yield stress in the stabilised cycle, σa and εpl,a are, respectively, the
amplitude of the stress and the plastic strain in the stabilised cycle.

Concerning the isotropic hardening, this is an important effect that needs to be
modelled when the materials show a cyclic hardening or softening behaviour. A well-
established model used to account for this effect is the nonlinear isotropic hardening model,
based on the Voce law [17], governed by the following relations [18]:

dR =
Z

∑
i=1

dRi ; dRi = bi(R∞,i − Ri)dp with Z = 1, 2, 3, . . . (5)

where each Ri variable is independent, and R∞,i and bi are, respectively, the saturated stress
and the speed of stabilisation of Ri. Upon integration, Equation (5) gives:

R =
Z

∑
i=1

R∞,i

(
1− e−bi p

)
(6)

In strain-controlled fatigue tests, the plastic strain accumulated after N cycles can be
approximated as p ∼= 2∆εpl N where ∆εpl = 2εpl,a is the plastic strain range per one cycle.

Combining both kinematic and isotropic hardening models, in a uniaxial loading
scenario, the stress response becomes:

σ = ζ
(
σy,0 + R

)
+ X (7)

where σ is the axial stress.
The outlined models were adopted in this work with the aim of keeping the complexity

level of the model as moderate as possible without compromising its accuracy. Overall, this
approach considers the kinematic hardening model which controls the shape of a single
stress–strain cycle, while the isotropic hardening model regulates the cyclic stress response
amplitude.

3. Experimental Tests
3.1. Material and Testing Setup

The tested material is an AISI 316L stainless steel with chemical composition reported
in Table 1. This material was used to manufacture cylindrical specimens, with uniform
gauge section of 25 mm in length and 10 mm in diameter, as per [19].

Table 1. Chemical composition (%) of AISI 316L stainless steel tested.

%C %Si %Mn %P %S %N %Cr %Mo %Ni %Cu %Co

0.019 0.37 1.75 0.024 0.026 0.079 16.60 2.07 10.16 0.47 0.13
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In the present study, after monotonic tensile test characterisation of the material, n.8
low-cycle fatigue tests were conducted at room temperature on an MTS 810 System servo-
hydraulic machine with Flex Test SE controller (MTS Systems, Eden Prairie, MN, USA).
Each test consisted of a tension-compression cyclic loading under strain control, using a
triangular waveform with zero mean strain. An extensometer (MTS 634 model), with a
gauge length of 25 mm and a +5 mm/−2.5 mm range of measure, was used to record and
control the axial strain. A force transducer with a capacity of 100 kN was used to monitor
the axial force during cyclic testing. The system, in strain control, was tuned before the
tests. The loading frequency was adjusted for each sample in order to keep a constant
strain rate of 4 × 10−3 s−1. The experiments were stopped before the complete separation
of the specimen when the strain exceeded the safety limit imposed to the tensile machine.

3.2. Brief Analysis of the Experimental Material Behaviour

The cyclic stress–strain response observed in the experiment at εa = 0.7% is reported
in Figure 1a. For more clarity, the figure only plots the 1st, 1000th and 2000th cycle.
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(b) cyclic stress response in all tests carried out with different strain amplitudes.

The cyclic stress response is the variation of the stress amplitude as a function of the
increasing number of cycles during the test. Since the experimental findings showed that
the axial stress in every cycle is nearly symmetric (see Figure 1a), the variation of stress
amplitude was obtained by simply monitoring the variation of the tensile peak stress, see
Figure 1b. As expected, this material shows the characteristic three regimes discussed
earlier, i.e., hardening (i), softening (ii) and mixed secondary hardening/softening (iii).
For our specific case, regime (iii) is characterised by a distinctive secondary hardening
behaviour, even for relatively low strain amplitudes, which is in contrast with what has
been reported in the literature [5,6]. Nonetheless, as the applied strain amplitude becomes
higher and higher, the secondary hardening effect becomes more and more enhanced. The
distinctive outcome of this experimental campaign is, in fact, that the stress peak reaches
values as high as 600 MPa in the regime (iii) at applied strain amplitudes between 0.8%
and 1.2%. A similar trend has been experienced by Zhou et al. [5] in only one instance for
strain amplitudes of 1.25%, although not reaching such a high stress peak value.

Curiously, the regime (iii) presents a linear increase of the tensile stress peak.
With the objective of establishing a reliable predictive durability model, it could be

helpful to evaluate the Masing behaviour of the material, based on the obtained experi-
mental data. As Figure 2a shows, the plastic strain for all the strain amplitudes was firstly
calculated. The stress versus plastic strain loops obtained in this way are translated to the
origin, in such a way that all the points corresponding to the lowest stress magnitudes
overlap with each other. It is evident that in the case of AISI 316L the material displays a
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non-Masing behaviour given that the tensile branches of the “stabilised” hysteresis loop
do not overlap. Moreover, in a material with Masing behaviour the cyclic curve is obtained
by simply translating the monotonic curve upward or downward, which clearly is not the
case for the AISI 316L, see Figure 2b.

Materials 2021, 14, x FOR PEER REVIEW 6 of 21 
 

 

With the objective of establishing a reliable predictive durability model, it could be 

helpful to evaluate the Masing behaviour of the material, based on the obtained experi-

mental data. As Figure 2a shows, the plastic strain for all the strain amplitudes was firstly 

calculated. The stress versus plastic strain loops obtained in this way are translated to the 

origin, in such a way that all the points corresponding to the lowest stress magnitudes 

overlap with each other. It is evident that in the case of AISI 316L the material displays a 

non-Masing behaviour given that the tensile branches of the “stabilised” hysteresis loop 

do not overlap. Moreover, in a material with Masing behaviour the cyclic curve is ob-

tained by simply translating the monotonic curve upward or downward, which clearly is 

not the case for the AISI 316L, see Figure 2b. 

  
(a) (b) 

Figure 2. Masing behaviour analysis results: (a) stress–plastic strain hysteresis cycles rigidly translated to the origin (0,0); 

(b) comparison between the monotonic curve and the cyclic curve passing through the experimental points (𝜀𝑎 , 𝜎𝑎). 

4. Plasticity Models: Identification of Material Parameters 

4.1. Young’s Modulus and Yield Stress 

Young’s modulus and yield stress are the first parameters that are estimated from 

the experimental data. Young’s modulus 𝐸 was identified from the initial tensile loading 

part of each test, and also from the tensile and compressive branches corresponding to 

half of the number of cycles to failure. These evaluated values did not show any significant 

deviation, therefore, all the estimated values were averaged out to give a single value of 

191626 MPa. 

Initial yield stress 𝜎𝑦,0 was identified from the first loading portion at the beginning 

of the test. Since the material does not exhibit a discontinuous yielding (i.e., a clear yield 

point), the initial yield stress was determined conventionally by considering an offset in 

plastic strain. If the usual offset of 0.2% is considered, a yield stress of 310 MPa is estimated 

from monotonic tensile test. Nevertheless, for cyclic plasticity, the value of 0.2% turned 

out to be not the best choice to capture the materials behaviour in the model calibration 

that follows [20]. Instead, a plastic strain offset value of 0.0025% was considered in our 

study, as suggested by [5]. The initial yield stress was estimated from each test, showing 

a negligible scatter. An average value of 169 MPa was calculated. 

For the identification of hardening model parameters, it is also important to estimate 

the yield stress in the tensile and compressive branches of the “stabilised” cycle of each 

test. In this case the value of the plastic strain offset is set to 0.01%. The reason why this 

value is bigger than the offset chosen for the initial yield stress is that the acquisition res-

olution is far better in the first loading portion of the very first cycle, than in the following 

ones; the choice of 0.01% as a plastic strain offset did not lead to significant errors in the 

assessment. For the following calibration steps, an average value, 𝜎𝑦,𝑠, of the two yield 

Figure 2. Masing behaviour analysis results: (a) stress–plastic strain hysteresis cycles rigidly translated to the origin (0,0);
(b) comparison between the monotonic curve and the cyclic curve passing through the experimental points (εa, σa).

4. Plasticity Models: Identification of Material Parameters
4.1. Young’s Modulus and Yield Stress

Young’s modulus and yield stress are the first parameters that are estimated from the
experimental data. Young’s modulus E was identified from the initial tensile loading part
of each test, and also from the tensile and compressive branches corresponding to half
of the number of cycles to failure. These evaluated values did not show any significant
deviation, therefore, all the estimated values were averaged out to give a single value of
191626 MPa.

Initial yield stress σy,0 was identified from the first loading portion at the beginning
of the test. Since the material does not exhibit a discontinuous yielding (i.e., a clear yield
point), the initial yield stress was determined conventionally by considering an offset in
plastic strain. If the usual offset of 0.2% is considered, a yield stress of 310 MPa is estimated
from monotonic tensile test. Nevertheless, for cyclic plasticity, the value of 0.2% turned
out to be not the best choice to capture the materials behaviour in the model calibration
that follows [20]. Instead, a plastic strain offset value of 0.0025% was considered in our
study, as suggested by [5]. The initial yield stress was estimated from each test, showing a
negligible scatter. An average value of 169 MPa was calculated.

For the identification of hardening model parameters, it is also important to estimate
the yield stress in the tensile and compressive branches of the “stabilised” cycle of each test.
In this case the value of the plastic strain offset is set to 0.01%. The reason why this value is
bigger than the offset chosen for the initial yield stress is that the acquisition resolution is
far better in the first loading portion of the very first cycle, than in the following ones; the
choice of 0.01% as a plastic strain offset did not lead to significant errors in the assessment.
For the following calibration steps, an average value, σy,s, of the two yield stresses for
tension and compression branches will be used for each cycle, the average value being
different for various strain amplitudes.

4.2. Kinematic Hardening Model

After having identified the Young’s modulus and the yield stress, it is possible to esti-
mate the parameters of hardening models. The procedure consists firstly of the estimation
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of the Chaboche kinematic model parameters, followed by the calibration of the nonlinear
isotropic model parameters.

The kinematic model parameters are usually identified through curve fitting [21]. In
particular, it is necessary to calculate the amplitude of the back stress Xa = σa − σy,s and
the amplitude of plastic strain εpl,a in the stabilised cycles of each test at different strain
amplitude εa. The experimental points obtained by the procedure described so far are then
interpolated by the expression in Equation (4) in order to obtain Ci and γi. The curve found
in this way is called the ‘back stress cyclic curve’.

Applying this procedure is however not straightforward, since the AISI 316L material
never stabilises. A possible strategy could be that of considering the cycles at half the num-
ber of cycles to failure, N f /2. Such an approach is not suitable in this case, as N f /2 occurs
on the secondary hardening stage (see Figure 1b), where cycles present a different shape
with respect to those of the first part of the test. Furthermore, this last stage of cyclic stress
response, i.e., secondary hardening, is highly dependent on strain amplitude.

To overcome the upper mentioned problems, an alternative approach was adopted.
Considering that, during the secondary hardening phase, the shape of the cycles

changes considerably, the calibration of the kinematic parameters was performed on the
cycles at the end of the softening stage. Since in the three tests with the higher strain
amplitude (0.8%, 1%, 1.2%) the secondary hardening is dominant, only tests with a strain
amplitude from 0.3% to 0.7% were considered in the improved fitting procedure that fol-
lows.

To start with, it was decided to fit the tensile branch of the cycle tested at the highest
strain amplitude 0.7%, as suggested in some studies [22]. For this strain amplitude, the
end of the softening stage occurs after 200 cycles. This choice provided preliminary guess
parameter values for the kinematic hardening model.

The fitting procedure was applied to the following expression:

σ− σmin − 2σy,st ∼= X = 2
M

∑
i=1

Ci
γi

1− e−γiεpl

1 + e−γi∆εpl
f or

(
σ− σmin − 2σy,st

)
≥ 0 (8)

where σmin, σy,st and ∆εpl are evaluated from the experimental cycle (see Figure 3); σ and
εpl are the set of values describing the branch of the cycle to be fitted, whereas Ci and γi
are the fitting parameters to be determined. The proposed fitting procedure is slightly
approximated as it neglects the influence of isotropic hardening in one cycle.
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Figure 3. Curve fitting to find kinematic hardening parameters applied to the tensile branch of the
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The right hand side of Equation (8) follows from translating Equation (3) to the origin,
which is obtained by taking εpl,0 = 0 in the exponent and by adding the sum of M terms

Xi,0 = −Ci
γi

tanh
(

γiεpl,a

)
to the left of the equal sign in Equation (3). Figure 3 displays the

fitting result for the experimental 200th cycle of the test at 0.7% strain amplitude. As can be
seen, the portion of the tensile branch of the cycle was translated to the origin and then
used for the curve fitting.

The parameters estimated with M = 2 are C1 = 172641 MPa, γ1 = 2358,
C2 = 30855 MPa and γ2 = 251. These parameters were inserted in Equation (4) to com-
pute the back stress cyclic curve (see dashed line in Figure 4a), which is then compared to
the experimental points (Xa , εpl,a) (see markers in Figure 4a). The experimental points are
derived from the cycle corresponding to the end of the softening phase in each of the five tests
with strain amplitude from 0.3% to 0.7%. Eventually, an additional parameter refinement was
carried out to improve the fit (see continuous line in Figure 4a): C1 = 189500 MPa, γ1 = 2950,
C2 = 33500 MPa and γ∗2 = 250.
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A comparison of simulated and experimental monotonic curves was also made. The
monotonic curve was simulated with only the kinematic hardening model, once again
by neglecting the contribution of the isotropic hardening. Actually, the comparison in
Figure 4b considers the monotonic curve shifted downward by σy,0, so that they refer to
X ∼= σ− σy,0. A fitting improvement (consider that the dashed line in Figure 4b is obtained
by using the parameters calibrated from the cyclic curve at the end of the softening stage)
can be achieved with a slight correction of the γ∗2 parameter of the kinematic model, which
becomes γ2 = 350. The continuous line shown in Figure 4b, which provides a better fitting,
is thus obtained. These last parameters are those used in the final comparison between
experimental and simulated data, see Table 2.

Table 2. Estimated material parameters used for the comparison between experimental data and simulation.

Strain Amplitude, εa Isotropic Model Kinematic Model

R∞,1 (MPa) R∞,2 (MPa) b1 b2

0.3% 13.7 −58.9 90.00 0.8841

C1 = 189500 MPa
γ1 = 2950

C2 = 33500 MPa
γ2 = 350

0.4% 14.8 −51.8 46.26 0.7596

0.5% 25.8 −49.8 29.18 0.7792

0.6% 41.0 −48.0 16.19 0.9851

0.7% 48.6 −42 11.37 1.280
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4.3. Isotropic Hardening Model

Isotropic model parameters were calibrated by considering the experimental response
up to the end of the softening stage (i.e., the local minimum of the cyclic response curve),
consistently with the choice followed in the case of the kinematic model.

Since the material shows a sequence of hardening followed by softening stage, it was
decided to use two terms (Z = 2) of the isotropic hardening model in Equation (5).

In addition, the observed material hardening or softening phenomena depend upon
the strain amplitude, so that the values of R∞,i are different for each test. Therefore, it was
necessary to find different parameters for each test.

A further moderate improvement in the estimates of isotropic parameters can be
achieved if the kinematic contribution is removed from the experimental cyclic stress
response. For this purpose, the kinematic hardening model calibrated before is used.

The expression to be fitted is:

σmax − σkin
max
∼= R = R∞,1

(
1− e−b1 p

)
+ R∞,2

(
1− e−b2 p

)
(9)

where σmax are the experimental stress peaks, σkin
max are the stress peaks obtained considering

only the kinematic model, and p is the accumulated plastic strain evaluated experimentally;
R∞,i and bi are the fitting parameters to be determined. In the curve fitting, the sum of the
two saturated values must be equal to R∞,1 + R∞,2 = σmax,s − σkin

max,s, where the subscript
s indicates that the stress peak is referred to the cycle at the end of the softening stage.
Figure 5 shows how the method applies to a single test. Open orange markers represent
the stress peaks obtained by simulating the cyclic response with only the contribution of
the kinematic model, which saturates almost immediately and thus gives constant stress
peaks after few cycles. The difference between the open blue marker values, which are
the experimental stress peaks, and the open orange marker values was attributed to the
isotropic hardening model. Table 2 lists all the estimated parameters.
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Figure 5. Example of curve fitting of Equation (9) to find isotropic hardening parameters for the test
with 0.5% strain amplitude.

To make the material model employable also for strain ranges different from those
tested experimentally, it was decided to interpolate the evaluated parameter values with a
2nd order polynomial function of the strain amplitude. For example, the parameter R∞,1
for a particular strain amplitude εa can be found using the following polynomial function:

R∞,1 = A1 + A2 εa + A3 ε2
a (10)

The outcome of the fitting procedure can be visualised in Figure 6. From this figure,
it is clear that 2nd order polynomial functions are suitable for this purpose and produce
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a negligible error. The estimated coefficients of the functions (A1, A2 and A3) for each
parameter are reported in Table 3.
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Table 3. Coefficients of the 2nd order polynomials adopted to link the isotropic model parameters
for different strain amplitudes.

Parameter A1 A2 A3

R∞,1 (MPa) 0.5143106 408.5609 957143.9

b1 266.8643 −77254.43 5852143

R∞,2 (MPa) −63.42285 2054.282 128571.8

b2 1.710213 −484.2335 60392.39

It is important to remark that these functions could also be used to find estimated
model parameters lying outside the experimentally tested range, although the same ac-
curacy would no longer be guaranteed, particularly for strain ranges far from the tested
strain amplitude limits.

4.4. Model vs. Experiment Comparison

This section compares experiment with simulation. The simulation was carried out by
the algorithm described in Appendix A, which allows one to simulate the uniaxial response.
In this simulation, the parameters taken into account are reported in Table 2. Each strain
amplitude is characterised by different isotropic hardening parameters. Furthermore, for
every simulation the values of Young’s modulus and initial yield strength are respectively
E = 191626 MPa and σy,0 = 169 MPa.

Figure 7 compares the experimental data with the results from simulations with
both the kinematic and the isotropic hardening models. Figure 7a compares two stress–
strain cycles (1st and 1000th) for a strain amplitude of 0.5%, whereas Figure 7b shows the
evolution of the peak stress in each cycle, throughout each test. The comparison shows
how the cyclic stress response is simulated with more than satisfactory accuracy. As a
measure of the model accuracy, the mean percentage absolute error (MAPE) of the stress
peaks for each evaluated test (i.e., for a fixed strain amplitude) was assessed; the results are
reported in Table 4. MAPE is an error index defined as follows:

MAPE =
100

l

l

∑
i=1

∣∣∣∣∣σ
exp
max,i − σsim

max,i

σ
exp
max,i

∣∣∣∣∣ (11)
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where l is the number of stress peaks taken into consideration to calculate the index for a
single test, σ

exp
max,i is the i-th experimental stress peak and σsim

max,i is the i-th simulated stress
peak. The present error analysis was carried out considering a total of n. 12 peak values. In
addition to MAPE index, in Table 4 is shown the absolute percentage error (APE) of the
last stress peak simulated (i.e., at the end of the softening stage) for each strain amplitude
considered.
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Figure 7. Comparison between experimental data and simulation with kinematic hardening parameters calibrated on
monotonic curve and isotropic hardening parameters different for each test: (a) stress–strain cycles for test with 0.5% strain
amplitude; (b) cyclic stress response.

Table 4. Mean absolute percentage error (MAPE) of the stress peaks for each strain amplitude used
for calibration and absolute percentage error (APE) for the stress peak at the end of the softening
stage.

Strain Amplitude, εa Error, MAPE Error, APE (Last Stress Peak)

0.3% 1.81% 2.19%

0.4% 0.551% 1.34%

0.5% 0.298% 0.569%

0.6% 0.233% 0.126%

0.7% 0.359% 0.0282%

It can be noted, from Figure 7a, that the compressive branch of the stress–strain cycles
is marginally overestimated in terms of absolute stress value.

5. Low-Cycle Fatigue Curves

The results of low-cycle fatigue tests were also used for estimating the strain–life
(Manson–Coffin) equation, which relates the total strain amplitude εa to the number of
reversals to failure 2N f :

εa = εel,a + εpl,a =
σf
′

E

(
2N f

)b′
+ ε f

′
(

2N f

)c′
(12)

where εel,a and εpl,a are the elastic and plastic strain amplitudes, respectively. Other symbols
are fatigue strength coefficient σ′f , fatigue strength exponent b′, fatigue ductility coefficient
ε′f , fatigue ductility exponent c′, elastic modulus E.

In a log-log diagram, Equation (12) is the sum of two straight lines. Therefore, the
equation parameters can be estimated by a linear regression analysis of experimental
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data, which must be carried out separately for the elastic strain and the plastic strain
parts. The linear regression model is y = A + Bx + δ, where y = log

(
2N f

)
and x = log(εa)

denote, respectively, the log-transformed fatigue life and strain amplitude, where obviously
εa = εel,a or εa = εpl,a depending on whether the elastic or plastic strain amplitude is
considered. In the regression model, the quantity δ ∼ N (0, s) represents a normally
distributed random variable with zero mean and constant standard deviation s (where
constant means “not a function of x”; this type of model is called homoscedastic). The
random variable δ allows the regression model to account for the inherent (aleatory)
variability of fatigue life 2N f .

According to the regression model introduced so far, at each strain amplitude x the
fatigue life y is normally distributed with mean A + Bx and standard deviation s. The
model parameters are not known in advance, but they must be estimated from a set of n
experimental pairs (εa,i, 2N f ,i), i = 1, . . . n. After separating the total strain amplitude into

elastic and plastic part, one obtains n pairs of log-transformed variables yi = log
(

2N f ,i

)
,

xel,i = log(εel,a,i) or xpl,i = log
(

εpl,a,i

)
, which are input in standard formulae for regression

analysis [23].
The formulae yield the values of the estimators Â, B̂, ŝ, and therefore the “median”

strain–life ŷ = log
(

2N̂ f

)
= Â + B̂x. The ‘cap’ specifies that the estimators are charac-

terised by a statistical (epistemic) uncertainty that comes from using a limited number of
experimental data (this uncertainty would vanish if n were infinite).

It is possible to retrieve the parameters of the “median” strain–life curve by an inverse
log-transformation of the regression estimators:

σ̂′f
E

= 10(−Âel/B̂el); b̂′ =
1

B̂el
; ε̂′f = 10(−Âpl/B̂pl); ĉ′ =

1
B̂pl

(13)

where subscripts “el” and “pl” stand for elastic and plastic. The strain–life curve can be
promptly found by calculating the total strain amplitude as the sum of elastic and plastic
strain components, see Equation (12). The estimated parameters are listed in the first row
of Table 5.

Table 5. Estimated parameters of “median” and design strain–life curves; εa,d refers to
(

2N f

)
d
= 2× 105.

Method K
(

σ̂′f
E

)
d

b̂′d
(

ε̂′f

)
d

ĉ′d εa,d(%) e%

Regression (α = 50%) - 0.01034 −0.1748 0.05799 −0.2842 0.3031 -

USE (α = 50%) - 0.00636 −0.12 0.90604 −0.6 0.2068 31.8%

Deterministic (α = 50%) 1.645 0.00890 −0.1748 0.05138 −0.2842 0.2654 12.4%

EPI (α = 5% , n = 8) 2.0187 0.00860 −0.1748 0.04999 −0.2842 0.2575 15.1%

1D tolerance interval
(α = 5% , β = 90% , n = 8) 2.755 0.00804 −0.1748 0.04735 −0.2842 0.2427 19.9%

1D tolerance interval Owen
(α = 5% , β = 90% , n = 8) 2.9864 0.00787 −0.1748 0.04655 −0.2842 0.2382 21.4%

Ŝel , Ŝpl std. deviation from regression analysis of experimental data

5.1. Approximate Strain–Life Curves from Monotonic Tensile Properties

Since low-cycle fatigue tests are costly and time-consuming, different methods have
been proposed to approximate the strain–life curve parameters from monotonic tensile
properties or even hardness measurements [24,25]. This type of approximated approach is
proven to be particularly useful in the early design phase, when only a rough estimate of
the strain–life curve is sought.
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Among such type of approximations, a noteworthy example is the “Universal Slopes
Equation” (USE) proposed by Manson [26,27]:

∆ε = ∆εel + ∆εpl = 3.5
(σuts

E

)
N f
−0.12 + D0.6N f

−0.6 (14)

where σuts is the tensile strength and D = ln[100/(100− Z)] the ductility, which depends
on the percent necking Z%. The two exponents −0.12 and −0.6 are assumed to be equally
valid for all types of materials. The model was calibrated on low-cycle fatigue data for
ferrous and non-ferrous alloys (e.g., steel, silver, magnesium, titanium, aluminium). Like
as the regression curve, also the USE in Equation (14) represents a “median” curve that
refers to a probability of failure of 50%.

Note that the above equation refers to strain ranges, i.e., twice as the strain amplitude.
It is convenient to rewrite it in a form similar to the Manson–Coffin equation:

εa =

(
σ′f
E

)
USE

(
2N f

)−0.12
+
(

ε′f

)
USE

(
2N f

)−0.6
(15)

where: (
σ′f
E

)
USE

=
3.5

2(1−0.12)

(σuts

E

)
;
(

ε′f

)
USE

=
D0.6

2(1−0.6)
(16)

The USE model assumes that, in the strain–life curve, the elastic part is directly
proportional to the material strength, whereas the plastic part is proportional to the material
ductility. As a result, the USE model predicts that, at higher strains, the fatigue life mainly
depends on the material ductility and, at lower strains, on the static strength, as it is usually
the case in high-cycle fatigue.

For the AISI 316L steel, the values E = 194699 MPa, σuts = 651 MPa and D = 1.347
were estimated from tensile test (note: the value of E estimated from the tensile test
is marginally different from the average value of E obtained from all fatigue tests, see
Section 4.1). The Manson–Coffin parameters from USE approximation are listed in the
second row of Table 5. As shown in Figure 8b, the agreement between the USE and
Manson–Coffin curves is not particularly satisfactory; the USE curve is steeper and has
different intercepts for the elastic and plastic parts. On the other hand, this result has
somehow to be expected, given the degree of approximation of the USE model.
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5.2. Statistical Methods and Strain–Life Design Curves

The strain–life relationship obtained by regression, ŷ = Â + B̂x, connects all the
mean values ŷ for each x, and therefore is a “median” curve that is defined for a failure
probability α = 50%, not sufficiently conservative for safe durability design. A much
lower probability must be specified; this corresponds to defining a so-called design (or
characteristic) strain–life curve, shifted to the left of the “median” curve as:

ŷd = ŷ− K(α, β, n, x, x)·ŝ (17)

where ŷ = Â + B̂x is the “median” curve by regression (for α = 50%) that links the (log-)
reversals to failure ŷ = log(2N̂ f ) to the (log-) strain amplitude x = log(εa), either elastic or
plastic. Symbol ŝ is the standard deviation estimated by regression analysis. The equation
has to be applied separately for the elastic and plastic parts in the strain–life equation. The
obtained ‘elastic’ and ‘plastic’ design curves have to be summed to find the design curve in
terms of total strain amplitude.

The form of the previous equation emphasises that, in the most general case, the
statistical factor K(α, β, n, x, x) is a function of the prescribed failure probability α and
confidence β (if required), on the number n and specific amplitudes x = (x1, x2, . . . , xn)
used in fatigue tests, and on the strain amplitude x = log(εa) at which the design fatigue
life ŷd = log

(
2N f ,d

)
is being computed. When the experimental tests are performed, the

two parameters n and x take on fixed values. For this reason, to simplify the notation, the
statistical factor will be written simply as K(α, β, x).

Various methods are available in the literature to define the value of K(α, β, n) and
thus the design fatigue life ŷd. In the following, the methods are subdivided into two
categories as (i) deterministic method (also called “2 sigma” or “3 sigma”) and (ii) statistical
methods, which further includes three approaches (confidence interval, tolerance interval,
prediction interval).

When coefficient K(α, β, x) is a function also of the strain amplitude x, the design curve
is no longer straight, but rather takes a hyperbolic-like shape—an example is depicted
in Figure 9a. Obtaining such hyperbolic curves require statistical methods that could
not be known to non-specialists, or that simply are impractical to use. For this reason, a
straight-line approximation (with K(−) = const. and independent of x) is often preferred,
since it only gives a negligible loss in confidence compared to the exact solution. In this
case, the design curve becomes straight and simply shifted to the left of the “mean” curve
as:

ŷd =
(

Â− K(α, β) · ŝ
)
+ B̂x (18)
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In which Â− K(α, β) · ŝ is a new constant that only depends on failure probability α
(the survival probability is 1− α) and confidence β. Though approximated, these methods
undoubtedly have the advantage to permit the parameters σ′f , ε′f of the ‘design’ Manson–
Coffin curve to be expressed in closed-form as:(

σ̂′ f
E

)
d

= 10[−(Âel−K·ŝ)/B̂el]
(

ε̂′ f
)

d
= 10[−(Âpl−K·ŝ)/B̂pl] (19)

Note that, instead, the exponents remain unchanged and equal to the values b̂′, ĉ′
obtained by regression analysis (in other words, the elastic and plastic design curves are
straight lines translated from the regression lines).

The following paragraphs will survey several methods for estimating the design
curves, with particular focus on approximate methods that provide a constant value of
K(−) and thus prove to be particularly useful in practical situations.

As a final remark, while statistical methods are routinely applied in the field of
high-cycle fatigue to define a design curve, their use in low-cycle fatigue seems to be
less frequent, although some studies have pointed out its importance [28,29]. The results
presented in the following aim to highlight that design curves play an important role in
low-cycle fatigue, too.

5.2.1. Deterministic Method (“2 sigma” or “3 sigma”)

This approach neglects the statistical (epistemic) uncertainty of regression estimators
and it postulates that Â = A, B̂ = B and ŝ = s, that is, the estimators coincide with the
“true” parameters that would be obtained with n infinite. In this method the (log-)fatigue
life y is a normal variable with mean ŷ and standard deviation ŝ. Accordingly, for a given
survival probability 1− α, the statistical factor is Kdet = z1−α = Φ−1(1− α), where Φ(z)
is the cumulative distribution of the standardised normal variable z. For example, for a
failure probability α = 1%, it is Kdet = z0.99 = 2.3263. Though certainly simple, this method
is not conservative, as it neglects the statistical variability of Â, B̂ and ŝ.

5.2.2. One-Side Tolerance Interval Method

A tolerance interval establishes a region that encloses a given fraction of the population
of a random variable. It is trivial to compute a tolerance interval for a normal random
variable for which its mean value µ and standard deviation s are known [30]. From
probability theory, for example, it is known that 95% of the values of a normal distribution
fall within the two-side interval µ ± 1.96 s, where z0.975 = Φ−1(0.975) = 1.96 [30]. If,
instead, mean and standard deviation are only known through their estimates µ̂ and ŝ, and
additional source of uncertainty is present.

With reference to the Gaussian variable y = log
(

2N f

)
at given x, the value ŷd in the

design curve Equation (17) corresponds exactly to the definition of a one-side interval
y ≤ ŷd enclosing a percentage α of the values of y. Additionally, in this case, for variable
y the regression analysis only yields the estimators of the mean Â + B̂x and standard
deviation ŝ, which thus have an additional uncertainty not present in the “true” values.
The statistical variability of the estimators does not allow the statistical factor K(−) to be
computed through the cumulative distribution Φ(z), as in the “deterministic method”.

It is necessary to evaluate K(−) by following a different approach able to account
for the confidence β of the estimators. Specifically, the approach seeks the value K(α, β, n)
by which to identify the bound ŷd of the tolerance interval y ≤ ŷd, so that the interval
contains (with a given confidence β) a percentage α of the values of y. Factor K(α, β, n)
becomes a function of the failure probability α, of the confidence β and of the size n of the
statistical sample. For a normal distribution, the values of K(α, β, n) are tabulated [31,32].
For example, for the values n = 7, α = 1%, β = 90%, it is K(α, β, n) = 3.9720.

The design line ŷd = ŷ− K(α, β, n)·ŝ obtained by this method ensures that, in the
long run, 100β% of times, the failures at y ≤ ŷd will occur with probability α.
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The method of the tolerance interval yields a constant K(α, β, n) across the entire
interval of x, which corresponds to a straight design line. The method is, however, correct
only for a single random variable. In the regression case (having two variables x and y),
the method turns out to be approximate, since it neglects the statistical uncertainty of
regression estimators [33].

When the method of tolerance interval is applied to the linear regression (“Owen’s
method” [34]), the factor K(α, β, n, x) becomes also a function of the strain level x and,
accordingly, the design curve is no longer straight. The application of this approach,
however, presents some practical difficulties. A possible approximation (“approximate
Owen’s method”) considers an approximated value Kapp(α, β, n) that is constant on the
whole range of x. By doing this, the design curve becomes again a straight line ŷd =
ŷ− Kapp(α, β, n)·ŝ.

The theoretical details of this method—here omitted as being of no much interest—can
be found in [29]. The main advantage of this method is that the values of Kapp(α, β, n) are
already tabulated in [32] for different values of n, α and β (note that some values in [29] are
not correct). For example, for given n = 7, α = 1%, β = 90%, it is Kapp(α, β, n) = 4.3187.

5.2.3. Prediction Interval Method

A prediction interval is a region in which a future value of a random variable will fall
with a given probability. When calculating this interval, the uncertainty associated to the
future random observation must be added to the uncertainty of estimators Â, B̂ and ŝ.

The expression of the prediction interval (see [35]) shows that K(α, n, x) is a “t-
Student” random variable, and it depends on the failure probability α, strain amplitude x
and sample size n, but not on the confidence β. Accordingly, the design curve is not straight
(see an example in Figure 9a), which makes computation somehow more complicated.
For this reason, an approximate method (called “equivalent prediction interval”, EPI) was
proposed in [35] with the purpose to compute a constant factor KEPI(α, n) by which to
replace K(α, n, x).

The idea of the EPI method is to assume that the normal variable y has a constant
standard deviation σ0 = ŝ·g(α, n) obtained by means of a correction factor g(α, n) that
quantifies the uncertainty of the estimators Â, B̂, ŝ. In [35], the following expressions (valid
for 6 ≤ n ≤ 50, 0.01 ≤ α ≤ 0.15) were proposed:

g(α, n) = exp
[
Λ(α){ln n}−Ψ(α)

]
Λ(α) = 1.56

[
tan h−1(1− α)

]1.12
; Ψ(α) = 3.32− 1.7α (20)

After having determined σ0, the design curve turns out to be ŷEPI = ŷ− [Kdet·g(α, n)]·ŝ,
where Kdet is the factor from the deterministic method (see Section 5.2.1). By analogy with
other methods described so far, it is also possible to define KEPI = Kdet·g(α, n). For example,
for n = 7, α = 1%, it is KEPI = 3.8924.

5.2.4. Results

The statistical methods described in the previous sections were applied to compute
the design strain–life curves of the AISI 316L steel. The methods were applied separately to
the elastic and plastic strain contributions. Table 5 summarises the values of the parameters
σ̂′f , ε̂′f , b̂′, ĉ′ estimated by the various statistical methods. Once the values in Table 5 are
introduced in Equation (12), they provide the strain–life design curve in elastic εel,a, plastic
εpl,a and total εa strain amplitude. Figure 9b compares the design curves in total strain
amplitude, for a failure probability α = 5% and confidence β = 90%.

Figure 9b shows that, for both the elastic and plastic strain components, the method
of tolerance interval (“approximate Owen’s method”) is the most conservative, since it
predicts the design line that is most to the left—even though the one-side tolerance interval
provides a line almost overlapped, just shifted to the right. More to the right are the design
lines from the EPI and deterministic methods, although the deterministic method is even
more to the right—it is, in fact, the less conservative method.
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The degree of conservatism of the design curves may be appreciated by comparing the
allowable strain amplitude at a prescribed fatigue life, for an assigned failure probability.
The allowable strain amplitude is a value often of interest at the design stage.

The penultimate column in Table 5 lists the allowable strain amplitude εa,d at
(

2N f

)
d
=

2× 105 reversals to failure, as it is calculated from each design curve.

The last column on the right quantifies the absolute percentage reduction e =
∣∣∣∣ (εa)d
(εa)reg

− 1
∣∣∣∣

of the allowable strain amplitude from regression curve, (εa)reg, to the design curve, (εa)d.
All design curves lead to a reduction of the allowable strain compared to the regression line.
The values confirm the Owen approach as the most conservative, with a reduction up to 20%
is observed. Comparable, though not exactly identical, values of e would be observed for
other values of

(
2N f

)
d
, because the nonlinearity in the strain–life curve makes the reduction

of strain amplitude not constant over the whole range of strains.

6. Conclusions

A detailed experimental analysis of the cyclic behaviour of the AISI 316L stainless
steel was carried out in the present study to characterise and establish a robust procedure
for durability design.

With this aim, low cycle fatigue tests at room temperature for a wide range of strain
amplitudes were performed. As expected, the material showed its distinctive hardening
and softening behaviour, followed by a secondary hardening. However, in contrast with
other experimental observations found in the literature, the secondary hardening was
present even for relatively low strain amplitudes (0.3%), with stress peaks reaching values
as high as 600 MPa for larger strain amplitudes (~0.8%). Differently from what is reported
in the literature, the initial yield stress of the tested material showed a much smaller
value (regardless of whether the 0.2% or 0.0025% offset is considered for its assessment).
Therefore, this outcome might mean that the cyclic response is somehow affected by the
pre-hardening of the material, as also observed by other researchers.

In order to effectively describe the cyclic plasticity behaviour of this material within a
commercial finite element code, a combined kinematic and isotropic modelling approach
was used, where the kinematic part was described by means of the Chaboche model,
whereas for the isotropic part a Voce model was employed. A thorough calibration of
the entire set of parameters involved in the model was performed using the experimental
results. This optimisation process leads to the determination of a material model capable
of describing, with great accuracy, the material cyclic response for strain amplitudes up to
0.7 % and a number of cycles up to that corresponding to the end of the softening phase.

Besides the plasticity models, also the low-cycle fatigue strength was investigated.
Given that the approximate strain–life curve based on the Universal Slope Equations
seemed to be unsuitable to describe the strain–life relationship of the studied material,
much attention was focused on the Manson–Coffin strain–life curve instead. Once the
Manson–Coffin curve was obtained by regression analysis of the experimental data, several
statistical methods were invoked to evaluate the design curve corresponding to a failure
probability of 5% and confidence of 90%. Results emphasise that the so-called Owen
approach, together with the one-side tolerance interval method, gives the most conservative
strain–life curves.

Thanks to the statistical approaches employed in this paper, a more reliable design
process can be achieved starting from the knowledge of the material cyclic response. This
method seems to work well for uniaxially loaded materials, however, when more complex
stress states are involved (i.e., multiaxial), the development of a bespoke cyclic plasticity
model capable of capturing also the secondary hardening would be more suitable for
durability assessment. Future works ought to address this aspect.
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Appendix A

This appendix describes the algorithm used to simulate the uniaxial stress–strain
response obtained by a combined kinematic and isotropic model, whose parameters were
calibrated on experimental data, see Table 2. The simulated cycles are compared on the
experimental cycles, see for example Figure 7.

The algorithm was implemented in Matlab code and it was based on the so-called
“return mapping algorithm” used in computational solid mechanics [36]. Basically, this
algorithm computes the axial stress value once the axial strain history is imposed.

The strain history first needs to be discretised into a vector of N points
ε(i), i = 1, 2, . . . , N, which are uniformly separated by a distance equal to the strain
increment δε(i) = ε(i + 1)− ε(i).

Before the algorithm starts, the initial value (i = 1) of some quantities is set to zero:
σ(1) = 0, εpl(1) = 0, p(1) = 0, Xm(1) = 0, Rz(1) = 0.

For each iteration step, a strain increment δε(i) is imposed and used to determine a
guess value of the stress increment δσ∗ = Eδε in which only the elastic material behaviour
is considered at first; this corresponds to the “elastic predictor phase”. The stress increment
is then used in the yield criterion f ∗(i + 1), see Figure A1, to check whether the material
response is elastic or plastic.

If the evaluated stress with the tentative stress increment δσ∗ gives a negative value
of yield criterion function f ∗(i + 1) < 0, the material behaviour is elastic and the im-
posed stress increment determines the correct stress increment δσ(i) = δσ∗ which the
material is subjected to. Other simulation parameters are updated accordingly. Note
that the value of the yield criterion function considering the tentative stress increment is
evaluated with the back stress and drag stress value in the previous iteration: f ∗(i + 1) =
|σ(i) + δσ∗ − X(i)| − σy,0 − R(i).

Instead, if the yield criterion function has a positive value f ∗(i + 1) > 0, a plastic
deformation takes place and the stress increment must be corrected first in order to bring it
back to the yield surface (“plastic corrector phase”). By means of this correction, and after
calculating the plastic modulus hp(i) = δσ/δεpl , the algorithm can determine the accumu-
lated plastic strain increment δp(i) that is used to calculate the plastic strain increment δεpl .
Again, the simulation parameters are updated accordingly, see Figure A1.

The algorithm ends when the last point in vector ε(i) has been analysed.
One of the main problems for this algorithm is that it does not have any iterative

scheme to guarantee numerical convergence at each iteration, i.e., at each increment of
imposed strain. More precisely, the algorithm makes use of an explicit integration scheme
by which, at each iteration, the plastic modulus is computed by using the values computed
in the preceding iteration, although the plastic modulus is actually a function of the
parameter values at the current step. Nevertheless, convergence is achieved—and the
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algorithm then provides accurate results—if small increments of strain δε are chosen at
each iteration.
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Despite this minor drawback, this type of algorithm is highly recommended as it is
computationally inexpensive and thus allows for a fast check of the parameters estimated
from experiments.
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