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Abstract: The online prediction of friction stir welding quality is an important part of intelligent
welding. In this paper, a new method for the online evaluation of weld quality is proposed, which
takes the real-time temperature signal as the main research variable. We conducted a welding
experiment with 2219 aluminum alloy of 6 mm thickness. The temperature signal is decomposed into
components of different frequency bands by wavelet packet method and the energy of component
signals is used as the characteristic parameter to evaluate the weld quality. A prediction model of weld
performance based on least squares support vector machine and genetic algorithm was established.
The experimental results showed that, when welding defects are caused by a sudden perturbation
during welding, the amplitude of the temperature signal near the tool rotation frequency will change
significantly. When improper process parameters are used, the frequency band component of the
temperature signal in the range of 0~11 Hz increases significantly, and the statistical mean value of
the temperature signal will also be different. The accuracy of the prediction model reached 90.6%,
and the AUC value was 0.939, which reflects the good prediction ability of the model.

Keywords: friction stir welding; weld quality prediction; wavelet packet; temperature signal;
AA2219-T6

1. Introduction

Friction stir welding (FSW) is a kind of solid-state welding method with good effi-
ciency and high weld performance, which is widely used in engineering. Automation and
intelligence in the welding process is an important direction for the development of the
FSW process. The main focus of this research is how to detect and evaluate the weld quality
in the welding process. The traditional methods of FSW inspection and evaluation, such as
ultrasonic inspection, X-ray inspection, and coloring inspection, are difficult to implement
in the welding process. Therefore, accurate online monitoring of the welding process
has become an important focus of research [1–3]. Du et al. [4] combined the numerical
simulation model with a machine learning algorithm to simulate the maximum shear stress
and strain rate in the welding process, studied the influence of the rules on the lifespan
of the tool, and built the tool’s life prediction model based on three machine learning
algorithms to realize an accurate prediction of tool failure. Verma et al. [5] used rotational
speed, traverse speed, and tilt angle as input variables to study the ultimate tensile strength
of the welding seam using machine learning methods, such as Gaussian regression (GPR),
support vector machine (SVM), and artificial neural network (ANN), and realized the
purpose of welding process optimization. Sumesh et al. [6] used the current amplitude
signal to establish a direct connection with the weld quality, extracted the statistical features
of the original data through data-mining software, established a J48 and random forest
algorithm, and reported the classification effect on the weld quality.
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FSW is a typical multifactor process. In addition to the process parameters, the size
change of the workpiece, the disturbance during welding, and other factors will affect the
weld quality. The real-time temperature during welding is an important signal reflecting
the welding state. Wedge et al. [7] found that the temperature significantly affects the
dimension and distribution of the θ phase in the FSW zone of the 2219 aluminum alloy
and the behavior of the weld fracture failure. Shi et al. [8] analyzed the plasticized material
flow in the welding process, which showed that the process parameters would affect the
material flow, and there is an obvious difference between the temperatures of the advanced
side and the retreating side of the welding zone. Samir et al. [9] studied the evolution
of the welding temperature and residual stress of the FSW welds by using a thermal-
force numerical model. They found that, as the welding speed rose, the residual stress
increased. Because FSW is essentially a process of friction heat generation, the welding
temperature, particularly the temperature state of the interface between the tools and
materials, is of great importance to the quality of the weld. However, in the development of
FSW, the relationship between the welding temperature and weld quality, particularly the
influence mechanism of the temperature characteristics on the interface between the tools
and materials in regard to welding defects, has not been fully established, and there are few
reports on the prediction of weld quality using the measured temperature signals [10–12].
Here, we aim to establish the relationship between the measured temperature signal and
the weld quality by studying the temperature signal characteristics of the interface between
the tool and the material.

The 2219 aluminum alloy is a typical representative of Al-Cu alloy with enhanced
strength-to-weight ratio and high fracture toughness, which is commonly used in aerospace
structures, e.g., rocket fuel tanks. At present, the FSW is the preferred welding method for
rocket tanks [7]. In this paper, the FSW process experiment for the 2219 aluminum alloy was
carried out under different conditions. The temperature signal of the interface between the
tool and material was measured by a thermocouple. We used the wavelet packet method
to process the original temperature data, decompose the temperature signal components
related to the weld quality, and extract the deep characteristics of the temperature signal.
The sampling observation and mechanical property test were performed on the welding
seam, and the quality of the joint and the fracture morphology of the sample was observed.
The weld quality prediction was studied by the least-square support vector machine
(LSSVM) and genetic algorithm.

2. Materials and Methods
2.1. Experimental Procedure

The welding material is 2219-T6 aluminum alloy with a thickness of 6 mm, and the
size of the plate is shown in Figure 1a. The unequal width design of the plates will change
the heat dissipation rate during welding. In order to manufacture welding defects at
the designated location and study these defects, a small hole with a diameter of 2 mm
and a depth of 5 mm was processed on the joint surface of the plate. When the tool
is welding at the hole position, welding defects will be formed because of the sudden
loss of material [13,14]. A thermocouple is implanted into the rotating tool to obtain the
temperature signal during the welding process. The thermocouple tip is located at the
contact position between the tool and the material, as shown in Figure 1e. The signal
processing module (see Figure 1d) transmits the temperature signal to the external device,
and the sampling frequency is 180 Hz. According to previous research experience, a
total of 16 groups of welding experiments were designed for different rotating speeds
and traverse speeds and with an appropriate shoulder plunge and tilt angle, as shown in
Table 1. The tensile test samples were cut at a given position on the welded seam Figure 1b
to observe the welding quality. The fracture morphology was observed by scanning
electron microscopy equipment.



Materials 2021, 14, 3496 3 of 13

Materials 2021, 14, x FOR PEER REVIEW 3 of 13 
 

 

welding quality. The fracture morphology was observed by scanning electron micros-
copy equipment. 

 

Figure 1. Welding experiment process: (a) The main dimensions of the workpiece; (b) Welding specimen; (c) Temperature 
signal processing module; (d) Friction stir welding experiment; (e) Position of temperature measuring point of thermo-
couple embedded tool; and (f): Temperature signal during welding. 

Table 1. Weld conditions. 

Parameter 
Rotation Speed 

(r/min) 
Traverse Speed 

(mm/min) 
Shoulder Plunge 

(mm) 
Tilt Angle 

(°) 
Value  850; 1000; 1150; 1300 100; 200; 300; 400 0.1 1.5 

2.2. Models and Methods 
In this paper, an online method for the evaluation of weld quality based on the 

wavelet packet method, LSSVM, and genetic algorithm is established. As a 
time-frequency analysis method for the temperature signal, the wavelet packet is used to 
obtain the temperature signal components of different frequency bands and to extract the 
temperature characteristic components that reflect the weld quality. LSSVM was used to 
implement the prediction model of weld quality classification, and the parameters of the 
model were optimized using the genetic algorithm. 

2.2.1. Wavelet Packet Decomposition 
When the welding material is extruded and stirred by the high-speed rotating tool, 

the work done by the tool on the material is asymmetric, so the interface between the tool 
and the material shows the characteristics of uneven temperature distribution [15,16]. 
During welding, the temperature is affected by the change in the size of the workpiece 
section and the accumulation of heat. At the same time, the temperature signal obtained 

Figure 1. Welding experiment process: (a) The main dimensions of the workpiece; (b) Welding specimen; (c) Temperature
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embedded tool; and (f): Temperature signal during welding.

Table 1. Weld conditions.

Parameter Rotation Speed
(r/min)

Traverse Speed
(mm/min)

Shoulder Plunge
(mm)

Tilt Angle
(◦)

Value 850; 1000; 1150; 1300 100; 200; 300; 400 0.1 1.5

2.2. Models and Methods

In this paper, an online method for the evaluation of weld quality based on the
wavelet packet method, LSSVM, and genetic algorithm is established. As a time-frequency
analysis method for the temperature signal, the wavelet packet is used to obtain the
temperature signal components of different frequency bands and to extract the temperature
characteristic components that reflect the weld quality. LSSVM was used to implement
the prediction model of weld quality classification, and the parameters of the model were
optimized using the genetic algorithm.

2.2.1. Wavelet Packet Decomposition

When the welding material is extruded and stirred by the high-speed rotating tool, the
work done by the tool on the material is asymmetric, so the interface between the tool and
the material shows the characteristics of uneven temperature distribution [15,16]. During
welding, the temperature is affected by the change in the size of the workpiece section
and the accumulation of heat. At the same time, the temperature signal obtained from the
high-speed rotating equipment also contains the interference of system noise and white
noise [12,17]. Obtaining the characteristics related to the weld quality from the original
temperature signal is a task that must be solved. The wavelet packet method can obtain
the characteristics of the signal in the time and frequency domains and can decompose the
low-frequency and high-frequency signals simultaneously. According to the characteristics
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and analysis requirements of the signal, the frequency band is adaptively selected to match
the signal spectrum. The original signal is decomposed by the low-pass filter and the
high-pass filter. These filters are determined by scale function and wavelet function [18,19].

φ(t) =
√

2∑
n

h(n)φ(2t− n) (1)

Ψ(t) =
√

2∑
n

g(n)φ(2t− n) (2)

where ϕ(t) is the scale function, Ψ(t) is the wavelet function, h(n) is the high-pass filter
coefficient, and g(n) is the low-pass filter coefficient.

In each step of the temperature signal decomposition, the original signal is divided
into an approximate signal of low frequency and a detailed signal of high frequency when
the wavelet packet method is used to extract features. If the original signal is decomposed
into the m layer, 2m wavelet packet coefficients are finally obtained, and the original signal
is decomposed into 2m frequency bands components [20]. Figure 2 presents the schematic
diagram of the three-layer wavelet packet decomposition tree.
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To study the mapping law between temperature and weld quality, we extracted the
energy characteristics of the temperature signal component. For example, the signal set
obtained after the reconstruction of the wavelet packet coefficient signal of the m layer is
[Dm0, Dm1, . . . Dm(2

m
−1)] and the energy of the reconstructed signal is [21]:

Emn =
s

∑
k=1
|Dmnk|2 (3)

where n represents the sequence number of the wavelet packet coefficients and s represents
the number of points of each wavelet packet coefficient in the m layer. The wavelet function
used in this paper is the fourth order Daubechies wavelet, and the original temperature
signal is decomposed using the three-layer wavelet packet.

2.2.2. GALSSVM Model

The FSW process is a highly nonlinear process with multiple-input influence, and it is
difficult to establish the relationship between input and output directly through mathe-
matical formulas [22,23]. The machine learning method uses the powerful data processing
ability of a computer to solve complex problems and becomes a feasible way to realize the
welding prediction [24,25]. The SVM is a linear classifier that tries to find a hyperplane to
separate sample data by the highest margin. For nonlinear problems, the integral operator
kernel function is used to map the data into a high-dimensional eigenspace. The SVM
calculation can be transformed to solve a convex quadratic programming problem [26,27].
Here, we adopted the LSSVM algorithm, which replaces the inequality constraints of the
original quadratic programming in SVM with an equality constraint to reduce the compu-
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tation consumption and improve the learning performance. The solution model function
of LSSVM can be expressed as [28,29]:

f (x) = ωTφ(x) + b (4)

where ϕ(x) is the mapping function, x is the input variables, ω is the weight vector, and b
is the bias value. The quadratic programming problem for LSSVM is given as:

minJ(ω, e) = 1
2ω

Tω+ 1
2 C

n
∑

k=1
e2

k

s.t. yk = ωTφ(xk) + b + ek, k = 1, 2, . . . , n

 (5)

where C is the penalty factor and ek is the error between the predicted and the actual output.
Using the Lagrange multiplier method and kernel function, the nonlinear regression model
is transformed as [27]:

f (x) =
n

∑
i=1

αiK(x, xi) + b (6)

where αi is the Lagrange multiplier and K(x, xi) is the kernel function that satisfies the
Mercer condition. The kernel function is the key to the LSSVM algorithm. Its function is to
transform the data into high-dimensional space. We adopted the Gaussian kernel function
in this paper, and its expression is given in Equation (7) [30]:

K(x, xi) = exp
{

γ‖x− xi‖2
}

(7)

where γ is the kernel parameter, and γ and C are the crucial parameters for the LSSVM
model. In this paper, the genetic optimization algorithm (GA) was used to optimize
the value of γ and C. The optimization process mainly includes binary coding of the
parameters, establish the initial population, takes the accuracy of the prediction model as
the fitness function, and then selects, crosses, and mutates until the optimized parameters
are obtained. The workflow of the GA algorithm is shown in Figure 3.
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According to the requirements of the engineering application, we evaluated the weld
quality based on the tensile strength of the joints. According to the coefficient σ of the
2219 aluminum alloy substrate (420 MPa), the weld quality was divided into three types
as shown in Table 2. Here, the one versus rest (OVR) method was used to solve the tri-
classification prediction problem. We constructed three LSSVM models, of which the j one
is used to judge whether the sample belongs to the j class or not. The temperature signal
characteristics of the welding process are taken as the input variables for the prediction
model. At the same time, because the process parameters are the key factors in determining



Materials 2021, 14, 3496 6 of 13

the weld quality, we also take two variables, rotational speed and traverse speed, as the
input for the model.

Table 2. Definition of welding performance types.

Type Type 1 Type 2 Type 3

Coefficient of strength σ ≥ 75% 65% < σ < 75% σ ≤ 65%

3. Results and Discussion
3.1. Experimental Results

In this paper, we conducted welding experiments under different process conditions,
observed the weld samples, evaluated the weld quality by tensile testing, and studied the
typical characteristics of the welding defects. The weld quality of different joints is shown
in Figure 4.
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Figure 4. Weld quality of different joints: (a) Perfect joint (rotational speed: 1150 r/min, traverse speed: 300 mm/min);
(b) Joint after sudden perturbation (rotational speed: 1150 r/min, traverse speed: 300 mm/min); and (c) Welding joint with
abnormal workmanship (rotational speed: 1300 r/min, traverse speed: 100 mm/min).

The temperature signal analysis are shown in Figures 5–8 (n.b. Different scaling). The
signal with a duration of 2 s was intercepted at the observation position of the weld for
research. The spectrum of the signal shows that the original temperature data is composed
of components of multiple frequency bands. According to Figure 5a,b, the temperature
signal corresponding to the well-formed weld (rotational speed: 1150 r/min, traverse speed:
300 mm/min) was observed, there were high-frequency noise components on the spectrum,
and there was an obvious peak component near the tool rotation frequency (19 Hz), with
an amplitude of about 1.6. According to Figure 5c,d, when the welding process reached the
position of the hole, the tunnel defect was formed because of the sudden material loss, as
shown in Figure 4c. The main change in the temperature signal in the figure was that the
amplitude of the peak component near the tool rotation frequency increased to 2.5. The
fracture morphology of joints with tunnel defects and perfectly formed joints was observed
(see Figure 9). The fracture locations were all located near the forward side of the weld
nugget, and the joints with tunnel defects derived cracks from the position of the hole and
eventually fractured. The results of the scanning electron microscopy (SEM) showed that,
compared with the fracture morphology of the perfect joint, the fracture morphology near
the tunnel defect had larger dimples, and the second phase particles of larger size could
be seen inside. In the weld core area, the material underwent dynamic recrystallization
and formed a fine grain structure because of the strong stirring and crushing effect of
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the tool [31]. According to the Zener–Holloman model theory, the grain size is positively
correlated with the strain rate [32]. It can be considered that, for welded joints with tunnel
defects, the extrusion and friction on the material behind the shoulder is insufficient when
the tool is moving forward, and the heat generation is inadequate as well. Therefore, the
temperature signal spectrum shows a peak change near the tool rotation frequency.
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temperature signal component at node 8.
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According to Figure 5e,f, when the welding process parameters are inappropriate
(rotational speed 1300 r/min, welding speed 100 mm/min), the temperature signal showed
a higher amplitude component in the low-frequency band (0~10 Hz). Meanwhile, the
statistical mean value of the temperature signal also changed significantly, from 482 ◦C for
the well-formed weld to 519 ◦C. According to the appearance of the quality of the weld
surface, the suitable welding process surface is a uniform grain, as shown in Figure 4a,
while the unsuitable process parameters will produce uneven grain features, showing the
characteristics of alternate deep and shallow paths, as shown in Figure 4c.

According to the experimental results, when weld quality problems are caused by
inappropriate welding process or a sudden perturbation in the welding process, the
main changes in the temperature signals are the amplitude of the components in the
low-frequency band (0~10 Hz), the amplitude of the components near the tool rotation
frequency, and the statistical mean temperature. Therefore, we use the three-layer wavelet
packet method to further study the original. The three-layer wavelet packet decomposition
tree is shown in Figure 2, where the signals of nodes 7 and 8 correspond to the signal
components in the frequency band of 0~11 Hz and 11~22 Hz, respectively. Node 8 is the fre-
quency band component of the rotational speed, reflecting the temperature characteristics
of the uneven distribution of the contact interface between the tool and the material. The
temperature signals of the different welding conditions were decomposed by the wavelet
packet, and the signal components of nodes 7 and 8 were reconstructed. Additionally,
Figure 6 shows the temperature signal component of the perfectly formed welds, Figure 7
shows the temperature signal component of the welds with tunnel defect formation after
sudden perturbation, and Figure 8 shows the temperature signal component of welds using
an improper process. The calculated signal energy values were used as the input variables
of the weld quality prediction model.

3.2. Predictive Model Results

We conducted FSW experiments under different process conditions, evaluated the
welding quality through tensile testing, and obtained 96 groups of test data samples (partial
data are shown in Table 3). The energy value obtained by the wavelet packet method is
used as the influencing variable to evaluate the weld quality. After the homogenization,
the energy data are used in the GA-LSSVM prediction model. The input variables of the
model include the statistical mean value of the welding temperature signal, component
signal energy at nodes 7 and 8, rotational speed, and traverse speed.

Table 3. Test data of partial welds.

Rotational
Speed
(r/min)

Traverse
Speed

(mm/min)

Mean
Temperature

(◦C)
Energy 7 Energy 8

Tensile
Strength

(MPa)
Type

850 100 479 0.24 0.76 264.3 3
1000 100 512 0.36 0.13 318.2 1
1150 100 518 0.11 0.62 296.3 2
1300 100 529 0.15 0.89 259.6 3
850 200 485 0.23 0.24 205.5 3

1000 200 510 0.86 0.16 327.3 1
1150 200 512 0.92 0.14 328.3 1
1300 200 513 0.35 0.24 317.2 1
850 300 528 0.44 0.68 205.6 3

1000 300 489 0.14 0.84 297.3 2
1150 300 493 0.21 0.67 336.2 2
1300 300 511 0.38 0.14 316.3 1
850 400 493 0.29 0.45 302.6 2

1000 400 479 0.76 0.24 264.3 3
1150 400 485 0.83 0.16 234.9 3
1300 400 506 0.08 0.24 319.7 1
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To study the prediction performance of the model and ensure the appropriate number
of test sets and training sets, we used the method of five-fold cross validation. The original
data set was divided into five groups, one of which was used as the test set and the others
as the training sets. A total of five evaluation results were obtained, and the prediction
performance of the final model was obtained by taking the average value of the 5 results [33].
After 100 iterations of the genetic optimization algorithm, the optimal model parameters γ
and C are 8.3 and 2.1, respectively, and the accuracy of the model prediction reached 90.6%,
as shown in Figure 10a. Figure 10b shows the ROC curve of the model under different
decision thresholds [34], and the area under the curve (AUC) reaches 0.939, which reflects
the model’s good prediction ability.
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4. Conclusions

The real-time temperature signal obtained from the interface between the tools and
materials can play an important role in the online monitoring of weld quality. The process
and approaches to constructing the FSW quality prediction model are shown in Figure 11.
The results of the FSW experiments show that the welding quality problems caused by
different factors present different characteristic changes in the temperature signal. The
conclusions of this paper are as follows:

1. Tunneling defects are formed when sudden perturbations are experienced during
welding. In the feed direction, plastic flow and heat generation of the material behind
the tool is insufficient. The welding temperature signal shows the amplitude variation
of the signal component near the tool rotation frequency.

2. When inappropriate process parameters are used, welding defects, such as large
flints and uneven surface texture, will be caused, and changes in low-frequency
components (0~10 Hz) and statistical mean characteristics will be shown in the
welding temperature signal.

3. The low-frequency component of the original temperature signal and the frequency
component containing the rotation frequency of the tool were extracted using the
three-layer wavelet packet method, and the energy value of the component signal
was obtained. The characteristics of these temperature signals played an important
role in improving the efficiency of the weld quality identification. Using the extracted
temperature component signal energy, statistical mean temperature, rotational speed,
and welding speed as input variables, the prediction accuracy of the weld quality
classification prediction model established by the GA-LSSVM algorithm can reach
90.6%, and the AUC value is 0.939.
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