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Abstract: The Makishima and Mackenzie model has been used to determine the mechanical prop-
erties of the PbO-WO3-Na2O-MgO-B2O3 glass system. The number of bonds per unit volume of
the glasses (nb) increases from 9.40 × 1022 to 10.09 × 1022 cm−3 as the PbO content increases from
30 to 50 mol%. The Poisson’s ratio (σ) for the examined glasses falls between 0.174 and 0.210. The
value of the fractal bond connectivity (d) for the present glasses ranges from 3.08 to 3.59. Gamma
photon and fast neutron shielding parameters were evaluated via Phy-X/PSD, while that of electrons
were calculated via the ESTAR platform. Analysis of the parameters showed that both photon and
electron attenuation ability improve with the PbO content. The fast neutron removal cross section of
the glasses varies from 0.094–0.102 cm−1 as PbO molar content reduced from 50–30 mol%. Further
analysis of shielding parameters of the investigated glass system showed that they possess good
potential to function in radiation protection applications.

Keywords: Makishima and Mackenzie model; glasses; Young’s modulus; low energy; shielding

1. Introduction

Nuclear medicine utilizes different radiopharmaceuticals for treatment of a number of
diseases. One of the recent techniques applied widely for diagnostic molecular imaging is
the positron emission tomography (PET) and computer tomography (CT). Other techniques
are also used, which depend mainly on the use of a specific type of radiation in different
medical fields for the purposes of radiation treatments [1]. As a result of the frequent and
continuous use of such devices, workers in medical facilities are exposed to direct exposure
to ionizing radiation, and this becomes a real threat to the safety of the workers [2]. It is
well known that this direct exposure to radiation is not limited only to workers in medical
facilities, but also to the patients who undergo medical diagnosis in nuclear medicine. Thus,
one of the most important challenges facing medical workers is to reduce the exposure
to radiation, and this is done through a set of preventive procedures. One of the most
popular preventive procedures is to take the time and time factors into account. In brief, it
can be said that reducing the time of exposure to the radiation as well as increasing the
distance between the radioactive source and the workers lead to reduce the unwanted
effects of radiation well. Sometimes these two factors cannot be well controlled, and
therefore it becomes necessary to use certain materials that have the ability to absorb the
radiation and thus mitigate the negative effects of radiation. Such materials, which are
widely used in nuclear and radiological fields, are called radiation shielding materials [3–7].
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Historically, lead bricks, heavy concretes, alloys and ceramics are common materials used
for the shielding purposes in several facilities [8–11]. Recently, the necessity has become
urgent to replace these materials with new transparent materials, and to produce protective
eyeglasses against radiation, as well as in the manufacture of window glasses used in the
hospital and medical radiology centers [12–14].

During the past years to the present day, researchers have developed various types of
borate, tellurite, silicate glasses and other common types of glass as promising alternative
materials for radiation protection. Usually the radiation protection properties of any new
glass system are evaluated through three main methods, including experimental or theo-
retical studies in addition to the works that are based on the simulation programs [15–19].
Although researchers focus on developing different types of glass as a protective material
for radiation, there are few previous studies that have focused on studying the proper-
ties of radiation protection at low energies and thus studying the possibility of using the
glasses as a radiation protective material in medical facilities, especially those use low
energies [20–22]. On the other hand, among different glass systems, borate glasses are of
interest fundamentally for several reasons such as: they have low melting temperatures,
their wide glass-forming range, their compatibility with transition metals and their ability
to form glass with heavy metal oxides [23,24]. For borate-based glass systems, heavy metal
oxides such as PbO addition can conveniently enhance the density of the glasses to im-
prove the radiation protection efficiencies. The aim of this work is to report the mechanical
properties and radiation attenuation factors for PbO-WO3-Na2O-MgO-B2O3 glass systems
at low energy region (between 22 and 364 keV).

2. Materials and Methods

Previous findings [25] provide all the information necessary for preparing the samples.
Table 1 presents the chemical composition of the samples.

Table 1. Chemical composition of the selected samples.

Sample
Mole Fraction Wt. Fraction of Elements Present in

the Sample Density
(g/cm3)

Molar
Volume

(cm3)PbO WO3 Na2O MgO B2O3 B O Na Mg W Pb

PbB30 30 10 10 10 40 0.067 0.249 0.036 0.019 0.143 0.485 4.549 28.187
PbB35 35 10 10 10 35 0.056 0.224 0.034 0.018 0.135 0.534 4.81 28.254
PbB40 40 10 10 10 30 0.045 0.200 0.032 0.017 0.128 0.577 5.061 28.369
PbB45 45 10 10 10 25 0.036 0.179 0.030 0.016 0.122 0.616 5.149 29.376
PbB50 50 10 10 10 20 0.027 0.161 0.029 0.015 0.116 0.652 5.326 29.840

The glasses have been coded as:
PbB30: 30 PbO–10 WO3–10 Na2O–10 MgO–40 B2O3 (ρ = 4.549 g/cm3)
PbB35: 35 PbO–10 WO3–10 Na2O–10 MgO–35 B2O3 (ρ = 4.810 g/cm3)
PbB40: 40 PbO–10 WO3–10 Na2O–10 MgO–30 B2O3 (ρ = 5.061 g/cm3)
PbB45: 45 PbO–10 WO3–10 Na2O–10 MgO–25 B2O3 (ρ = 5.149 g/cm3)
PbB50: 50 PbO–10 WO3–10 Na2O–10 MgO–20 B2O3 (ρ = 5.326 g/cm3)

2.1. Mechanical Properties

The average cross-link density (nc) is define by the formula [26]:

nc =
∑ xi(nc)i(Nc)i

∑ xi(Nc)i
(1)

where (nc = nf – 2) and nf is the coordination numbers, xi is the mole fraction and Nc is the
number of cations present in the respective constituents of the glasses.
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The nb is given by [27]:

nb =
NA

Vm
∑(nf)ixi (2)

where NA and Vm are the Avagadro’s number and the molar volume of the glass, respectively.
According to Makishima and Mackenzie (MM) model, the Young’s modulus (E), bulk

modulus (K), shear modulus (G), longitudinal modulus (L), Poisson’s ratio (σ), fractal bond
connectivity (d) and hardness (H) are calculated via the next equations [28,29]:

E = 8.36VtGt (3)

K = 10V2
t Gt (4)

G =
30V2

t Gt

(10.2Vt − 1)
(5)

L = K +

(
4
3

)
G (6)

σ = 0.5 −
(

1
7.2Vt

)
(7)

d = 4
(

G
K

)
(8)

H =
(1 − 2σ)E
6(1 + σ)

(9)

where Vt and Gt are the ionic packing ratio and the dissociation energy per unit volume of
the glass, respectively.

2.2. Radiation Shielding Parameters and Computation

The attenuation of the radiation is usually described by several parameters depending
on the type of radiation and sometimes its energy. For photons, the transmission through
an attenuating barrier (of mass thickness xm) in a broad beam approximation is easily
described by the modified Beer–Lambert equation: I = IoBe−(µρ ) xm where Io and I are
quantities describing the photons before and after transmission. µm is called the mass atten-
uation coefficient, µ

ρ ; a parameter that measures the proportion of the beam which transmits
through the barrier without interaction. Another parameter that serves similar purpose
(for a medium of mass density ρ) is the linear attenuation coefficient, LAC (µ = µ

ρ ∗ρ). In
the Beer–Lambert relation, the parameter B is referred to as the photon buildup factor.
B accounts for the measure of secondary photons created within and transmitted as the
incident photons interact with the attenuating barrier. Other parameters for describing
and comparing the level of photon attenuation (shielding) include effective atomic number
(Zeff), half value thickness (HVT) and mean free path (MFP).

The level of attenuation of fast neutron and charged particles such as electrons by
an interacting medium is often measured by the fast neutron removal cross section and
stopping power/continuous slowing down approximation (CSDA) range, CR.

The photon and fast neutron shielding parameters of PbB30–50 glass systems were
computed with the aid of a free, reliable and accurate web-based phy-X/PSD platform [12].
The photon parameters were estimated for photon energies of selected radioactive sources
(22, 35, 47, 88, 99, 161, 284, and 364 keV). To get the exposure buildup factor (EBF), the
GP interpolation formula was used to get the EBF at the specified energies. The EBF
of the glasses were first estimated at standard energies via phy-X/PSD. The five GP
parameters of each glass at the source energies of interest were interpolated using the
equation: C =

C1(log E2−log E)+ C2(log E −log E1)
log E2 −log E1

where C1 and C2 are the values of each of
the G-P fitting parameters obtained from phy-X/PSD at tabulated energies E1 and E2
respectively between which E, the energy of interest falls. The obtained fitting parameters
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were subsequently used to compute EBF based on the well-known GP fitting method [30,31].
On the other hand, the electron SP and CR were evaluated via the ESTAR platform.

3. Results and Discussion
3.1. Mechanical Properties

Mechanical characteristics, as determined by Makishima and Mackenzie (MM), are
shown in Table 2. In Figure 1, one can see the variation of these parameters with per-
centage composition of PbO. The cross-linked glass network’s bond connectivity and
stability may be inferred from the values of nb. The nb increases from 9.40 × 1022 cm−3

to 10.09 × 1022 cm−3. With a greater number of non-bridging oxygens present in the net-
work, there is likely to be a rise in the valence of nb, which may imply an increase in the
cross-linking of the network. The nc rises from 2.000 to 2.615. For E, the moduli values fall
from 34.10 to 30.72 GPa. For K, the moduli values drop from 19.57 to 15.64 GPa. For G,
the moduli values drop from 15.08 to 14.04 GPa, and for L, the moduli values fall from
39.67 to 34.36 GPa. As rigidity and mechanical strength diminish with increasing PbO,
so does the value of these moduli. The crosslink density of the glasses is defined by the
σ. The σ falls between 0.174 and 0.210. The d parameter, which quantifies the degree of
cross-linking in the glass network, is crucial. For the current glasses, the approximate value
of d is 3.08 to 3.59. This shows that the glasses in use today have 3D networks. With rise in
PbO content, the H of the current glasses rising from 2.719–2.847 GPa indicates the increase
in connectivity of the selected glasses.

Table 2. Mechanical properties of the examined samples.

Sample
Mechanical Properties

nb
(× 1022 cm−3) nc

E
(GPa)

K
(GPa)

G
(GPa)

L
(GPa) σ d H

(GPa)

PbB30 9.40 2.000 34.10 19.57 15.08 39.67 0.210 3.08 2.719
PbB35 9.70 2.138 33.63 18.96 14.94 38.88 0.205 3.15 2.741
PbB40 9.98 2.285 33.10 18.30 14.78 38.01 0.199 3.23 2.765
PbB45 9.94 2.444 31.59 16.60 14.31 35.67 0.184 3.45 2.812
PbB50 10.09 2.615 30.72 15.64 14.04 34.36 0.174 3.59 2.847

Figure 2 shows the influence of the photon energy on the computed µ
ρ values of the

studied glasses. The figure shows a consistent decay in the value of µ
ρ as energy progresses

with the decay appearing to be swift for energies below 88 keV compared to the rest of
the energy spectrum. Such smooth decay in µ

ρ indicates relative reduction in the photon
absorbing capacity of the glasses at higher energies. This is due to the reduction in the
photon interaction cross section of the glasses as energy increases. Within the selected
photon energies, two types of photon interactions are generally responsible for the observed
behavior of the µ

ρ with energy; these are: photoelectric absorption (PE) and incoherent

scattering (InCS) of photons. The cross section for µ
ρ due to PE,

(
µ
ρ

)
PE

∝ E−3 while that

due to InCS,
(
µ
ρ

)
InCS

∝ E−1. The
(
µ
ρ

)
PE

has the dominant effect on µ
ρ at energies (E) in

the lower arm of the considered energy spectrum i.e., E < 88 keV, hence the observed
quick fall in the values of µ

ρ at these energies may be attributed to this, since the values
of µ

ρ diminish dramatically at these energies compared to the energy range E > 88 keV

where the contribution of
(
µ
ρ

)
InCS

to µ
ρ becomes more significant. The combined effect

due to the energy dependence of
(
µ
ρ

)
PE

and
(
µ
ρ

)
InCS

ensures that photon attenuating

competence of the glasses decline at higher energies. Hence, µ
ρ peaks at 22 keV with

corresponding value of 39.86, 42.68, 45.20, 47.45 and 49.50 cm2/g for PbB30–50, while
at the end of the energy spectrum, µ

ρ decreased to circa 0.56, 0.49, 0.48, 0.47 and 0.46%
of the peak values, respectively. Additionally, conspicuous in Figure 2 is the fact that
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the differences between the mass attenuation coefficients of the glasses is clearer in the
PE dominated (low energy) compared to the InCS dominated (E > 88 keV) region of the
energy spectrum. As the influence of InCS becomes significant, the differences in the mass
attenuation coefficient of the glasses appears to fade out. At each energy, the differences in
the values of µ

ρ follow the trend
(
µ
ρ

)
PbB30

<
(
µ
ρ

)
PbB35

<
(
µ
ρ

)
PbB40

<
(
µ
ρ

)
PbB45

<
(
µ
ρ

)
PbB50

.

This trend and the variation in the magnitude of the differences between µ
ρ of the glasses

at different energies are enforced by the dependence of both PE and InCS cross sections
on the chemical composition of the glasses. For compounds and mixtures, the Zeff is a
number which can be used to approximately describe their chemical compositions. The Zeff
is usually higher for substances containing a greater proportion of higher atomic number
atoms [32]. Thus, it is expected that the Zeff of PbB50 > PbB45 > PbB40 > PbB35 > PbB30
due to the increasing Pb (Z = 82) atomic content by weight as given in Table 2. Furthermore,
the fact that

(
µ
ρ

)
PE

∝ Z3 and
(
µ
ρ

)
InCS

∝ Z0 explains the distinct and not so conspicuous

differences in µ
ρ values for the glasses in the low and high end of the energy spectrum,

respectively. The observed behavior of the µ
ρ of the PbB-glasses with respect to energy and

Pb content of the glasses has also been reported in recent times for other Pb-based glass
systems [33–36].
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Figure 2. The mass attenuation coefficient of the investigated glass samples.

The variation of µ
ρ with respect to energy and chemical content is similar to that of

µ (Figure 3) due to similar reasons. However, the differences in the µ value of the glasses
are greater at similar energy compared to µ

ρ due to the sensitivity of µ to density unlike µ
ρ

which has been normalized for density differences. The linear attenuation coefficient is a
measure of the relative photon absorption capacity of the glasses at equal thickness (in cm).
µ of PbB30–50 glasses decrease from 181.31–0.92, 205.28–1.01, 228.74–1.09, 244.37–1.15 and
263.33–1.21 cm−1 as E increases from 22–364 keV. Similar to µ

ρ , the relative close proximity
of the values of µ at E E ≥ 161 keV is a further attestation that µ is less sensitive to variation
in the chemical composition of the glasses at these energies.
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Figure 3. Linear attenuation coefficient µ spectra of PbB30–50 glasses.

The chemical composition effect of an attenuating medium on its photon attenuation
capacity is often expressed via the Zeff. Zeff depends on photon energy. Variation in the
value of Zeff as a function of energy is illustrated in Figure 4. As expected, Zeff declines as
energy appreciates due to the dependence of PE and InCS on chemical definition of the
glasses and photon energy. Zeff value varies from 29.41 to 78.45 for all the glasses and for
all considered photon energies. Figure 4 also showed that glasses with higher Pb atomic
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content records higher value of Zeff, implying that low Zeff indicates low photon shielding
capacity and vice versa.
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Figure 4. Variation of Zeff with photon energy for PbB30–PbB50 glasses.

The thickness of an attenuating medium required to attenuate incident photons by
50% is termed the half value layer/thickness (HVT). It is an easy parameter for stating
and analyzing the shielding prowess of any medium. The effect of PbO molar content
of the PbB-glasses on the HVL at different energies is depicted in Figure 5. The figure
obviously showed that PbO content of the glasses influences their respective HVT at each
photon energy. The growth of PbO molar concentration in the glass system decreases the
HVT of the glasses at each energy. The reduction of the HVT is due to the high density
and effective atomic number of the glasses with higher PbO content as interaction cross
section of photon increases with atomic number and particle density. This is an indication
that photon attenuation efficiency is directly proportional to the PbO content in the PbB-
glasses. Hence, thicker PbB glasses with lower PbO content is required to achieve similar
attenuation level compared to one with higher PbO content and vice versa.
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Changes in the EBF of the glasses at selected depths up to 2 MFP at all source energies
considered is given in Figure 6. The EBF varies with energy in a analogous fashion for
all the glasses. High EBF was recorded at energies corresponding to absorption edges of
the atomic species present in the glasses. EBF grows with thickness of the glasses due to
multiple scattering at greater depth. Comparing EBF of the glasses at 22, 88 and 364 keV as
shown in Figure 7 reveals that EBF of the glasses was directly proportional to the effective
atomic number of the glasses at 22 and 88 keV while the reverse is the case at 364 keV.
The EBF at the two former energies is due to secondary photons produced by photon
electrons produced by the PE process. These electrons are directly proportional to effective
atomic number, hence the observed trend. On the contrary, EBF at 364 keV is due to those
produced by the InCS process and since the cross section is proportional to Z

A ; this quantity
is inversely proportional to Zeff, this explains the reversal of the EBF trend at this energy.
Obviously, the shielding efficiency of the PbB-glass shield can be improved by reducing
photon buildup at lower energies if lower glass thickness is adopted for shielding. The
increment in the PbO content of the glasses improved the photon protection ability of the
investigated glasses.
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In order to compare the shielding power of the investigated glass system with those of
conventional shields (ordinary concrete (OC), high density steel magnetite concrete (StMag)
and two commercial glass shields containing lead known with the tradenames RS-360 and
RS-253-G18), the mean free path (MFP) was used. As a shielding parameter, high MFP
indicates that photon moves a large distance before interaction, and hence attenuation is
reduced. Figures 8 and 9 show the comparison in the value of MFP of the glass systems
and those of other materials (OC, StMag), RS-360 and RS-253-G18) at all the considered
photon energies. The figures reveal that MFP increases with energy for all media due
to low interaction cross section of photons at higher energies. However, at equal energy,
the photon shielding capacity of the PbB-glasses was superior to those of the compared
materials. This is a strong empirical indication that the glasses included in the present
study possess better photon protection capacity compared to these conventional shields.
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3.2. Fast Neutron Attenuation Feature

The fast neutron removal cross section (FNRCS) is to fast neutrons what the µ is to
photons. The FNRCS (in cm−1) is the probability that a fissile/fast neutron will be removed
from a fast a neutron beam after first interaction with an attenuating medium. Figure 10
shows the magnitude of the FNRCS of each of the PbB-glasses. The FNRCS decreases in
the glasses as Pb and B content increase and decrease, respectively. This is expected as
B is a better fast neutron absorber than Pb. The FNRCS value of the glasses varies from
0.094–0.102 cm−1. Comparing FNRCS values of PbP30–PbB50 with those of some common
fast neutron absorber (such as OC (0.094 cm−1), graphite (0.099 cm−1) and polyacrylic acid,
PPA (0.088 cm−1), it is clear that all the PbB glasses are better than PPA while PbB30 is
superior to all the compared materials in terms of neutron absorption.
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3.3. Range and Stopping Power of Electrons

The total stopping powers TSP (MeV/cm) and the continuous slowing down approxi-
mation range (CR) of electrons with kinetic energy (T) between 0.01–10 MeV in the glasses
were plotted as shown in Figure 11. The movement of electrons through a material results
in energy losses due to Coulomb interactions and bremsstrahlung production. The TSP
accounts for the energy loss due to these two processes per unit length of the interacting
medium. Generally, SP initially decreases with T for T less than 1 MeV for all glasses.
This is due to losses resulting from Coulomb interaction whose cross section decreases
with energy. At energies greater than 1 MeV, the radiation yield becomes high due to
the dominant effect of radiation losses. The increasing radiation yield of electrons with
energy ensures that the SP grows with T as observed in Figure 11. Total SP of the glasses in-
creases according to the trend throughout the T spectrum: (SP)PbB50 > (SP)PbP45> (SP)PbB40
> (SP)PbP35 > (SP)PbB30. Contrary to SP, CR follows a reverse trend. Higher TSP ultimately
leads to lower penetration (CR) in the glasses as shown in Figure 12. Figures 11 and 12
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show that energetic electrons shielding (like just like photon absorbing) features improve
with increase in PbO content of PbB-glasses.
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4. Conclusions

The Makishima and Mackenzie model has been used to determine the various me-
chanical properties of the PbO-WO3-Na2O-MgO-B2O3 glass system prepared using the
melt quenching technique. The values of E, K, G and L moduli decrease from 34.10 to
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30.72 GPa for E, 19.57 to 15.64 GPa for K, 15.08 to 14.04 GPa for G and 39.67 to 34.36 GPa
for L, respectively, as the PbO increases. Gamma-ray photons, electrons and fast neu-
tron shielding parameters were calculated for the PbB-glasses using standard procedures.
Obtained parameters showed that the increase of PbO content of the glasses had strong
positive influence on their shielding ability against photons and electrons. Hence, PbB50
had superior photon and charged particle (electron) absorption competence among the PbB
glasses. Analysis of fast neutron removal cross sections of the glasses indicated that FNRCS
increased/decreased with B2O3/PbO molar content, respectively, with PbP30 having the
highest FNRCS value. The PbB glass sample with the best fast neutron shielding compe-
tence possesses the least photon and charged particle absorbing efficacy. Comparing the
radiation shielding ability of the glasses with those of existing shielding materials, it is obvious
that the investigated glasses have huge potential in radiation protection applications.
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