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Abstract: The control of nanoparticle agglomeration during the fabrication of oxide dispersion
strengthened steels is a key factor in maximizing their mechanical and high temperature reinforce-
ment properties. However, the characterization of the nanoparticle evolution during processing
represents a challenge due to the lack of experimental methodologies that allow in situ evaluation
during laser powder bed fusion (LPBF) of nanoparticle-additivated steel powders. To address this
problem, a simulation scheme is proposed to trace the drift and the interactions of the nanoparticles
in the melt pool by joint heat-melt-microstructure-coupled phase-field simulation with nanoparticle
kinematics. Van der Waals attraction and electrostatic repulsion with screened-Coulomb potential are
explicitly employed to model the interactions with assumptions made based on reported experimen-
tal evidence. Numerical simulations have been conducted for LPBF of oxide nanoparticle-additivated
PM2000 powder considering various factors, including the nanoparticle composition and size dis-
tribution. The obtained results provide a statistical and graphical demonstration of the temporal
and spatial variations of the traced nanoparticles, showing ~55% of the nanoparticles within the
generated grains, and a smaller fraction of ~30% in the pores, ~13% on the surface, and ~2% on
the grain boundaries. To prove the methodology and compare it with experimental observations,
the simulations are performed for LPBF of a 0.005 wt % yttrium oxide nanoparticle-additivated
PM2000 powder and the final degree of nanoparticle agglomeration and distribution are analyzed
with respect to a series of geometric and material parameters.

Keywords: additive manufacturing; laser powder bed fusion; selective laser melting; oxide disper-
sion strengthened steel; phase-field model; finite element simulation; nanoparticle interaction

1. Introduction

Powder-based laser additive manufacturing techniques such as Laser Powder Bed
Fusion (LPBF) [1] or Direct Energy Deposition (DED) [2] have been recently established as
methods that allow the strengthening of metal alloys by modification of the microstruc-
ture [3]. Often, the strengthening is achieved by introducing lattice-matched nanoparticles
within the surrounding matrix [1]. Another methodology used for strengthening is the
introduction of exogenic dispersoids into the metallic matrix leading to the retardation
of dislocation movements. Dislocations interact with the impenetrable dispersoids by
the formation of a dislocation loop in between neighboring dispersoids only allowing
dislocation loops with equilibrium diameter below the dispersoids interspacing to bypass
the obstacle. This effect, known as the Orowan mechanism, describes that a fine dispersion
results in efficient hardening [4]. Oxide dispersion strengthened (ODS) steels make use
of this mechanism. The improved mechanical properties at high temperatures of ODS
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alloys can be related to the nature of the steel matrix as well as the composition, size,
and distribution of the dispersoids (i.e., nanoparticles). Introduced nanoparticles in ODS
steels are typically composed of yttrium-based oxides, exhibiting low solubility in the steel
matrix and having a low potential for coarsening by Ostwald ripening [5]. In combination
with the refining agent Titanium, nanoparticles with the chemical composition Y,Ti,O; [6],
Y,TiOs5 [6] are formed [7] with typical diameters of 2-3 nm in the 14YWT alloy [8]. The ad-
dition of aluminum enables the formation of various Y-Al-O-based compounds (YAIO;,
Y3Al504,) [9] leading to coarser dispersoids (~ 15 nm) and a reduced number density in
the PM2000 alloy [8], resulting in increased ductility at the cost of lower strength.

The main fabrication route for ODS steels is the powder metallurgy route [10]. How-
ever, this expensive and complex fabrication route often leads to a low fracture toughness
in the fabricated part and is inflexible in the part design [11]. As an alternative, additive
manufacturing techniques are capable of producing ODS materials offering high solidifica-
tion rates in combination with strong Marangoni forces within the melt pool, potentially
leading to a homogeneous distribution of the introduced nanoparticles [12]. The distribu-
tion of these nanoparticles is highly influenced by the additive manufacturing technique
employed and the parameters selected for processing due to differences in the melt pool
dynamics. However, recent studies on this topic show that it is difficult to achieve the
optimum nanoparticle size according to the Orowan mechanism due to segregation or
agglomeration of the nanoparticles, which in turn was found to deteriorate the mechanical
properties of the part [13]. Approaches to optimize the process such as evaluating the
influence of the powder characteristics [14] and process parameters [15], or alternative
additivation routes such as light mixing [16], improve the dispersion of the nanoparticles;
however, they still lack control over the nanoparticle size.

The size and dispersion of the nanoparticles in the ODS steels are influenced during
the steps that the initial powder undergoes until the fabrication of the ODS steel. First,
the nanoparticles are supported on the steel microparticles. Ball milling of the yttrium-
based nanoparticles with the steel powder is the most common approach to achieve
it [17,18]. While widely employed, the control of the final nanoparticle size and degree
of dispersion by this methodology is limited, and the steel microparticles size and shape
can also be affected [19]. To address this drawback, alternative supporting procedures
have been proposed [20] such as resonant acoustic mixing [21], solid-liquid reaction [22],
or colloidal dielectrophoretic deposition [23,24]. Once the nanoparticle-additivated powder
is obtained, the processing technique employed to generate the ODS steel samples and
the experimental parameters selected determine the evolution of the nanoparticles, their
final size, and dispersion in the ODS steel [12,25]. Even techniques with a similar working
principle to LPBF like direct energy deposition (DED)—both laser additive manufacturing
techniques—Ilead to differences in the nanoparticle agglomeration during processing due
to the higher cooling rates of the melt pool achieved in LPBF that favor the preservation
of the nanoparticle dispersion [12]. Even though these experimental observations pro-
vide an insight into the nanoparticle behaviors, further investigations would be required
to completely understand the undergoing nanoparticle capture (nanoparticles trapped
interior the microstructure), enrichment (local concentration increase of nanoparticles),
and agglomeration processes [26—29]. Since the nanoparticles are not accessible during
processing to perform in situ measurements, the combination of simulations with the exper-
imental characterization of the nanoparticle-additivated powder and the generated ODS
steel [13,30] represents the best approach to understand and control the LPBF processing
of ODS steels.

Intuitively, the simulation of the LPBF processing of ODS steels and the underly-
ing behaviors of nanoparticles, including their drift in the melt pool, captured during
re-solidification, enrichment, and agglomeration, requires the proper modeling of the
physical phenomena during the LPBF process and interactions among nanoparticles. It
already remains a great challenge to model the underlying phenomena due to their sophis-
ticated and interactive nature, covering a broad range of time and length scales. Notably,
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the thermal /mass transfers and material transformations (including melting, solidification
and evaporation) dominate on a length scale of hundreds to thousands micrometers over a
few dozen milliseconds. However, nanoparticle attraction and repulsion take place in a
different spatial and temporal scale, around several tenths of nanometers and within mi-
croseconds. Finally, the manufacturing of an ODS steel sample is explained in a completely
different scale of centimeters and takes hours or even days [31]. Resultant morphologies
also reveal themselves in a multiscale fashion [32]. In this sense, the existent simulation
schemes for the LPBF process are more or less subjected to strong simplifications and
segregated modeling schemes, considering either only selected aspects or with the ther-
mal history taken as input from separate numerical approaches. Those schemes usually
feature a computational fluid dynamics method to simulate the thermal-fluid coupled
spatial-transient evolution, including the arbitrary Lagrangian-Eulerian [33-36] and Lat-
tice Boltzmann [37-39], incorporated with another method to simulate the accompanied
microstructure evolution (mostly the polycrystalline re-solidification), such as the cellular
automata [40-44] and phase-field [45]. Recently, we proposed a new phase-field model
considering coupled processes among heat transfer, melt flow dynamics, and microstruc-
ture evolution (noted as “heat-melt-microstructure—coupled processes”), which shows the
possibility to simulate the LPBF process in a unified and thermodynamic consistent route
and the ability to recapitulate various experimental observations via simulation, such as
high-gradient temperature field, tilted columnar grains, and lack-of-fusion pores with
irregular shape [46].

On the other hand, very few works have been conducted regarding nanoparticle
drift and interactions in the melt pool, which is, however, the central aspect to investigate
the behaviors such as enrichment and agglomeration. Xu et al. [29,47] aimed to convey
fundamental understandings regarding nanoparticle capture during re-solidification in
order to obtain a nanocomposite-dispersed metal bulk, bringing the consideration of the
Van der Waals (abbreviated as VDW hereinafter) effect, the Brownian effect, and thermo-
dynamic analysis into the modeling of interactions in the nanocomposite-melt dispersion
system. There are also experimental works revealing the VDW [48] and electrostatic inter-
actions [49-51] among inorganic nanocomposites in the liquid metal. Nevertheless, those
works disregard the influence of the driving effect from the melt flow dynamics when
describing the nanocomposite-liquid /molten metal dispersion as well as the inter-particle
interactions. In this sense, a simulation scheme combining the coupled phenomena (espe-
cially the melt pool dynamic and microstructure evolution) and the nanoparticle behaviors
is still to be developed for the investigation of LPBF processing of ODS steels.

Joining our heat-melt-microstructure (HMM) coupled phase-field model with nanopar-
ticle kinematics, we present and apply in this work a simulation scheme for tracing the
nanoparticle drift and interactions in the melt pool during the LPBF process of the ODS
steels. This proposed scheme is aimed to demonstrate the chronological and spatial vari-
ation of multiple traced nanoparticles with respect to various factors (such as chemical
composition and size distribution), which enables graphical and statistical analysis on
the nanoparticle migration and further effects, such as nanoparticle capture, enrichment,
and agglomeration. The nanoparticle compositions used in the simulation are chosen based
on our experimental studies on the additive manufacturing of ODS steels, including the
use of Y,03 [12,23] and YIG (yttrium iron garnet, Y3Fe50;,) [23] nanoparticles. Influences
from different types of nanoparticle size distribution, including the monomodal, normal,
and log-normal distributions fitted from the experimental measurement [23], are also
investigated and discussed in this work.

2. Models
2.1. Non-Isothermal Phase-Field Model for Stable LPBF Processes
To properly simulate the microstructure of a polycrystalline material, manufactured

under a stable LPBF process, a conserved order parameter (OP) p is employed to represent
the substance and atmosphere/pores; a set of non-conserved OPs ¢s and ¢y, is employed to
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represent the solid and liquid phases, respectively; and a series of non-conserved OPs {7, }
are employed to represent the orientation distribution among the powders/grains. Two
constraints should be applied on those OPs to properly recapture the reality (Figure 1a),
i.e., substance constraint (1 — p) + ¢ + ¢s = 1 to restrict the existence of liquid as well
as solid within the substance only, and the polycrystal constraint (1 — ¢g) + Y, 772 = 1 to
restrict polycrystalline orientations inside the solid substance. Notice that the substance
constraint always satisfies when ¢, = p — ¢s. Therefore, only one ¢ to represent the solid
substance and (p — ¢) to represent the liquid substance is sufficient. The other constraint
can be fulfilled via some practical numerical method, e.g., the Lagrange multiplier or the
penalty method.

We consider a stable LPBF process (Figure 1a), i.e., without significant vaporization
and resultant phenomena, such as scattering and keyholing. In this sense, the heat/mass
transfer through various diffusion paths (e.g., surface, grain interior, and grain boundary)
and melt flow, the dynamics of melt flow as well as the bubbles, the melting-solidification
of the grains, and some inter-coupling effects, such as thermocapillary (Marangoni effect)
and thermophoresis (Soret effect), would take the major role determining the resultant
microstructure of the manufactured sample. The nonlinear kinetic system in simulating the
stable LPBF processes is then adapted from our HMM-coupled phase-field model [46]. It is
worth noting that the HMM-coupled phase-field model, derived under the thermodynamic-
consistent framework, can be regarded as the combination of Navier-Stokes-Cahn-Hilliard
(NSCH) and Navier-Stokes-Allen-Cahn (NSAC) systems with inter-coupling effects inte-
grated. In this work, however, mentioned inter-coupling effects are tentatively dropped un-
der the consideration of the computational stability, consumption, and complicity control in
variants. These effects would be explicitly covered in our separate (e.g., the thermophoresis
in [52]) or upcoming works. The adapted nonlinear kinetic system for the velocity field of
the melt u, the temperature field T, and fields of OPs p, ¢ and {7, }, eventually presents as

V-u=0,

Du 1, 1.

DT 1 D¢ 1

~ ta o, =V (5=-VT v,
Df " Ste,Dr ¥ (PeTv >+‘7
Dp 1 67 (1)
Dt =V <Pepv(5p >'

Dp___ 1947

Dt AC¢ 5([),

Dy _ 1 07

Dt Acydn.’

with dimensionless quantities, namely the Reynolds number (Re), the Froude number
(Fr), the Stefan number (Ste), the Péclet numbers for thermal (Per) and mass (Pe,) transfer,
and Allen-Cahn numbers for melting-solidification (Acy) and grain growth (Ac,). Here,
& stands for the unit vector of gravitation direction. These quantities are employed not
only to parameterize the nonlinear system but also to characterize the ratio between their
corresponding physical processes to the chosen rate (by default, the characteristic rate of
the fluid). Detailed parameterization of these quantities will be explained in Section 3.3.
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Figure 1. (a) Schematic of interactive physical phenomena during a stable LPBF process (left) and the order parameter
profiles of the phase-field model (right); (b) force analysis of two oxide nanoparticles (labeled as i and j) in the melt pool with
streamline and charges denoted; (c) schematic of charge distribution and potential profile across the oxide-melt interface
based on explanations in [49]; (d) variation of the inter-particle force densities to the surface distance.

The explicit formulation of non-isothermal free energy .# is formulated as

with
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and
Q(T) = th - ch(T - TM)'
D(T) = Dy — Deg(T — Tya),,
H(T) = Hyy — Hee(T — Ti)

where Ty is the melting temperature, . is the latent heat of the material, and c; is the
relative volumetric specific heat. Therefore, the variational derivatives of the free energy
appearing in Equation (2) yield

T
0F — % afloc B TKPVZP _ TK¢(V2p _ Vch),

9 9p

g _ % afloc _ 2 2. \72
55 0 o9 TrpV=p + Trp(Vp — V79),
a7

0F _ afht + afloc _ Tvazﬂtx-

M M O

Model parameters A, B, G, th, Ce th, D, ﬂpt, H, as well as the gradient constants
(kp, K¢, and k), are obtained from given diffusive interface width and the experimentally
measured interface energies. Coefficient ¢ is employed to favor the determination of model
parameters by fitting the experimental results (sufficiently summarized in Ref. [46] and
supplementary information of Ref. [53]). @, is the interpolation function indicating the
spatial landscape of the liquid/melt (see Section 3.3).

Finally, the thermal effect is equivalently treated as an internal heat source term gy

moving with the scan velocity v;
2 z — zy|?
(_ | 2 Al ‘ > ’ (3)
Ve ¢

in which P, is the laser beam power reaching the surface of the powder bed, g is the
attenuation coefficient. ®g; is the interpolation function for the substance. x is an arbitrary
point on the projected plane of the laser beam on the powder bed surface, while z is an
arbitrary depth from the plane. (vjt,zy) is the moving center of the beam following the
morphology of the surface. ( is the characteristic penetration depth and normally takes
the value of the powder bed thickness. Notice that parameter I1 is utilized to adjust the
concentration of the deposited power inside the circular beam spot with nominal radius R;,
e.g., as suggested by the ISO standard [54], IT = 2, indicating 86.5% of the concentrated
power within the spot. P, R;, and the mode of the scan velocity v; = |v;| (scan speed) are
thereby regarded as the major processing parameters of the laser scan in this work.

IT Ix — wt|?
Gy = CDSS'BPI{NRIZ exp [—H R12

2.2. Nanoparticle Kinematics

The coupled evolution among polycrystalline microstructure, melt flow dynamics,
and temperature transfer is calculated on the mesoscale (0.1-100 pm) using the phase-field
model presented above. Since the size of nanoparticles is smaller by several orders, the pos-
sible influence of nanoparticles on these mesoscale effects is ignored. As an important part
of nanoparticle kinematics, the drift effect of melt flow is inherited from the phase-field
simulations. Moreover, nanoparticles can interact with each other by different mechanisms.
Based on former research for dispersed non-metallic particles [29,47,55-57] neglecting the
rotation, the kinematic equation for a dispersed rigid nanoparticle (labeled as i) with a
volume Vj}, the density g;, and the translation velocity v; in the melt,

dv;
Qidftl = 0ig+ fm + fa +fg, 4)
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in which the r.h.s. terms are the driving force densities due to the gravity, the melt flow,
the VDW, and the electrostatic interaction, respectively (Figure 1b).

Considering the boundary of the nanoparticle as 9V}, the force density due to melt-
flow driven is formulated as fy; = % J: av; @ -ndS, in which the Cauchy stress tensor of

the fluid reads ¢ = —pI + évzu. This is widely employed in simulating nanoparticle
dispersion, including lattice-Boltzmann [57,58] and finite element method using static [59]
or fictitious domain [60,61]. Assuming an infinitesimal size of the nanoparticle compared
to the characteristic length scale of the melt, i.e., V; — 0, f\y can be thus calculated as
follows in this work according to the definition of the divergence

1
fy = lim 7/ o ndS=V-oly
av;

Vi=0 V;
B Du B 1 . ®)
= Qm Dt % FI'Z g 7

where X; is the center point of the nanoparticle, and Du/Dt|, is the undisturbed time
difference of the melt velocity at point x;. l

The VDW and electrostatic force densities, depending on respective inter-particle
potential Uy and Ug, can be formulated as

1 1
fo = *VVdUA(dC)r fg = *VVdUE(dC)/ (6)
1 1

where dc is the inter-particle center distance, dc = |x; — x;|, distinguishing for the surface
distance dg = |x; — j| —(ri+ rj), as shown in Figure 1b. V; represents the gradient
operator in the inter-particle direction. Derived by Hamaker [62], the inter-particle potential
of VDW attraction between nanoparticles i and j with corresponding radius r; and 7; is

}, @)

where Ap.nm is referred to as the Hamaker coefficient of the nanoparticle in a medium,
which is dependent on the permittivity of involved materials and the intervening medium.
According to Dzyaloshinskii-Lifshitz-Pitaevskii interpretation [63,64], in which nanoparti-
cles are treated as continuous media (rather than atomic structure as [62]), and inter-particle
forces are derived in terms of permittivities and refractive indices, the non-retarded (in-
stantaneous) Hamaker coefficient for VDW interactions between two nanoparticles of the
same material through a medium (denoted as Ap.m) is estimated as

A, 21,1 2rr; A2 — (ri+1)*
Un(de) = — pm{ i’ i7j —HH[C (ri +17)

6 \d2—(ri+r)’ &—(ri-r) a2 — (ri—r)’

2
2 2
3t T(Ep_gm>2+ Sheve (np_nm)

B
4 €p + €m 16v/2 (n}% n n%n>3/2

Ap:m = (83)

with the permittivities ¢y and ¢m,, and the refractive indices np and 7, of the nanoparticle
and the medium, respectively. kg and 7 are Boltzmann constant and reduced Planck
constant, while we is the electronic absorption frequency, ranging in 3 ~ 5 x 10'° Hz. It is
worth noting that Equation (8a) is not employable due to the difficulties in the practical
measurement of permittivity and refractive index of the molten metal. As an alternative,
Ap:m is calculated from the ones for nanoparticle (Am:.v) and medium (Ap:v) that obtained
separately in the vacuum, according to the following combining relation [48,65]

Apm = (\/E - \/Am:V)Z, (8b)
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where Ap.y can be obtained from experimentally measured optical data [56], while Ap.y for
dispersed metallic particle/droplet in the vacuum is derived from Dzyaloshinskii-Lifshitz-
Pitaevskii theory by taking the estimated frequency-dependent permittivity for metals as
em(w) =~ 1 — w?/w? with two critical conditions, i.e., em (0) = oo and ey (c0) = 1, which is
valid for plasma and metal. Then, Ap,., eventually yields

3 3hwe
Amvy = kT + .
m:v 4B 16\5

Obviously, Ap:m obtained from either Equations (8a) and (8b) is always positive
with a typical value ranging in 10719 ~ 107" ], demonstrating an ever attractive VDW
forces between two nanoparticles of the same material through a melt (taking negative
value as attraction and positive one as repulsion for all nanoparticles if without further
interpretation).

Unlike in the aqueous solution, electrostatic repulsion in the molten metal has rarely
been studied. Although there are works [29,47] assuming negligible electrostatic interac-
tion due to the strong screening effect of background free electrons in the melt, there is
reported evidence of charged surface on the oxide nanoparticle in the liquid metal [49,50].
Due to accompanied electron defects (like quasi-free electrons or holes) in the oxide, elec-
tron flow occurs across the interface when the oxide nanoparticles are in contact with the
liquid metal, resulting in the surface potential ¢; and corresponding profiles at the inter-
face [49,51], as shown in Figure 1c. Combining the above viewpoints from existing studies,
the following assumptions are made in the work to model the electrostatic interaction
between nanoparticles through melt:

(8c)

1. Electronsin the molten metal behaves as a free electron gas with a density 7, receiving
only the contributions from valence electrons of all metallic elements in the melt.

2. Charged surface exists on the oxide nanoparticles in the melt, even though its effect is
weak or absent due to the strong screening effect. The value of this surface charge 1;
is assumed to be equal to that obtained from a neutral aqueous dispersion.

Then, the screened-Coulombic potential between two nanoparticles, applied for elec-
trostatic interaction in the electron-screened system (like plasma), is adopted from [66], i.e.

Tyt dc — (ri +7j
Ug(dc) = 212 exp[ 2= 1), ©)
dc Ap
where the interaction coefficient Z is analogous to the Hamaker coefficient, reading as
Z = 47T€01IJ1'1/)]', (10)

which also presents a positive value for nanoparticles of the same material in the melt,
demonstrating an ever repulsive electrostatic interaction. Ap is the plasma Debye length,
which depends on the free electron density ne, i.e.,

Ao — eoksTwm - Y0z
P — o/ Ne = OmINA ’
nee Y cmy

where z;, ¢;, and m; are the valence electron number, the atom fraction and the atom mass
of the element /, respectively. Ny is the Avogadro constant, g is the vacuum permittivity,
and e is the elementary charge. Taking the formulation of the interaction potentials in
Equations (7) and (9), the VDW and electrostatic force densities are formulated as
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(o 32Ap;mdc(rir]-)3 Xj = X;
AT 212 dc
3V, {dé — 2d2, (rlz + r]2) + (rlz — rJZ) ] an
P Tirj(dc + Ap) dc — (r;i + 1’]') Xj — Xj
T VApd2 A ac
i‘\Phc p C

According to its physical meaning, Ap characterizes the strength of the screening
effect due to the electrostatic interaction received by one nanoparticle, which is reflected
by the decaying length scale of the fg, as shown in Figure 1d. It is calculated that for
the alloy such as PM2000, Ap is at the scale of 1073 nm, indicating a very short-range
electrostatic repulsion. In addition, fg trends to the ordinary Coulombic potential £5°! with
a finite value when two nanoparticles are getting in touch, while f4 tends to infinity. This
demonstrates that the attractive VDW interaction dominates the resultant effect between
two nanoparticles, which would destabilize the dispersion system from a perspective of
colloidal science [29,48,65] and lead to agglomeration of the nanoparticles. This is against
the preference of forming a homogeneous oxide dispersion during the LPBF process.
Therefore, the validation of the proposed model relies on further experimental insights into
the interactive behavior of the nanoparticle in the molten/liquid metal, which would be
covered in our future works.

3. Methods
3.1. Numerical Scheme and Implementation

Assuming negligible counter-effect of the nanoparticles on the melt flow, the sim-
ulation is designed in a subsequent scheme: an HMM-coupled phase-field simulation
for the LPBF process and a subsequent nanoparticle kinematics simulation with infor-
mation received from the phase-field simulation, as shown in Figure 2. The information
includes the initial condition (IC) of the powder bed as a set V(Xj, R;) with the center
X7 and the radius R; of the powder I to create IC (centers and radii) for the additivated
nanoparticles, and nodal values (o/, ¢/, {1/} and f{v[ of nodal |) of every time-step to
provide the melt-flow driving force as well as the on-site phase information. Due to the
infinitesimal-volume assumption, the drifted nanoparticles are represented and traced by
corresponding center position x;. The trajectories of the nanoparticles are then calculated
numerically by discretizing the kinematic model outlined in Section 2.2 in the backward
differences fashion:

1
vilt = vili—ot + |8+ — (fm + fa +f5) [ Ot
Qi 12)

Xilt = Xils—ot + E[Vz‘|tﬂ5t + vils]ot.

—_

Note here the time difference 5t should be by default no larger than the time interval
At of the phase-field simulation to ensure the accuracy of the tracing. This tracing program
repeats along with the phase-field simulations till reaching the stop criteria, i.e., the end
time of simulation or interrupted due to non-converge situation during finite element
method calculation. In addition to the trajectories, another important piece of information
is the relative position of a nanoparticle in mesoscopic microstructure, for instance, grain
interior, grain boundary region, pore, or surface. The position of a nanoparticle can change
during its drift and is thus described by a chronological variable, which is termed here as
“position indicator”.

The phase-field model is numerically implemented via the finite element method
within the program NIsoS developed by authors based on MOOSE framework (Idaho Na-
tional Laboratory, ID, USA) [67]. Four-node quadrilateral Lagrangian elements are cho-
sen to mesh the geometry. The Cahn-Hilliard equation is solved in a split way [68,69].
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A transient solver with preconditioned Jacobian-Free Newton-Krylov (PJFNK) method and
second-order backward Euler algorithm has been employed to solve the non-isothermal
phase-field problems. Adaptive meshing and time-stepping schemes are used to reduce the
computation costs. In addition, to stabilize the calculation of NSCH and NSAC system:s,
streamline-upwind Petrov-Galerkin and pressure-stabilized Petrov-Galerkin methods are
introduced associated with the weak forms of the Navier-Stokes equations [70]. For now,
the subsequent nanoparticle tracing program is coded by Python (ver. 3.7.10), which is
independent of NIsoS. It is planned to integrate the tracing program as a subroutine of the
phase-field simulation program in the future.

Figure 2. Workflow of the simulation scheme, including a phase-field simulation and a subsequent nanoparticle

tracing program.

3.2. Simulation Setup

As a preliminary step, we apply first our nanoparticle tracking scheme for a 2D
phase/field simulation of LPBF following our former work [46], which can recapture
certain characteristic powder bed features, e.g., particles with multiple sizes and various
pores due to the particle packing. The simulation domain has a size of 500 x 100 pm.
Particles inside the domain are generated with the random close packing procedure. Due to
the uncertainty of the initial grain structure of a single particle, we simply treat each particle
as a monocrystal with a unique random orientation following the reported simulation
works [46,71]. With the help of the minimum coloring algorithm and grain tracking
algorithm [53,72], five 7, are sufficient to uniquely represent all the particles/grains for
these simulations. The zero Neumann boundary condition (BC) for p and zero Dirichlet BC
for u, representing a close BC for the system, are applied on the boundary I' = d() of the
whole simulation domain (),

Volp-A=0, ulp=0, (13)

where fi is the normal vector of the boundary I', and 0 is the null vector. The heat convective
BC allows heat dissipation as heat convection with the atmosphere on the top boundary I”

— kVT| - =h(T|p — Tg), (14)

where £ is the convective coefficient and Tg is the environment temperature. The Dirichlet
BC on temperature with a fixed pre-heating temperature Tp is applied on the rest of the
boundary I (I' = T" UT”) to emulate the contact with a semi-infinite heat reservoir (e.g.,
the substrate)

T|pn = Tp, (15)

which helps to restrain the melt pool size for better demonstration in this work.
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In addition, the pinning pressure BC on the top-left corner C (C € I") is applied on
the hydrodynamic pressure p as
plc =0 (16)

to avoid the difficulties associated with the non-trivial nullspace of the operator pre-
specified in the PJFNK solver as suggested in Ref. [70].

3.3. Parameters and Properties

The dimensionless quantities are employed in the nonlinear kinetic system for HMM-
coupled phase-field simulations as explained in Section 2.1. Following the conventions of
NSCH and NSAC system, they are formulated explicitly as

_ i 17
o0l olc, o o (172)
Per = 2%, Acy=—o—) Acy=—oo,

m YILy

where 7, [ and T are the characteristic velocity, length and temperature of the melt flow,
while / is characteristic width of the diffusive interface corresponding to the given charac-
teristic surface tension . v is dynamic viscosity, k is the thermal conductivity, and M is the
isotropic diffusivity. Ly and L, are the isotropic Allen-Cahn mobility of the solid-liquid
interface and grain boundaries. b is the magnitude of the resultant body forces acting on
the melt flow. For convenience, we use a set of simpler reference quantities to re-define
those characteristic quantities by substituting the following relations in Equation (17a):

7 Ty

I - T M
0= 7 T = TM/ r? = TMKZ)—‘MQ}];];A/ g = MTP .

t Qp]tv[

Notice that the Qgﬁ" = KPTM Tam/I? which is the model parameter obtained at the

reference temperature Ty;. KPTM is the gradient model parameter at a reference temperature
Ty Then, dimensionless quantities in Equation (17a) can be thereby modified as

I? I Ty
Re = Q_—, Fr = Q—, Ste = Cr M,
fv b2 &
(17b)
Pe r Pe Fer Ac Ac L
(I T= T R Y T T AT
MICTy I LyfChY Lyicy

Notice here that material properties c;, k, ¢, v, should be phase-dependent and thereby
formulated in a direct interpolated fashion as

Cr = <I>5cggs + CDchQL + fbatcgtgat,
k = Ogkg + Pk + Datkat,
0 = Psos + PrLoL + PatQat,
v = Ogug + Prup + Patvat,

(18)

where C? % k(y, 0(), and v() are respectively the specific enthalpy, thermal conductivity,
density, and dynamic viscosity of the corresponding phase. Similarly, the effective value
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of mobility L, and M through possible paths are adopted correspondingly from the self-

diffusivities D?f)f and grain boundary mobility Ggg [46,53,73,74], i.e.,

1
M= —F"——>— (DD DD b D b,Dyy, |,
82floc/aP2|p:1( ssss - Patar + PotDet + Db gb) 19)
L — ng’)’gb
/. 7

TK,7

while the quantity of Ly is tentatively given as 20/ ngM, which makes resultant 1/Acy
sufficiently larger than 1/Ac; to emulate a relatively faster melting-solidifying process
than grain growth [46]. This is due to the lack of a quantitative description of migration
mobility of the liquid. The subscript represents the quantities of the corresponding phases,
e.g., ‘ss’ as the substance, ‘at’ as the atmosphere/pore, ‘sf” as the surface, ‘gb” as the grain
boundary, ‘S” as the solid and ‘L’ as the liquid /melt. Then, the interpolating functions ®gs,
Dat, Pgp, Dsf, Ps, and @, can be simply formulated as

D5 = p° (10 — 150 + 692), Dy =1-p° (10 — 150 + 6p2>,

Dy = 1602(1 — p)?, Dyp, = 16}%:7?:7}, (20)
7]

®s = ¢* (10159 +69%), L = @5 — [¢(10—15¢ + 67 ) |.

Note that the constraints on the OPs should be also applied on the interpolation
functions, i.e., 1 = ®gq + Pyt and Oy = Py, + Ds.

4. Results and Discussion

Simulation results are presented here for a single scan LPBF nanoparticle-decorated
PM2000 alloy in an argon atmosphere. The composition of the PM2000 adopted in this work
(presented in Table 1 following our former experimental investigations [12,23]) presents a
ferritic structure in the high-temperature range (from 1000 K to the melting temperature)
without solid-state phase transition, according to the Fe-Cr-Al ternary phase diagram
reported in Ref. [75]. Therefore, the material properties for ferritic PM2000 alloy displayed
in Table 2 are employed for the simulations. The reference length scale selected for the
simulation is [ = 1 pm, and the time scale f = 1 ps. The LPBF parameters are selected
according to the LPBF experiments in [12]. The characteristic radius of the beam is set
as Ry = 80 um, the penetration depth  is defined by the thickness of the powder bed,
and the laser power and scanning speed are P; = 160 W and v} = 800 mm /s, respectively.
The attenuation coefficient of the laser is § = 0.65. The environment temperature Tf as
well as the pre-heating temperature Tp are both set to 353 K.

Table 1. Chemical composition of the PM2000 alloy as measured by XRF (only elements present in
an amount > 0.01 wt % are shown) [12,23].

Fe Cr Al Ti Ni Si Cu
wt % Bal. 20.40 3.94 0.58 0.10 0.03 0.01

The single scan LPBF of the monomodal Y,05 (15 nm in radius) nanoparticle-additivated
PM2000 powder is first discussed. Chronological microstructure evolution along with the
traced nanoparticles and their trajectory are depicted in Figure 3. To provide a further insight
into the steel and nanoparticle evolution during processing, three PM2000 particles from
different locations with radii of 17-19 pm are chosen as the “parent particle” and marked
as ‘A’, ‘B’, and ‘C’. Fifty equispaced nanoparticles are placed on their surfaces in order to
simulate a perfectly homogeneous initial nanoparticle dispersion. Parameters for nanoparticle
interactions, including the Hamaker coefficient and the surface potential can be found in
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Table 3. As the HMM-coupled phase-field simulations [46] show, the microstructure evolution
of LPBF-processed PM2000 features multiple phenomena, including melt flow convection as
well as accompanied behaviors of pores/bubbles, partially melted particles, re-solidification,
and sintering of particles/grains, resulting in columnar grains and trapped irregular-shape
pores due to lack of fusion. Those phenomena are also highlighted in Figure 3a;—ay. The focus
here is on how the nanoparticles drift and eventually migrate under the influence of those
effects. Initially, all the nanoparticles are located onto their corresponding parent particles
before the laser interaction and generation of the melt pool (Figure 3a;). Once fully immersed
by the melt, the nanoparticle drift is firstly driven by the melt flow, i.e., there is a driving
force along the tangent direction of the streamline (Figure 3ap,bi—d;. This effect is illustrated
in Figure 1b;—b4). Due to the sufficiently large spacing, other interaction contributions
among nanoparticles are negligible. After the initial drift due to the melt front propagation,
the evolution of the nanoparticles is associated with different physical phenomena depending
on their location and surroundings. Nanoparticles around a pore/bubble, which are identified
as the “bubble-carried” ones, would follow the floating, deforming, or even splitting of bubbles
(Figures 3aj,by—d;, bs—d3). It is also possible that the melt flow brings multiple nanoparticles
into a narrow region at the time, which is already within the range of nanoparticle interactions
(specifically the VDW attraction since the electrostatic repulsion has an even shorter range
around 1073 nm). In this sense, the trajectory of certain nanoparticles would be redirected
abruptly. Meanwhile, nanoparticles near the bottom of the melt pool present very little
migration comparing to others. The reason can be the very short immersing time (thus
less driven by melt-flow) or the partial melting of the corresponding parent particles. Next,
when the laser front scans away, the local temperature drops and, once below Ty, the re-
solidification occurs, forming the tail of the melt pool. Once the re-solidifying front goes
through the migrating nanoparticles, they are immediately captured and become either
interior or grain boundary (GB) nano-inclusions, while the ones carried by the bubbles stay
as they are and become pore-trapped nanoparticles. Nanoparticles can also be found on the
surface driven by either melt flow or emerging bubbles (Figure 3a3). Figure 3d,—d4 present
an additional case where nanoparticles, initially located on the surface, migrate in accordance
with the deformation of the surface morphology. During this process, the nanoparticles with
a relatively higher speed (driven by the melt flow) might enter the melt pool and become
the in-grain nano-inclusions, while others remain on the surface. Finally, Figure 3a4 presents
traced nanoparticles with all sorts of position indicators (denoted by colors) and, notably,
the locally enriched nano-inclusions and several ones with overlapped trajectories, implying
potential agglomeration effects. One can readily tell from Figure 3ay,a3 that such enrichment
majorly can be attributed to the melt-flow driving force, where multiple nanoparticles follow
similar trajectories governed by the transient streamlines. However, it is worth noting that
the overlap of the trace markers (indicating the center locations of the nanoparticles rather
than the sizes) do not sufficiently reflect nanoparticle agglomeration effects, which should be
explicitly determined by an adjacency test on the real scale of the nanoparticles’ size. This will
be discussed in the following demonstrations.
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Figure 3. Simulation results of an LPBF-processed ferritic PM2000 powder bed with P, = 160 W and v} = 800 mm/s, in
which three particles are marked and decorated with Y,05 nanoparticles. Transient microstructure, nanoparticle tracing,

and feature phenomena are presented at (a1) 197 us, (az) 398 us, (az) 529 us, (ag) 718 ps . Trajectories of nanoparticles are

respectively depicted for nanoparticles initially located on different parent particle at corresponding timestep, i.e., on parent
particle A at (b1) 398 us, (bz) 465 ps, (bs) 529 us, (bg) 606 ps; on parent particle B at (c1) 333 us, (c2) 398 s, (c3) 465 ps,
(c4) 529 ps; and on parent particle C at (dq) 366 us, (d2) 465 us, (d3) 529 us, (dg) 606 ps. Notice that the trace markers at the

end of the trajectory only indicate the central location of the nanoparticle at the time rather than the size.

Table 2. Material properties of the ferritic PM2000 alloy and Ar atmosphere, employed in the simula-

tions.
Properties Expressions (T in K) Units References

T ~ 1756.15 K [76]
vl 1.63 —4.49 x 1073(T — Tyy) * J/m? [77,78]
7;1’ 028 —7.74 x 1073(T — Tyy) * J/m? [77,78]
Dqs 10exp(—2.41 x 10°/RT) * m?/s [77]
Dgp, 1.1 x 102 exp(—1.74 x 10° /RT) * m?/s [77]
Des 1.8 x 1075 exp(—2.08 x 10° /\T) * m?/s [77]
Ggp 5.36 exp(—3.54 x 10° /RT) m?/(] s) [79]
kss 30.841 +0.011(T — Tr) J/(s mK) [76]
Kat ~ 0.06 J/(s mK) [80]
Hat ~ 100 J/(s m?2 K)
ch 908.596 + 0.323(T — Tyy) ]/ (kg K) [76]
ch 520 ]/ (kg K) [81]
< 24 %1071 J/m3 [82]
Oss 7180 kg / m3 [76]
Oat 1.38 kg / m3
Ves ~533x1073% (J s)/m? [83]
Vat ~753x107° (J s)/m?3 [84]

* Temperature-dependent data form [78] and scaled based on the value at Ty from [77]. t Data from ferrite.
T Linearly interpolated from temperature-dependent measurements on Fe-Cr melt with 21 at% Cr.
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Table 3. Material properties and interaction coefficients of the Y,03 and YIG nanoparticles.
0i (kg/m®) Apy (1072°])  Apim (10720)) i (mV) Z (107 14N)
Y,05 5.01 x 103 14.0 5.43 26 7.52
YIG 5.17 x 103 24.2 1.33 59 38.73

Figure 4a,b presents the interactive forces vs. surface distance between two nanoparti-
cles with different radii and composition, which are Y,0O5 and YIG, their properties and
related coefficients are listed in Table 3. Notice here the Hamaker coefficients in the melt
for both Y,05 and YIG are calculated according to Equation (8b) using the coefficients in
vacuum for both compositions and the melt, where Ap,., = 37 X 10-20 ] is calculated by
Equation (8c). It can be observed that, for the same surface distance, increasing nanoparticle
radius leads to a higher VDW attraction as well as electrostatic repulsion. Comparing
nanoparticles of the same size but different composition, YIG nanoparticles present less
VDW attraction and more electrostatic repulsion compared to Y,0; ones. Nevertheless,
the interaction range of the electrostatic repulsion is limited to the 10~ nm scale, and
this interaction highly decreases in the nanoscale due to strong screening effects from
background free electrons (reflected by very small Ap), where the VDW attraction still takes
the major role. This fact explains the instability of homogeneously dispersed nanoparticles
on the 10 nm scale, as explained in Section 2.2. In the case of VDW attraction, it presents
a considerable decay when dg > 2 nm, hence its influence over the inter-nanoparticle
attractions is low, especially when the nanoparticles are sparsely distributed. Therefore,
melt-flow-driven effects are the dominant mechanism, and the effects from nanoparticles’
size (radius) and density would be significant.

In Figure 4cj—c13,d1—c6, nanoparticles with four different radii and two compositions
are labeled uniformly with respect to their corresponding parent particles, in which ones
with evident changes in their trajectories and position indicators are screened out. Com-
paring Al, A2 among Figure 4c;—c3; and B10, B15 among Figure 4cs—cg,d3,d4, a higher
tendency to float is presented when increasing the size of nanoparticles of identical com-
position, or using Y,Oj3 than YIG for nanoparticles of identical size. Pair A1-A2 between
Figure 4c3,c4 and pair C41-C44 between Figure 4co—cpp, on the other hand, indicate the
potential interaction between particles. In particular, the latter pair presents a merged
trajectory after one abrupt redirection, implying a potential agglomeration due to a short-
range VDW attraction. A similar effect is also spotted for the case with relatively higher
density (i.e., YIG) by comparing again the pair A1-A2 between Figures 4d;,d; and pair
C41-C42 between Figures 4d5,ds, demonstrating the potential enhanced interaction in an
increased size for nanoparticles of identical composition/using YIG compared to Y,05
for nanoparticles of identical size. Apart from these effects, a more complicated pattern
variation in the overall trajectories change shall be discussed with respect to the change in
nanoparticle size/composition. Unfortunately, information for current simulations (noting
the nanoparticle are sparsely distributed) remains insufficient to deduct such a pattern
change, which will be sufficiently covered in our upcoming works.
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Figure 4. Diagrams of interactive forces between two nanoparticles of the same size vs. surface distance for cases (a)

varying size (radius) for two Y,0O3 nanoparticles, and (b) comparing nanoparticle compositions of Y,03 and YIG for two

nanoparticles with ri = 15 nm. Trajectories and relative positions at the final timestep are respectively for nanoparticles

with varying radius and composition on different parent particle, i.e., for Y,O5 nanoparticles on parent particle A with

varying radius of (¢1) 10 nm, (c2) 20 nm, (c3) 30 nm, (c4) 40 nm; on parent particle B with radius of (c¢5) 10 nm, (c) 20 nm,

(c7) 30 nm, (cg) 40 nm; on parent particle C with radius of (c9) 10 nm, (c19) 20 nm, (c11) 30 nm, (cq2) 40 nm; and for

nanoparticles with monomodal radius of 15 nm on parent particle A with composition (d1) Y,03, (d2) YIG; on parent
particle B with composition (d3) Y,O3, (dg) YIG; on parent particle C with composition (ds) Y,O3, (de) YIG. it demonstrates
that the pattern of trajectories changes due to varying size/composition. By comparing the selected trajectories (labeled

uniformly), an enhanced nanoparticle floating is observed when increasing the size of nanoparticles.

A statistic investigation of the nanoparticle evolution during processing is conducted
to deduct features such as enrichment and agglomeration. The simulations shown in
Figure 5 are performed for PM2000 powder with nine selected parent particles decorated
with 0.005 wt % Y,0O3 nanoparticles due to the limited computational efficiency, as pre-
sented in the inset of Figure 5a. Notice here that the weight percentage is calculated
adapting the 2D scenario, i.e., wt % = %
In this sense, nanoparticles of N, = 1240 are ti‘aced simultaneously. Three types of nanopar-
ticle size distributions are investigated: the normal and the log-normal fittings of the large
nanoparticle fraction measured in [23] and a monomodal obtained from the fitted mean
radius 7; = 13 nm of the distribution. To reduce the contamination to the statistics of the
drift destinations, alloy powders located lower than the melt pool depth are not decorated
with nanoparticles (inset in Figure 5a). Figure 5b presents the statistics of the drift des-
tinations of the Y,O; nanoparticles tested with different size distributions. Employing
the adjacency test, in which the center distances (d¢) between nanoparticles are individ-

with the total amount of nanoparticle Np.
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ually compared with the corresponding sum of mutual radii (r; + r;), the agglomerated
nanoparticles can be identified. Following this criterion, the nanoparticles are classified
as agglomerated /non-agglomerated, showing the corresponding fraction in Figure 5b.
The results show that ~ 55% of the nanoparticles are captured inside the grains after the
LPBF process. Comparing different size distributions, monomodal and log-normal types
have almost the same amount of in-grain nanoparticles (nano-inclusions), while the normal
type shares the same agglomeration ratio as the log-normal type. However, only ~ 2% of
the nanoparticles end up in the grain boundaries. Within the nanoparticles in the grain
boundaries, the log-normal distribution presents more agglomerated nanoparticles, reach-
ing 46% (0.6% out of in-total 1.3%). In addition, there are nanoparticles that end up in the
pores, ~ 30%, and the surface, ~13%. It is worth noting that these statistical results with a
high fraction of in-grain nano-inclusions and a very low fraction of GB-captured ones may
be attributed to the lack of driving effects from the migration of various interfaces, such as
melt-grain interface and grain boundaries, which might force some of the nanoparticles to
translate towards the migrating directions, pushing them away from the grain interior and
eventually capturing them after the fusion of the powder bed.

Figure 5. (a) Size distributions of nanoparticles. Inset: selected parent particles. (b) Statistics of drift destinations of
nanoparticles with respect to distinct size distributions, presented as the percentage of quantity to the total amount of
decorated nanoparticles, i.e.,, Np = 1240, with the ones of agglomerated /non-agglomerated nanoparticles also presented as
the component for each destination genre; (c) dispersion of traced Y,03 nanoparticles with the log-normal size distribution in
the LPBF-processed PM2000 polycrystal matrix (left) and regional magnification of dispersed nanoparticles in selected scopes
(Scope 1 and 2) in realistic scale (right). Magnified scopes are employed to distinguish the occurrence of agglomeration from
the enrichment, which is inaccessible in the trajectory illustration on the left. (d) SEM backscatter electron imaging with the
corresponding EDX maps of the elemental Y, O, Fe, and Cr content in four inclusions (I1-I4) for identifying nanoparticle
agglomeration. I3 is not agglomerated nanoparticles due to a lack of Y content, while I1 implies agglomerated nanoparticles
on the surface of another oxide inclusion. The magnified scope in (c) right is also compared to the SEM imaging in (d),
demonstrating relatively larger nanoparticle agglomeration (I4) spotted in experimental observation, while 12 shows almost
a consistent scale to the simulated results.
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In addition to the results provided in Figure 5b, the nanoparticle evolution during
processing is graphically displayed in Figure 5c. This methodology is not only useful to
predict the nanoparticle agglomeration but can be also extended to study the nanoparticle
capture, enrichment, and agglomeration. However, even the evaluation of the agglomera-
tion requires attentions on not only the trajectories overlapping but also the vast differences
in spatial scales between the microstructure and the nanoparticles. For instance, Figure 5c
presents the trajectories and positions of nanoparticles (log-normal type) dispersed in the
LPBF-processed PM2000 polycrystalline matrix, in which two scopes are taken and mag-
nified to visualize the nanoparticle scale. If only the trajectories are evaluated, one might
prematurely conclude that Scope 2 has profound agglomerations comparing to Scope 1.
However, after a magnified look, agglomerated nanoparticles only appear in Scope 1, while
Scope 2 only contains locally enriched isolated nanoparticles.

The issue of identifying the nanoparticle agglomeration/enrichment should be also
addressed in the experimental observation, yet the large spatial scale difference makes it
difficult to characterize both the steel microstructure and nanoparticle size and dispersion
in a single measurement. An example of an experimental SEM-EDX measurement from
an LPBF processed sample of PM2000 steel decorated with 0.08 wt % Y,Oj is presented in
Figure 5d. Four inclusions (labeled as I1-I4) that can be initially thought of as nanoparticle
agglomerations during processing can be observed [12]. However, to evaluate whether the
inclusions are pores or agglomerated nanoparticles, an elemental mapping with techniques
such as EDX is required. The EDX maps show that, while no Y or O content is found in
I3, these elements are present in I1, 12, and 14, and so it can be concluded that they are
nanoparticle agglomerated structures. Furthermore, there is solely a small fraction of Y
content found on the surrounding of I3 while O content is fully presented in the interior,
implying agglomerated Y,0O; nanoparticles on the surface of another oxide inclusion that
might be attributed to impurities. Another interesting point is that the diameter of some
nanoparticle agglomerations spotted in Scope 1 of Figure 5c are less than 1 yum, consisting
of merely countable nanoparticles, while the ones (esp. 14 in Figure 5d) experimentally
observed are larger, and even much larger if compared with the original size of the Y,0;
nanoparticles—even though there are some (e.g., I2 in Figure 5d) showing consistency in
scale. A possible reason is the relatively low mass fraction of the additivated nanoparti-
cles in the tracing simulation (0.005%) compared to the experimental one (0.08%), which
increases the probability of the nanoparticle interactions leading to agglomeration during
processing. In future steps, the nanoparticle concentration employed in the simulation will
be increased to match the experimental conditions.

5. Conclusions

In this work, we proposed a simulation scheme joining the heat-melt-microstructure—-
coupled phase-field model and the nanoparticle kinematics to trace nanoparticle during the
LPBF process of the ODS steels, which is experimentally inaccessible. Simulations on stable
LPBF single scan of a ferritic PM2000 nanoparticle-additivated powder bed were conducted
for factors such as the nanoparticle composition and size distribution. The following
conclusions can be drawn from this combined numerical and experimental study:

1.  Simulation results provide the chronological location and located phases of the traced
nanoparticle. This helps to depict nanoparticle drift associated with the evolution of
local melt flow as well as the morphology, such as migrating nanoparticles driven by
melt-flow or carried by floating /deforming bubbles, or stationary ones in the melt
pool bottom area. Events such as nanoparticle capture (by grain/pore/grain bound-
ary), enrichment, and potential agglomeration can be also visualized via trajectories
and position indicator.

2. The drift and interactions of nanoparticles with different sizes and compositions
(Y505 and YIG) are analyzed. By comparing the trajectories and positions of selected
nanoparticles (or nanoparticle pairs) among cases, some preliminary discussions can
be conducted regarding the influences of the nanoparticle size and compositions.
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An enhanced nanoparticle floating is observed when the size is increased for nanopar-
ticles of identical composition or when using Y,Oj for nanoparticles of identical size.
In addition, an enhanced nanoparticle interaction is observed when increasing the size
of nanoparticles of identical composition or using YIG for nanoparticles of identical
size. Note that the above conclusions are made under the condition that nanoparticles
are sparsely decorated (i.e., nanoparticles are sufficiently spaced). In this scenario,
the melt-flow-driven effect is expected to dominate the process.

3.  LPBF simulations of a PM2000 powder bed are conducted, in which nine parent
particles are additivated with 0.005% Y,0O5 nanoparticles. Three size distributions
are evaluated i.e., monomodal, normal, and log-normal distributions. The results
show that ~ 55% of the nanoparticles are eventually captured by a grain, while
merely ~ 2% ones end up in the grain boundaries. Although the differences of
nanoparticle location for the different size distributions are small, the monomodal
case presents a relatively higher agglomeration ratio in grain-captured nanoparticles
(nano-inclusions), while the log-normal type shows a higher agglomeration ratio in
GB-captured nanoparticles.

4. By visualizing the traced nanoparticles on a nanometric scale, nanoparticle agglomer-
ation and enrichment spotted in the simulation are distinguished. Comparisons be-
tween the simulations and experimental results show promising similarities, proving
the potential of the simulation methodology to optimize the LPBF process parameters
in order to reduce agglomeration effects and maximize the material reinforcement
achieved in ODS steels.

The proposed scheme and models should be further extended in the near future for
different aspects, e.g., implementation of nanoparticle tracing code in a computationally-
efficient way to enable decoration with a larger mass fraction of the nanoparticles. Further
effects such as the driving forces from migrating interfaces, and interactions between
nanoparticles and the surface of the parent particles (as ideally the semi-infinity large
interfaces) should also be considered.
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Abbreviations

The following abbreviations are used in this manuscript:

BC
DED
EDX
GB
HMM
IC
LAM
LPBF
NSAC
NSCH
ODS
oP
PJENK
SEM
VDW
YIG

Boundary condition

Direct energy deposition

Energy dispersive X-ray spectroscopy
Grain boundary
Heat-melt-microstructure

Initial condition

Laser-based additive manufacturing
Laser powder bed fusion
Navier-Stokes-Allen-Cahn
Navier-Stokes-Cahn-Hilliard

Oxide dispersion strengthened

Order parameter

Preconditioned Jacobian-Free Newton-Krylov
Scanning electron microscope

Van der Waals

Yttrium iron garnet

Symbols

The following symbols are used in this manuscript:

0 Conserved order parameter indicating the substance and
pores/atmosphere

¢s, pL, ¢ Non-conserved order parameters indicating the solid (¢s)
and liquid (¢r) phase. Due to the substance constraint
¢L = p — ¢s, only one ¢ is sufficient to represent the solid
substance and (p — ¢) to represent
liquid substance

{Na} Non-conserved order parameters indicating grain
orientations

u Velocity field of melt flow

[4 Hydrodynamic pressure

T Temperature field

Tm, Te, Tp Melting temperature, environmental temperature, and
pre-heating temperature, respectively

frocr farads fut Local, gradient and thermal terms of Helmholtz free energy
density

A B,G Model parameters with no dimension

th, th, ﬂpt Model parameters with dimension of free energy density

CetDog, Heg Model parameters with dimension of entropy density

Ko, Kp, Ky Gradient constants of corresponding order parameters

Dgs, Dat, Dy, <I>gb, dg, dp  Interpolation functions with subscript ‘ss” standing for the

Plr V1, 01

qv

kS/ kL/ kat

substance, ‘at” for the atmosphere/pore, ‘st” for the surface,
‘gb’ for the grain boundary, ‘S’ for the solid and ‘L’ for the
liquid /melt

Laser power, scan velocity and speed, respectively. v| = |vi]
Nominal laser radius

Internal heat source for modeling the laser-induced thermal
effect

Attenuation coefficient of the powder bed

Characteristic penetration depth of the powder bed

Heat convective coefficient

Heat conductivity coefficients with subscripts indicating the

corresponding phases
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