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Abstract: Here, we consider the free vibration of a tapered beam modeling nonuniform single-
walled carbon nanotubes, i.e., nanocones. The beam is clamped at one end and elastically restrained
at the other, where a concentrated mass is also located. The equation of motion and relevant
boundary conditions are written considering nonlocal effects. To compute the natural frequencies, the
differential quadrature method (DQM) is applied. The influence of the small-scale parameter, taper
ratio coefficient, and added mass on the first natural frequency is investigated and discussed. Some
numerical examples are provided to verify the accuracy and validity of the proposed method, and
numerical results are compared to those obtained from exact solution. Since the numerical results are
in excellent agreement with the exact solution, we argue that DQM provides a simple and powerful
tool that can also be used for the free vibration analysis of carbon nanocones with general boundary
conditions for which closed-form solutions are not available in the literature.

Keywords: nanosensor; nonlocal elasticity; frequency analysis; elastically restrained beams; DQM

1. Introduction

Carbon-based nanostructures have been intensively researched due to their outstand-
ing properties. Among others, carbon nanotubes (CNTs) and nanocones (CNCs), since their
discovery dating back to 1991 [1] and 1994 [2], respectively, have inspired many studies to
understand their electromechanical [3], mechanical, and thermal properties [4]; to analyze
vibrations of fluid flow in single-walled CNTs [5]; and exploit their potential in applications
in nanoelectronics [6] or as gas sensors [7], mass sensors [8], nanomechanical sensors [9],
or in the preparation of hierarchical materials by chemical grafting of CNTs onto carbon
fibers [10], to cite but a few.

The many different approaches already available to study the behavior of nanostruc-
tures can be grouped in two classes: one at the atomistic level, the other at the continuum
level. The latter have attracted huge attention, as those in the former class require often
difficult and time-consuming computations [11], although atomistic tools may appear to be
the most suitable for nanosized structures. Among continuum approaches, beam models
have been demonstrated to be cost-effective. However, classical beam theories, as Euler–
Bernoulli or Timoshenko beams, or even higher-order theories [12], may be inadequate
because they do not capture the influence of size effects. To overcome this drawback,
models incorporating nonlocal effects are often considered, such as those based on the
nonlocal elasticity theory developed by Eringen (see, in particular, [13,14]).

However, recent investigations have led to the conclusion that the elastic problems
based on the Eringen strain-driven model are ill-posed [15]. For bounded structural
domains, constitutive boundary conditions must be added to recover equivalence with
nonlocal strain-driven integral law. The differential elastic law leads to a well-posed
structural problem whose solution may paradoxically reproduce the local elastic solution,
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see, e.g., [16–18]. The well-posedeness of elastic problems based on a nonlocal integral
model can be recovered by adopting a stress-driven formulation [19–21].

The use of nonlocal continuum theory in the field of nanotechnology was first re-
ported in [22] and further applications have been employed in analyzing the buckling and
vibration problems in CNTs, by applying Euler–Bernoulli and Timoshenko beam theo-
ries [23–26]. Wave propagation in CNTs was studied with nonlocal elastic Euler–Bernoulli
and Timoshenko beam models in [27]. The constitutive relations of nonlocal elasticity the-
ory for the analysis of CNTs modelled as Euler–Bernoulli beams, Timoshenko beams, or as
cylindrical shells are presented in [28]. The scale effect on static deformation of micro- and
nano-rods or tubes was studied by [29] through nonlocal Euler–Bernoulli and Timoshenko
beam theories, with the results showing that the scale effect, which would not manifest
itself for micro-structures with a length in the order of micrometers, would be noticeable in
the static response of nano-structures. Still based on the nonlocal Euler–Bernoulli beam
theory, the effects of taper ratio coefficient, small-scale parameter, and viscoelastic behavior
on the resonant frequencies of CNCs was discussed in [30]. Employing the differential
quadrature method (DQM), the vibration response of nanocantilever was studied [31] and
a nonlocal-elasticity-based formulation for the axial vibration analysis of tapered nanorods
was constructed [32].

Dealing with free vibration analysis of a circular hollow nanobeam, clamped at one
end and elastically restrained at the other, that models a mass-sensor composed of a CNT
or a CNC, depending on the considered taper ratio, a nanobeam loaded by a lumped mass
is considered in this paper. In addition to nano-sized mass-sensors, the topic of vibrations
of lumped-mass-loaded structures is relevant in different engineering-related fields, such
as acoustics [33,34].

This paper is organized as follows. Details about the equation of motion of tapered
nanobeams and relevant boundary conditions written considering nonlocal effects are pro-
vided in Section 2. Next, Section 3 describes the differential quadrature method (DQM) that
is adopted in this paper to compute the first natural frequency of the analyzed nanobeams.
The influence of the small-scale parameter, taper ratio coefficient, and added mass on the
first, natural, dimensionless frequency is investigated in Section 4 to assess the accuracy
and validity of the proposed method. The results complement those previously reported
in [35], where the convergence of the method was validated through known exact solu-
tions. With low computational effort, problems characterized by boundary conditions and
geometries for which closed-form solutions are currently not available may be considered.
Some concluding remarks are provided in Section 5.

2. Formulation of the Problem

Let us consider the carbon nanocone (CNC) sensor shown in Figure 1. The CNC,
which is a nonuniform or tapered carbon nanotube (CNT), is anchored to a fixed support
and interacts at the tip with the surrounding environment and a molecule. The CNC (with
an apex angle of 19.18◦ in Figure 1) is modeled, at a continuum level, as a tapered beam
having a hollow, circular cross-section. The anchorage is modeled by a clamp and the tip
interactions by an axial spring of stiffness kT and an angular torsion spring of stiffness kR.
The molecule is considered as a lumped mass M. The length L of the beam coincides with
the length of the CNC (80 Å in Figure 1) and the radii of the end cross-sections are equal to
the corresponding average radii of the CNC (21.8 Å and 8 Å in Figure 1).

In this paper, the wall thickness of the cross-section is assumed to be 3.4 Å [36], which
is equal to the separation between the walls of multi-walled CNTs [37]. However, other
sizes have been considered previously, such as 1.32 Å, the length of the π orbital [38]; or
1.54 Å, the covalent diameter of the carbon atom [39].
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Figure 1. Geometry of a nanocone having an apex angle of 19.18◦; length of 80 Å; and radii of 21.8 Å
and 8 Å at the anchored side and at the tip, respectively, superimposed on the corresponding tapered
beam model (a) and front view of the tip of the nanocone superimposed on the hollow circular
cross-section of the beam model (b). The wall thickness of the cross-section at the continuum level is
accepted as 3.4 Å.

In agreement with Figure 1, the origin of the reference frame is set coincident with
the centroid of the clamped cross-section, whose plane contains the axes x and y, while
the coordinate z is along the beam centerline. By denoting the time variable as t and
following [40], where the free vibrations of a CNT were analyzed, the governing equation
of motion for a nonuniform nanobeam and the corresponding boundary conditions can be
written by using the Hamilton’s variational principle as

∂2

∂z2

(
EI(z)

∂2v(z, t)
∂z2 − (e0a)2ρA(z)

∂2v(z, t)
∂t2

)
+ ρA(z)

∂2v(z, t)
∂t2 = 0 , (1)

v(0, t) = 0 , (2)

∂v(z, t)
∂z

∣∣∣∣
z=0

= 0 , (3)

EI(L)
∂2v(z, t)

∂z2

∣∣∣∣
z=L
− (e0a)2ρA(L)

∂2v(z, t)
∂t2

∣∣∣∣
z=L

+ kR
∂v(z, t)

∂z

∣∣∣∣
z=L

= 0 , (4)

∂

∂z

(
EI(z)

∂2v(z, t)
∂z2 − (e0a)2ρA(z)

∂2v(z, t)
∂t2

)∣∣∣∣
z=L
−M

∂2v(z, t)
∂t2

∣∣∣∣
z=L
− kTv(L, t) = 0 , (5)

where v(z, t) is the transverse displacement, ρ is the mass density, E is Young’s modulus,
A(z) is the cross-sectional area, I(z) is the second moment of area, e0 is a constant de-
pending on the material, and a is an internal characteristic length, such as the inter-atomic
distance, which is 1.42 Å in case of carbon–carbon bonds [41].

Assuming that
v(z, t) = v(z) cos ωt (6)

holds, with ω being the natural frequency of vibrations, Equations (1)–(5) can be rewritten as
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E
∂2

∂z2

(
I(z)

∂2v(z)
∂z2

)
+ ω2(e0a)2ρ

∂2(A(z)v(z))
∂z2 −ω2ρA(z)v(z) = 0 , (7)

v(0) = 0 , (8)

∂v(z)
∂z

∣∣∣∣
z=0

= 0 , (9)

EI(L)
∂2v(z)

∂z2

∣∣∣∣
z=L

+ ω2(e0a)2ρA(L)v(L) + kR
∂v(z)

∂z

∣∣∣∣
z=0

= 0 , (10)

E
∂

∂z

(
I(z)

∂2v(z)
∂z2

)∣∣∣∣
z=L

+ ω2(e0a)2ρ
∂(A(z)v(z))

∂z

∣∣∣∣
z=L

+
(

ω2M− kT

)
v(L) = 0 . (11)

On introducing the dimensionless taper-ratio coefficient ε and the function

g(z) = 1 + ε
z
L

, (12)

the cross-sectional area and second moment of area are assumed to satisfy

A(z) = A0 g(z)q2 , (13)

I(z) = I0 g(z)q1+2 , (14)

where q1 and q2 are shape factors and A0 = A(0) and I0 = I(0) are set.
Note that ε must be greater than −1 to prevent the beam profile from tapering to zero

as it passes from one end to the other; ε = 0 corresponds to the uniform profile and ε > 0
yields an increasing profile.

Substituting Equations (13) and (14) into Equation (7), we obtain

EI0

(
ε2

L2 (q1 + 1)(q1 + 2)g(z)q1
∂2v(z)

∂z2 + 2
ε

L
(q1 + 2)g(z)q1+1 ∂3v(z)

∂z3 + g(z)q1+2 ∂4v(z)
∂z4

)

+ω2(e0a)2ρA0

(
ε2

L2 q2(q2 − 1)g(z)q2−2v(z) + 2
ε

L
q2g(z)q2−1 ∂v(z)

∂z
+ g(z)q2

∂2v(z)
∂z2

)
−ω2ρA0 g(z)q2 v(z) = 0 .

(15)

The boundary conditions (8)–(11) are rewritten accordingly. In particular, Equa-
tions (10) and (11) take the form

EI0(1 + ε)q1+2 ∂2v(z)
∂z2

∣∣∣∣
z=L

+ ω2(e0a)2ρA0(1 + ε)q2 v(L) + kR
∂v(z)

∂z

∣∣∣∣
z=L

= 0 , (16)

EI0

(
ε

L
(2 + q1)(1 + ε)q1+1 ∂2v(z)

∂z2

∣∣∣∣
z=L

+ (1 + ε)q1+2 ∂3v(z)
∂z3

∣∣∣∣
z=L

)
+ω2(e0a)2ρA0

(
ε

L
q2(1 + ε)q2−1v(L) + (1 + ε)q2 ∂v(z)

∂z

∣∣∣∣
z=L

)
+
(

ω2M− kT

)
v(L) = 0 .

(17)

3. Solution by the Differential Quadrature Method

The solution of Equation (15) is numerically approximated using the DQM [42–45].
By virtue of the remapping rules

ζ = 2
z
L
− 1 , (18)

f (ζ) = 1 +
ε

2
(ζ + 1) , (19)
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with ζ ∈ [−1, 1] being the dimensionless counterpart of z ∈ [0, L], Equation (15) is
rewritten as

4ε2(q1 + 1)(q1 + 2) f (ζ)q1
∂2v(ζ)

∂ζ2 + 16ε(q1 + 2) f (ζ)q1+1 ∂3v(ζ)
∂ζ3 + 16 f (ζ)q1+2 ∂4v(ζ)

∂ζ4

=Ω2 f (ζ)q2 v(ζ)− η2Ω2
(

ε2q2(q2 − 1) f (ζ)q2−2v(ζ)− 4εq2 f (ζ)q2−1 ∂v(ζ)
∂ζ
− 4 f (ζ)q2

∂2v(ζ)
∂ζ2

)
,

(20)

where the dimensionless quantities

η =
e0a
L

, Ω = ωL2

√
ρ A0

E I0
, λ =

M
ρA0L

(21)

are set. In particular, with reference to the parameter λ, notice that λ = 0 indicates the
absence of external molecules, whereas λ = 1 denotes that the molecule has the same mass
as the nanobeam.

Then, the boundary conditions, Equations (8), (9), (16), and (17), become

v(−1) = 0 , (22)

∂2v(ζ)
∂ζ2

∣∣∣∣
ζ=−1

= 0 , (23)

(1 + ε)q1+2 ∂2v(ζ)
∂ζ2

∣∣∣∣
ζ=1

+ KR
∂v(ζ)

∂ζ

∣∣∣∣
ζ=1

= −Ω2 η2

4
(1 + ε)q2 v(1) , (24)

ε

2
(2 + q1)(1 + ε)q1+1 ∂2v(ζ)

∂ζ2

∣∣∣∣
ζ=1

+ (1 + ε)q1+2 ∂3v(ζ)
∂ζ3

∣∣∣∣
ζ=1
− KTv(1)

=−Ω2η2

(
ε

1
8

q2(1 + ε)q2−1v(1) +
1
4
(1 + ε)q2 ∂v(ζ)

∂ζ

∣∣∣∣
ζ=1

)
−Ω2 λ

8
v(1) ,

(25)

with

KT =
kT L
8EI0

, KR =
kRL3

2EI0
. (26)

To discretize Equation (20), the interval [−1, 1] is divided into n segments defined
using n + 1 points located at

ζi =
2(i− 1)− n

n
, i = 1, 2, . . . , n + 1 , (27)

and the set of n + 7 nodal unknowns, namely, the displacement at each nodal point and
the first three derivatives at the end points, are stored in the vector

wT =
{

v1, v′1, v′′1 , v′′′1 , v2, v3, . . . , vn−1, vn, vn+1, v′n+1, v′′n+1, v′′′n+1
}

, (28)

where vi and the prime symbol (′) are v(ζi) and the derivative with respect to ζ, respectively.
The displacement v(ζ) is approximated as

v(ζ) = α(ζ)C =
n+7

∑
i=1

αiCi , (29)

where α(ζ) is a row vector of monomials as

α(ζ) =
(

1, ζ, ζ2, . . . , ζn+6
)

, (30)

and C is a column vector of Lagrangian coordinates. The derivatives of Equation (29) are

v′(ζ) = α′(ζ)C , v′′(ζ) = α′′(ζ)C , v′′′(ζ) = α′′′(ζ)C . (31)



Materials 2021, 14, 3445 6 of 14

Evaluating Equations (29) and (31) at the nodal coordinates given by Equation (27)
and substituting into Equation (28), we obtain

w = N0C , (32)

where N0 is a (n + 7)× (n + 7) matrix whose rows are described by vectors

α(ζ1), α′(ζ1), α′′(ζ1), α′′′(ζ1), α(ζ2), α(ζ3), · · · , α(ζn), α(ζn+1), α′(ζn+1), α′′(ζn+1), α′′′(ζn+1) . (33)

Following the approach presented in [46], the weighting coefficients of the first four
derivatives are defined as

A = N′0N−1
0 , B = AA , G = AAA , D = AAAA . (34)

The discretized version of Equation (20) is then

Lw = Ω2Hw , (35)

where the matrices L and H are the discretized versions of the differential operators

L = 16 f (ζ)q1+2 ∂4

∂ζ4 + ε16(2 + q1) f (ζ)q1+1 ∂3

∂ζ3 + ε24(q1 + 1)(q1 + 2) f (ζ)q1
∂2

∂ζ2 , (36)

and

H = −4η2 f (ζ)q2
∂2

∂ζ2 − η2ε4q2 f (ζ)q2−1 ∂

∂ζ
− η2ε2q2(q2 − 1) f (ζ)q2−2 + f (ζ)q2 , (37)

and whose entries are

Li,j = 16 f q1+2
i Di,j + ε 16(2 + q1) f q1+1

i Gi,j + ε24(q1 + 1)(q1 + 2) f q1
i Bi,j , (38)

and
Hi,j = −4η2 f q2

i Bi,j − η2ε 4q2 f q2−1
i Ai,j −

(
η2ε2q2(q2 − 1) f q2−2

i − f q2
i

)
δij , (39)

where δij is the Kronecker operator.
The corresponding boundary conditions are

v1 = 0 , (40)

v′1 = 0 , (41)

f q1+2
n+1 v′′n+1 + KR v′n+1 = −η2

4
f q2
n+1vn+1 , (42)( ε

2
(2 + q1) f q1+1

n+1 v′′n+1 + f q1+2
n+1 v′′′n+1

)
− KT vn+1

= −η2
(

ε
1
8

q2 f q2−1
n+1 vn+1 +

1
4

f q2
n+1 v′n+1

)
− λ

8
vn+1 .

(43)

By swapping, in the matrices L and H, the (n + 6)th and (n + 7)th rows (columns)
with the third and fourth rows (columns), Equation (35) can be rearranged as(

Laa Lab
Lba Lbb

)(
wC
wF

)
= Ω2

(
0 Hab

Hba Hbb

)(
wC
wF

)
, (44)
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where

wC =


v1
v′1

v′′n+1
v′′′n+1

 , wF =



v2
v3
· · ·

vn+1
v′n+1
v′′1
v′′′1


. (45)

The only non-zero elements of Laa and Lab are

Laa(1, 1) = Laa(2, 2) = 1 ,

Laa(3, 3) = f q1+2
n+1 ,

Laa(4, 3) =
ε

2
(2 + q1) f q1+1

n+1 ,

Laa(4, 4) = f q1+2
n+1 ,

Lab(3, n + 5) = KR ,

Lab(4, n + 4) = −KT ,

(46)

whereas Lba and Lbb are

Lba =



L5,1 L5,2 L5,n+6 L5,n+7
· · · · · · · · · · · ·

Ln+4,1 Ln+4,2 Ln+4,n+6 Ln+4,n+7
Ln+5,1 Ln+5,2 Ln+5,n+6 Ln+5,n+7

L3,1 L3,2 L3,n+6 L3,n+7
L4,1 L4,2 L4,n+6 L4,n+7

 , (47)

Lbb =



L5,5 · · · L5,n+4 L5,n+5 L5,3 L5,4
· · · · · · · · · · · · · · · · · ·

Ln+4,5 · · · Ln+4,n+4 Ln+4,n+5 Ln+4,3 Ln+4,4
Ln+5,5 · · · Ln+5,n+4 Ln+5,n+5 Ln+5,3 Ln+5,4

L3,5 · · · L3,n+4 L3,n+5 L3,3 L3,4
L4,5 · · · L4,n+4 L4,n+5 L4,3 L4,4

 . (48)

The only non-zero elements of Hab are given by

Hab(3, n + 4) = −η2

4
f q2
n+1 ,

Hab(4, n + 4) = −
(

η2ε
1
8

q2 f q2−1
n+1 +

λ

8

)
,

Hab(4, n + 5) = −η2

4
f q2
n+1 ,

(49)

whereas Hba and Hbb are arranged as

Hba =



H5,1 H5,2 H5,n+4 H5,n+5
· · · · · · · · · · · ·
H3,1 H3,2 H3,n+4 H3,n+5
H4,1 H4,2 H4,n+4 H4,n+5

Hn+6,1 Hn+6,2 Hn+6,n+4 Hn+6,n+5
Hn+7,1 Hn+7,2 Hn+7,n+4 Hn+7,n+5

 , (50)
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Hbb =



H5,5 · · · H5,3 H5,4 H5,n+6 H5,n+7
· · · · · · · · · · · · · · · · · ·
H3,5 · · · H3,3 H3,4 H3,n+6 H3,n+7
H4,5 · · · H4,3 H4,4 H4,n+6 H4,n+7

Hn+6,5 · · · Hn+6,3 Hn+6,4 Hn+6,n+6 Hn+6,n+7
Hn+7,5 · · · Hn+7,3 Hn+7,4 Hn+7,n+6 Hn+7,n+7

 . (51)

Solving Equation (44), we obtain

LaawC + LabwF = Ω2HabwF , (52)

LbawC + LbbwF = Ω2HbawC + Ω2HbbwF . (53)

Calculating wC from Equation (52) and substituting it into Equation (53), we get(
Ω4HbaL−1

aa Hab −Ω2
(

LbaL−1
aa Hab −Hbb + HbaL−1

aa Lab

)
+ LbaL−1

aa Lab − Lbb

)
wF = 0 , (54)

from which the eigenvalues Ωi can be obtained by applying the resolution methods pro-
posed in [47].

The proposed method was tested in [35], where the minimum number of grid points
assuring the convergence of the results was assessed and, in particular, it was shown that
the first and second frequencies of a cantilever CNT are correctly predicted with n = 4 and
n = 6 using the basis provided in Equation (27).

4. Numerical Examples

Some numerical examples are reported in this section to evaluate the effects of pa-
rameters η, ε, λ, and KR, on the resonance frequency of a nonuniform nanobeam. The
calculations were performed using in-house DQ software developed in Mathematica®

language [48] and the results were validated by comparison with those available in the
literature. The properties of the considered nanobeam, shown in Table 1, were taken
from [36], to which we refer for further details on their derivation.

Table 1. Geometrical and material properties adopted in the numerical experiments.

Properties Symbol Value Unit

Length L 2.200× 10−8 m
Cross-sectional area A0 1.70903 × 10−18 m2

Second moment of area I0 5.71584 × 10−37 m4

Mass density ρ 2.240× 103 kg m−3

Young’s modulus E 1.000 TPa

4.1. Effect of the Taper Ratio Coefficient ε on Frequency

Here, we analyze the influence of the taper ratio on the natural frequency of nonuni-
form nanobeams, under the assumptions that nonlocal effects are negligible (η = 0) and
no lumped mass is present (λ = 0). Values of the first nondimensional frequency Ω1,
for different values of ε are reported in Table 2, with the other parameters relevant for
computation provided in the caption. To verify the accuracy and validity of the proposed
approach, numerical and exact results are compared, the latter from the solution obtained
in [49] using Bessel functions. We can observe that the DQM results are very accurate
approximations of exact ones, with very small, or even vanishing, relative errors computed
as [50]

err =
∣∣∣∣Ω1,DQM −Ω1,exact

Ω1,exact

∣∣∣∣ . (55)
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Table 2. Comparison of the first dimensionless frequency Ω1 from the exact solution [49] and DQM
for different ε. The other parameters are q1 = 2, q2 = 2, η = 0, λ = 0, KR = 0, and KT = 0.

ε Ω1,exact [49] Ω1,DQM err

1.0 1.6113 1.6114 6.2062× 10−5

0.9 1.6301 1.6302 6.1346× 10−5

0.8 1.6500 1.6501 6.0606× 10−5

0.7 1.6712 1.6714 11.967× 10−5

0.6 1.6940 1.6940 0.
0.5 1.7183 1.7184 5.8197× 10−5

0.4 1.7445 1.7447 11.465× 10−5

0.3 1.7730 1.7730 0.
0.2 1.8039 1.8039 0.

4.2. Effect of a Lumped Mass Applied to the Tip

A lumped mass placed at the tip of nonuniform nanobeams is considered in this
section, and its influence on the natural frequency is analyzed. Assuming that λ = 0.5
holds, the values of the first nondimensional frequency Ω1, for different values of ε are
reported in Table 3, with the other parameters relevant for computation provided in the
caption. As in the previously reported examples, the numerical and exact results are
compared, and we found an excellent agreement. Note that at a precision of four digits,
the numerical and exact results coincide, but for ε = 1, the relative errors (Equation (55))
are however very low.

Table 3. Comparison of the first dimensionless frequency Ω1 from the exact solution [49] and DQM
for different ε. The other parameters are q1 = 2, q2 = 2, η = 0, λ = 0.5, KR = 0, and KT = 0.

ε Ω1,exact [49] Ω1,DQM err

1.0 1.4421 1.4422 6.9343× 10−5

0.9 1.4459 1.4459 0.
0.8 1.4489 1.4489 0.
0.7 1.4511 1.4511 0.
0.6 1.4522 1.4522 0.
0.5 1.4520 1.4520 0.
0.4 1.4503 1.4503 0.
0.3 1.4466 1.4466 0.
0.2 1.4407 1.4407 0.

4.3. Effect of the Nonlocal Parameter η on Frequency

The basic principle of mass sensors relies on quantifying the difference between the
fundamental frequency of the CNT or CNC with and without the attached mass. The
relative frequency shift, which is given by

∆f =
ω0 −ωnl

2π
= f0 − fnl , (56)

where fnl and f0 are the natural frequencies of the nanobeam with and without added mass
and nonlocal effect, respectively, can be exploited to determine the value of the attached
mass [51]. The effect of the nonlocal parameter on frequency shift is investigated.

In Table 4, the resonant frequency shift values are reported for three different values
of ε, namely −0.5, 0, and 0.5, with the other parameters relevant for computation provided
in the caption. The frequency shift decreases for increasing ε and η.
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Table 4. Frequency shift ∆f for different values of η and ε. The other parameters are q1 = 1, q2 = 1,
λ = 0.5, KR = 0, and KT = 0.

η ε = −0.5 ε = 0 ε = 0.5

0 8.4456 6.0259 4.7428
0.02 8.4449 6.0254 4.7423
0.04 8.4428 6.0236 4.7407
0.06 8.4393 6.0206 4.7382
0.08 8.4344 6.0163 4.7346
0.10 8.4281 6.0109 4.7300
0.12 8.4203 6.0042 4.7244
0.14 8.4110 5.9963 4.7177
0.16 8.4003 5.9871 4.7099
0.18 8.3880 5.9766 4.7011
0.20 8.3740 5.9648 4.6911

In Figures 2 and 3, the frequency ratio Ωnl/Ω0 is plotted against the nonlocal param-
eter η, with 0 6 η 6 0.1, λ = 0, and ε taking four values, namely −0.5, 0, 0.5, and 1. In
Figure 2, the cross-sectional area (Equation (13)) and second moment of area (Equation (14))
profiles are governed by q2 = 1 and q1 = 1, respectively, whereas in Figure 3, q2 = 2
and q1 = 2 are set. Note that the values of Ωnl/Ω0 are higher in the latter case than in
the former.
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Figure 2. Frequency ratio Ωnl/Ω0 for different values of η and ε. The other parameters are q1 = 1,
q2 = 1, λ = 0, KR = 0, and KT = 0.

4.4. Effect of the Dimensionless Rotational Stiffness KR on Frequency

The effect of the dimensionless rotational stiffness KR on frequency is considered here.
The results in Table 5, with the parameters relevant for computation reported in the caption,
show that the first three dimensionless frequencies Ωnl increase with KR, then remain
constant for values of KR greater than 103, corresponding to a fixed rotational constraint.
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Figure 3. Frequency ratio Ωnl/Ω0 for different values of η and ε. The other parameters are q1 = 2,
q2 = 2, λ = 0, KR = 0, and KT = 0.

Table 5. The first three dimensionless frequency Ωnl, for different values of KR and ε. The other
parameters are q1 = 1, q2 = 1, η = 0.1, λ = 0.5, and KT = 0.

KR ε = −0.5 ε = 0 ε = 0.5

0
1.7227 2.0201 2.1908

12.2826 15.9842 19.18635
31.6509 43.2472 53.5648

0.1
1.9472 2.1502 2.2813

12.9167 16.2385 19.3274
32.6881 43.4459 53.6609

1
2.4073 2.7696 2.8486

14.9778 17.9400 20.4497
35.1213 44.9686 54.4768

10
2.5905 3.4929 4.0616

16.2189 21.7424 25.2449
37.4361 50.0820 59.3719

102
2.6145 3.6547 4.5134

16.4043 23.0538 28.7191
37.8203 52.5596 65.0277

103
2.6171 3.6729 4.5717

16.4237 23.2150 29.2433
37.8610 52.8892 66.1246

4.5. Effect of the Dimensionless Parameter λ and Taper Ratio ε on Frequency Shift

The influence of λ and η on frequency shift is graphically shown in Figures 4 and 5,
from which we can see that ∆f increases for decreasing ε and increasing λ. Moreover, it can
be argued that

i for ε = 0.5, the influence of the added mass on values of ∆f is more pronounced for
q1 = q2 = 2 (Figure 4) than for q1 = q2 = 1 (Figure 5);

ii for ε = −0.5, values of ∆f evaluated for q1 = q2 = 2 (Figure 4) are greater than those
for q1 = q2 = 1 (Figure 5);

iii ∆f tends asymptotically to a constant value as λ increases.
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Figure 4. Dimensionless frequency shift ∆f/GHz for 0 ≤ λ ≤ 1, and three different values of ε. The
other parameters are q1 = 1, q2 = 1, η = 0.1, KR = 0, and KT = 0.
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Figure 5. Dimensionless frequency shift ∆f/GHz for 0 ≤ λ ≤ 1, and three different values of ε. The
other parameters are q1 = 2, q2 = 2, η = 0.1, KR = 0, and KT = 0.

5. Conclusions

In this study, the nonlocal free vibration analysis of nanobeams, modeling CNTs or
CNCs at the continuum level, was considered. The nanobeams are clamped at one end
and elastically restrained at the other, where a lumped mass is also applied. The equation
of motion and its boundary conditions were derived according to the non-local Euler-
Bernoulli beam theory and then solved using the differential quadrature method (DQM).
The accuracy of the proposed method was investigated by comparing numerical and exact
results. The effects of several parameters, namely taper ratio, nonlocal parameter, lumped
mass, and elastic boundary conditions, on free frequencies were discussed. Through the
obtained results, the following observations were obtained:

i for a fixed value of λ, the frequency shift decreases as the nonlocal parameter η and
the taper ratio ε increase;

ii if the rotational stiffness KR increases, the first three dimensionless frequencies Ωnl
increase and, for KR > 103, settle at a fixed value;

iii for fixed values of η and ε and increasing λ, the frequency shift increases toward an
asymptotic value.
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The results also show that the DQM provides an excellent approximation of the exact
solution. The accuracy of the results confirm that the proposed algorithm provides a simple
and powerful tool in dealing with the free vibration analysis of nanobeams.
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