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Abstract: Geopolymer binders are a promising alternative to ordinary Portland cement (OPC)
because they can significantly reduce CO2 emissions. However, to apply geopolymer in concrete, it
is critical to understand the compatibility between the coarse aggregate and the geopolymer binder.
Experimental studies were conducted to explore the effect of the size of the coarse aggregate on
the mechanical properties and microstructure of a metakaolin-based geopolymer (MKGP) concrete
and ordinary concrete. Three coarse aggregate size grades (5–10 mm, 10–16 mm, and 16–20 mm)
were adopted to prepare the specimens. The microstructure of the concretes was investigated
with scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and mercury
intrusion porosimetry (MIP). Results showed an opposite coarse aggregate size effect between OPC
and MKGP specimens in terms of compressive strength. SEM/EDS analysis indicated that the
MKGP concrete has a weaker microstructure compared to OPC concrete induced by a higher porosity.
The differences in mechanical properties and pore structure between the MKGP and OPC concrete
are attributed to the greatly differing shrinkages triggered by the large surface area and penny-
shaped particles of metakaolin. The findings in this work help tailor the mechanical properties and
microstructure of MKGP concrete for future engineering applications.

Keywords: geopolymer concrete; OPC concrete; coarse aggregate size; metakaolin; microstructure

1. Introduction

Ordinary Portland cement (OPC) concrete is the most widely used and essential mate-
rial for most construction industries. Yet, its production leads to several environmental
issues such as the depletion of natural raw materials including limestone and clay as well
as air pollution [1]. Moreover, cement production has a high level of CO2 emission [2], close
to 8% of the global CO2, and possibly adversely affects climate change and global warm-
ing [3,4]. These issues led the researchers to explore ecological green concrete materials such
as geopolymer concrete (GPC). Geopolymer cement was introduced by Davidovits et al. [5]
and it elicited a growing interest due to its attractive properties, including higher resistance
to chemical attacks [6,7], resistance to freeze-thaw cycles [8], and excellent resistance to
elevated temperatures [9]. Geopolymer is an inorganic polymer formed by mixing alumina
(Al2O3) with alkali liquids. Research on the use of fly ash, slag, silica fume, and metakaolin,
as a source of aluminosilicate, has been increased [10]. Metakaolin (MK) is a natural source
of alumina with some unique characteristics. It can gain a high early strength without
any water curing [11]. MK improves the concrete strength and durability significantly
and its production can be well controlled to achieve high purity and high pozzolanic
reactivity [12].

Concrete is a quasi-brittle material. It is important to study mechanical parameters
comprehensively. Mechanical parameters include, in particular, compressive strength,
tensile strength, modulus of elasticity, and fracture energy [13]. The performance of
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composite materials such as concrete highly depends on the interaction between the
constituents and their chemical and physical properties. Concrete is a heterogeneous
material consisting of a three-phase system: cement paste, coarse or fine aggregate, and
the ITZ between the coarse aggregate and matrix [14]. The coarse aggregate has a key
role in determining the mechanical behavior of concrete as it occupies about 70% of
the concrete volume [15]. Nili and Ehsani [16] noted that the coarse aggregate, cement
paste, and the interfacial zone (ITZ) between them significantly affect the mechanical
properties of concrete. Extensive research has been done on the effect of the coarse aggregate
on the properties of OPC concrete. The previous studies showed that the size of the
coarse aggregate is a critical factor that influences the development of the ITZ area and
subsequent formation and propagation of microcracks [17,18]. The size of the coarse
aggregate is a crucial factor that could impact the mechanical properties and durability of
OPC concrete [19,20]. Ćosić, Korat, Ducman and Netinger [19] found that smaller-sized
coarse aggregates can result in higher flexural strength in the OPC concrete. Contrary to
the Zhong and Wille [20] findings, the compressive strength of OPC concrete increases
with the increase of the coarse aggregate size, as reported by Yu et al. [21].

However, the majority of the early studies on the geopolymer focused on the mortar
and paste. Numerous investigations have been conducted on the influence of various
parameters on geopolymer concrete (GPC), such as alkali precursor (such as fly ash) ratio,
Si/Al ratio, alkali concentration, and the properties of the coarse aggregate [22,23]. The
physical and mechanical properties of fly ash-based geopolymer concrete, compared to
those of Portland cement concrete were studied by [24]. It was revealed that the ratio of
binder to aggregates somehow has a significant effect on the properties of geopolymer
concrete. According to the findings, the coarse aggregate content effect in the case of GPC
varies widely [25,26]. Even though there are studies that have been conducted on the
influence of various parameters on the geopolymer, the size effect of the coarse aggregate
on the GPC remains uncertain, while its importance and influence on the mechanical
properties and durability of OPC concrete are well accepted. Moreover, a highly robust
and reliable mix design procedure suitable for GPC is yet to be established. Therefore, the
present study focuses on the influence of the size of the coarse aggregate on the metakaolin-
based geopolymer (MKGP) concrete.

Even though intensive studies are performed on various fronts, for the construction
industry use of MKGP concrete, a lot of research, regulation, and systemization demands
to be accomplished. The above-mentioned studies have shown that the microstructure of
the OPC concrete varies depending on the size of the coarse aggregate, which influenced
its mechanical properties. Besides, the previous studies on GPC concrete mainly focused
on the coarse aggregate content and properties rather than the size. As these properties
considerably affect the OPC concrete performance and durability, therefore, it is imperative
to extend the literature to study the effect of the size of the coarse aggregate on the MKGP
concrete strength and microstructure where, to the best of our knowledge, it has not been
investigated. It is still a matter of debate, and much work on the investigation of the
effect of the coarse aggregate size on the mechanical properties and microstructure of
MKGP concrete remains to be performed. Although most of the previous studies on the
mechanical behavior of geopolymer concrete were conducted under elevated temperature
conditions, this study reports the findings obtained under ambient temperature, which is
the practical application condition.

An experimental study was therefore conducted to investigate the effect of the coarse
aggregate size on the mechanical properties of the MKGP concrete. The failure mode,
compressive strength, splitting tensile strength, scanning electron microscopy/energy-
dispersive X-ray spectroscopy (SEM/EDS) analysis, and pore structure characterizations
were employed to evaluate the MKGP concrete strength performance. The results were
compared with the OPC concrete to present the implications for potential engineering
applications. These findings help better understand the effect of the coarse aggregate size
on GPC properties.
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2. Experimental Procedures
2.1. Materials

Typical OPC concrete specimens were prepared using the cement of CEM I 42.5 N [27].
The industrial-grade metakaolin (MK) was acquired from BASF MetaMax. Table 1 presents
the chemical compositions of OPC and MK obtained from X-ray fluorescence (XRF) tests.
The XRF spectrum was recorded using a Malvern PANalytical Epsilon 1 spectrometer
(Malvern PANalytical, Almelo, Netherlands). XRF spectroscopy is a non-destructive and
accurate technique used to identify material composition and sample preparation is mostly
not required. The chemical analysis revealed that the sum of SiO2, Al2O3, and Fe2O3
content was 95.46%. This is above the minimum value of 70% as required by ASTM
C618 [28]. Furthermore, the MgO content was within 5%. Sodium silicate (water glass,
WG) and a pellet sodium hydrate were used to prepare the alkaline activator solution. The
chemical composition of the water glass is reported in Table 2. The pellet sodium hydrate
was AR (analytical reagent) level with a purity of 96%. The dry river sand and limestone
coarse aggregate were used for all the specimens in this study. Figure 1a shows the grain
size distribution of the sand and coarse aggregate. The fineness modulus of the sand and
coarse aggregate was 2.8 and 4.34, respectively. The water absorption capacity of the coarse
aggregate was 0.9% and the density was 2620 kg/m3. The standard sieves were employed
to prepare the three groups of coarse aggregate, as shown in Figure 1b. Their particle size
distribution curves are plotted in Figure 1c. The coarse aggregate with three size ranges
(5–10 mm, 10–16 mm, and 16–20 mm) and a fineness modulus of 2.73 were used to prepare
the specimens.

2.2. Test Specimen Preparation

The concrete mixes with a grade of 40 MPa compressive strength at 28 days were
prepared based on 5–10 mm coarse aggregate size, as summarized in Table 3. Before
casting, to reduce the water absorption effect on the test results, the coarse aggregates
were immersed in water for 24 h, after which their surface water was dried by placing
them over a large sieve for 2 h and leaving water to evaporate [29]. The coarse aggregate
and sand were first dry-mixed for two minutes. Then, for casting the MKGP concrete,
the alkaline activator solution and water were added gradually, and mixing continued
for five minutes. The alkaline activator solution was prepared at least 24 h before the
synthesis of the geopolymer by mixing a liquid sodium silicate (water glass, WG) and
a pellet sodium hydrate according to the mixture design. For the OPC concrete casting,
water was gradually added after a dry mix of the coarse aggregate, sand, and cement, and
mixing continued for five minutes. The fresh MKGP and OPC concrete were cast into
respective molds in three layers. Each layer was compacted 25 times with a standard steel
rod according to the procedure reported in BS EN 12390-2 [30].

Table 1. Chemical composition of OPC and MK (wt.%).

Chemicals SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O TiO2 Na2O LOI *

OPC 23.81 10.79 3.36 50.58 5.31 2.75 0.92 0.73 0.61 1.14

MK 53.29 41.64 0.53 1.09 0.28 - 0.14 1.13 0.07 1.83
* LOI: loss on ignition.

Table 2. Oxide composition of sodium silicate solution (WG).

Oxide SiO2 Na2O H2O

Mass content (%) 26.00 8.20 65.80
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Figure 1. Coarse aggregate and sand used in this study: (a) particle size distribution curve for the
coarse aggregate and sand; (b) three range of the sizes of the coarse aggregates; (c) the grain size
distribution curve for the three size ranges of the coarse aggregates.

Table 3. Chemical composition of OPC and MK (wt.%).

Group MK
WG

Cement Coarse Aggregate Sand Water
SiO2 Na2O

OPC - - - 487 1115 560 208

MKGP 268 92.82 106.77 - 1115 560 255

Three concrete cubes with the dimensions of 150 mm × 150 mm × 150 mm and
100 mm × 100 mm × 100 mm were made for each group to measure the splitting tensile
strength ( ft) and compressive strength ( fcu), according to BS EN 12390-6 [31] and BS EN
12390-3 [32], respectively. All the specimens of OPC and MKGP concrete were wrapped
with plastic film to prevent water loss and demolded after 48 h, then stored in a curing
room at 20–25 ◦C and 90–95% RH until the testing day. The results of the mechanical
tests and their standard deviations (SDs) are presented in Table 4. A specimen label was
assigned to each cube as X-Y-Z. The first term (X) refers to the material type, which is either
the OPC or the MKGP. The second term (Y) denoted as 1, 2, and 3 consists of the coarse
aggregate size range of 5–10 mm, 10–16 mm, and 16–20 mm, respectively. The last term (Z)
refers to the number of specimens.
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Table 4. Chemical composition of OPC and MK (wt.%).

Series Specimens Coarse Aggregate
Size (mm)

fcu (MPa) ft (MPa)

Indiv. * Ave. * SD Indiv. * Ave. * SD

OPC

OPC1
OPC-1-1

5–10
31.80

31.59 0.22
4.82

4.77 0.05OPC-1-2 31.36 4.72
OPC-1-3 31.62 4.77

OPC2
OPC-2-1

10–16
34.53

34.96 0.48
4.08

4.14 0.08OPC-2-2 34.87 4.11
OPC-2-3 35.47 4.23

OPC3
OPC-3-1

16–20
36.29

36.40 0.25
3.82

3.74 0.09OPC-3-2 36.22 3.65
OPC-3-3 36.68 3.75

MKGP

MKGP1
MKGP-1-1

5–10
36.11

36.39 0.29
3.00

3.13 0.15MKGP-1-2 36.68 3.29
MKGP-1-3 36.38 3.10

MKGP2
MKGP-2-1

10–16
33.27

33.05 0.27
2.69

2.85 0.15MKGP-2-2 32.75 2.88
MKGP-2-3 33.12 2.98

MKGP3
MKGP-3-1

16–20
26.95

26.81 0.15
1.44

1.46 0.03MKGP-3-2 26.65 1.45
MKGP-3-3 26.82 1.49

* Indiv.: individual; Ave.: average.2.3. Mechanical Test.

In this study, 18 specimens were tested after 28 days of curing for compressive strength
and splitting tensile strength. The loading rate was 0.3 MPa/s. Figure 2 presents the
dimensions and loading of the specimens.

Figure 2. Test set-up for (a) splitting tensile test; (b) compression test.

2.3. Microstructural Analysis

Microstructural investigations were conducted on the fractured surfaces of both OPC
and MKGP concrete specimens. The microanalytical technique SEM/EDS analysis was
performed to study the interfacial morphology between the paste and coarse aggregate.
The Quanta FEG650 (FEI, Hillsboro, OR, USA) SEM/EDS instrument was used at the 5- or
8- or 10-kV accelerating volt (FEI) model. The interfacial regions between the paste and the
coarse aggregate were studied through microstructural investigations of the ITZ area in
the specimens of the OPC and MKGP concrete considering the size of the coarse aggregate.
Moreover, the mercury intrusion porosimeter (MIP; Micromeritics AutoPoreIV9500, Nor-
cross, GA, USA) test was employed to determine the porosity and pore size distribution of
the tested specimens.
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3. Results and Discussion
3.1. Failure Behavior

Figure 3 illustrates the failure types of the specimens after the compression test. OPC
concrete fractured specimens showed that, as the size of the coarse aggregate increased, the
observed spalled material relatively decreased, which could be attributed to the increase
of the compressive strength of the specimens. In contrast, the MKGP concrete specimens
yielded a different behavior. As the size of coarse aggregate increased, a greater extent of
crushing was observed, which could be due to the decrease of the compressive strength.
Although MKGP specimens exhibit more fracture and brittle behavior than the OPC
specimens during the compression test, in general, the MKGP concrete specimens showed
similar cracking and failure patterns compared to that of the OPC concrete specimens [33].
Tested specimens displayed cracking because of splitting along the height of the cubes due
to the development of tensile stresses. The debris from compression tests proved that the
quality of the coarse aggregate was desirable, as the crack formed in the cement paste and
not in the coarse aggregate.

Figure 3. OPC (left) and MKGP (right) concrete cube specimens after compression test.

3.2. Compressive Strength

The average compressive strength test results of OPC concrete and MKGP concrete are
presented in Table 4 and depicted in Figure 4. As the coarse aggregate size increased, the
compressive strength of the OPC concrete increased. This trend ranged from 31.59 MPa for
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the 5–10 mm to 36.40 MPa for the 16–20 mm coarse aggregate size. The results are consistent
with the study by Yuan et al. [34] in which the compressive strength increases when the
aggregate size increases. With the same weight of the coarse aggregate in OPC specimens,
the larger coarse aggregate leads to a less specific surface area, so it is surrounded by a
thicker OPC paste. Consequently, the paste between the larger coarse aggregate would have
better quality and fewer microcracks [35], which yielded a higher compressive strength.

Figure 4. Experimental results of compressive strength.

The MKGP concrete results yielded a decrease in compressive strength values as the
coarse aggregate size increased. The results are consistent with the study by Guades [36],
showing the effect of aggregate size variation on the compressive strength of the GPC
under ambient temperature. The considerable decrease of compressive strength observed
in specimens prepared with 16–20 mm size aggregates implies that the coarse aggregate size
could significantly affect the strength of the MKGP concrete. Unlike the OPC specimens, the
large volume of the paste around the coarse aggregate reduces the compressive strength. It
could contribute to the higher shrinkage of the MKGP paste compared to the OPC concrete,
resulting in a highly porous paste of the MKGP concrete, which will be discussed further
in Section 4.

3.3. Splitting Tensile Strength Test Results

Table 4 and Figure 5 present the splitting tensile strength test results of the OPC and
MKGP concrete. These results illustrate that, despite the increase of the aggregate size, the
splitting tensile strength decreased which is consistent with the previous studies [37]. It
also implicates that a larger coarse aggregate cannot enhance the splitting tensile strength
of concretes.

The larger volume of the paste between the larger coarse aggregate leads to a more
pronounced difference between the elastic modulus of the coarse aggregate and paste as
a result of the increased coarse aggregate volume relative to the specimen volume [38].
Consequently, it increases the stress concentration and results in more microcracks near the
coarse aggregate. It, therefore, yields a higher reduction in the splitting tensile strength
of concrete with a lower w/c ratio of 0.4, as reported by Akçaoğlu, Tokyay and Çelik [38].
They revealed that the interfacial bond is a critical factor for tensile strength compared to
its role in compressive strength.
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Figure 5. Experimental results of compressive strength.

Physically, the small surface area could result in the lower development of the gel bond,
and consequently, increases the shrinkage cracks near the coarse aggregate. Moreover,
the possible internal bleeding underside of a larger coarse aggregate could contribute to
decreasing the splitting tensile strength by reducing the interfacial bond strength inside
the concrete.

Results show that the decrease of the ft value in MKGP is more rapid than that of OPC
concrete. It could attribute to the higher shrinkage cracks of the MKGP paste compared to
that of OPC. Furthermore, it may be attributed to the weaker microstructure of the MKGP
paste compared to that of the OPC specimens, as discussed in Section 3.5.1.

Mechanical test results manifest the different microstructure behaviors of the MKGP
concrete compared with the OPC concrete. Moreover, the development of the interfacial
bond may vary in the MKGP concrete with different coarse aggregate sizes compared to
the OPC concrete. This effect, however, is more pronounced in OPC concrete, probably
due to relatively better compatibility between the OPC and coarse aggregate phases as
compared to MKGP.

3.4. Proposed Empirical Models

Compressive strength and splitting tensile strength are essential material properties
of the concrete to determine the design purposes and structural behavior of the concrete
member. In addition, the tensile strength of the concrete could be estimated from its
compressive strength. In this study, new empirical equations are therefore proposed to link
the compressive and splitting tensile strengths of MKGP concrete and OPC concrete by
considering the coarse aggregate size effect.

3.4.1. Effect on the OPC Concrete

To predict the compressive strength of concrete by considering the coarse aggregate
size effect, Jiang et al. [39] proposed a model based on Bazant’s law of size effect and the
calibrated model by Kim et al. [40].

fc = f ′c ·δ(dmax, h, dm
a ) (1)

δ(dmax, h, dm
a ) = α +

B√
1 + dmax

λ0dm
a

(
h
d − β

) (2)
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where fc and f ′c are the actual cylinder compressive strength of the concrete specimen
considering the size effect and the strength of the concrete specimen of standard size
(designed compressive strength = 40 MPa), respectively. α, B, λ0 and β are the coefficients
that can be determined via experimental results. dmax is the maximum coarse aggregate
size of concrete. h and d define the specimen size. The regression analysis of Kim, Yi, Park
and Eo [40] yielded dm

a ≈ 1. Therefore, the cylindrical compressive strength of concrete
considering the coarse aggregate size can be expressed as follows:

fc = α f ′c +
B f ′c√

1 + dmax
λ0

(
h
d − β

) (3)

The designed compressive strength ( f ′c), in this study, is 40 MPa, and the h/d ratio
is equal to 1, as the tested specimens were concrete cubes. Moreover, the measured cube
compressive strength can be converted to the cylinder compressive strength via 0.8 f ′c .
Equation (3) for the tested specimens can therefore be expressed as follows:

fc = 0.8×

α f ′c +
B f ′cu√

1 + dmax
λ0

(
h
d − β

)
 (4)

The measured experimental cube compressive strength (Table 4) and Equation (4)
were used to determine the relationship between the compressive strength and the maxi-
mum coarse aggregate size, as shown in Figure 4. A Levenberg–Marquardt algorithm in
Matlab [41], a curve fitting toolbox, was used to establish the fitting parameters. It yields
that α, B, λ0 and β are equal to 1.570, −1.351, 2.171, and 1.052, respectively. The splitting
tensile strength of concrete ( ft) can be estimated based on its compressive strength, as
reported by ACI 318-14 [42] and CEB-FIP [43]:

ft = ϕ( fc)
c (5)

Figure 6 depicts that the experiments’ splitting tensile strength results compare well
with the predicted compressive strength results. The obtained fitting parameters yielded
that ϕ and c are equal to 1334 and −1.63, respectively.

Figure 6. Relationship between Equation (5) and experimental results.
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3.4.2. Effect on the MKGP Concrete

Figure 4 also shows the effect of the coarse aggregate size on the compressive strength
of the MKGP concrete. The interesting point is the opposite effect of the larger size of the
coarse aggregate on the compressive strength of MKGP specimens compared with the OPC
specimens. Therefore, Equation (4) was employed to describe the relationship between
the MKGP compressive strength and the maximum coarse aggregate size. After fitting
the analysis of the experimental results, the coefficients α, B, λ0 and β are determined as
−17.43, 18.83, 2.336, and 1.993, respectively. The calibrated model is employed to predict
the compressive strength, as given in Table 5. Comparing the experimental results ( fcu)
with the calibrated values ( fc) revealed that the predicted result matches well with the
experimental results, as its mean value and the standard deviation (SD) are 0.98 and 0.041,
respectively.

Table 5. Comparison of theoretical and experimental results of compressive strength.

Specimens Calibrated Model (fc)
(mm)

Proposed Model (ftg)
(mm)

fcu/fc ft/ftg

MKGP-1-1 35.97 3.44 1.00 0.87

MKGP-1-2 35.97 3.57 0.98 0.92

MKGP-1-3 35.97 3.5 0.99 0.89

MKGP-2-1 30.85 2.83 0.93 0.95

MKGP-2-2 30.85 2.73 0.94 1.05

MKGP-2-3 30.85 2.8 0.93 1.06

MKGP-3-1 27.52 1.71 1.02 0.84

MKGP-3-2 27.52 1.67 1.03 0.87

MKGP-3-3 27.52 1.7 1.03 0.88

Average 0.98 0.93

SD 0.041 0.077

From an experimental point of view, measuring the splitting tensile strength directly
from concrete specimens is not always easy. The relationship between splitting tensile
strength and compressive strength of tested MKGP concrete specimens are therefore
provided (Figure 6) to avoid the direct measurements which are demanding and time-
consuming. According to Equation (5), the following relationship can be established:

ftg = 0.0006775( fcg)
2.359 (6)

where ftg and fcg are the splitting tensile strength and cube compressive strength of
the geopolymer, respectively. The proposed model is employed to predict the splitting
tensile strength, as given in Table 5. Comparing the experimental results ( fcu) with the
model values ( fc) yielded acceptable prediction values, as its mean value and the standard
deviation (SD) are 0.93 and 0.077, respectively.

3.5. Microstructure Analysis
3.5.1. SEM Observation and EDS Analysis

SEM/EDS investigations were conducted on the fracture surfaces of the specimens.
Figure 7 shows the identification of the coarse aggregate zone, paste zone, and ITZ area
in the SEM images. The line scan analysis of SEM/EDS presents the element intensity
of the OPC and MKGP concrete specimens, as shown in Figure 8. The structure of the
samples illustrated in Figure 8 is similar to Figure 7. The data were obtained in 10 µm
intervals from the paste to the coarse aggregate surface to determine the characteristics of
the microstructure of the tested specimens.
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Figure 7. Microstructure of the MKGP3 and the OPC3.

Figure 8. EDS Line scan analysis and SEM images of the OPC concrete and the MKGP concrete.
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The microstructure of the ITZ area around the different coarse aggregate sizes in
both OPC and MKGP concrete was investigated, as shown in Figure 8. SEM observations
showed that the ITZ area is looser than other parts of the paste. It manifests the existence of
a more porous zone in MKGP specimens, which would be the weaker part of the sample. It
may be attributed to the formation mechanism of ITZ for OPC and MKGP, which may not
be the same. Microstructure analysis revealed that the coarse aggregate sizes investigated
in this study do not significantly affect the ITZ area. It shows that the MKGP paste resulted
in a weaker microstructure compared to that of the OPC specimens.

In general, increasing the coarse aggregate size did not exhibit any considerable
influence on the EDS analysis in this study, as shown in Figure 8. Along the normal
direction of the ITZ, the 255 point data were obtained at 127.5 µm (0.5 µm) intervals from
the aggregate to paste. The results, however, revealed the presence of a C-S-H phase
(calcium-silicate-hydrate) because of the hydration of pure OPC. The three distinct phases
that compose the cementitious OPC matrix were as follows:

• Portlandite, which the brittle Ca(OH)2;
• Hygrated Ca silicate;
• Hydrated Ca aluminate.

The Ca atoms’ intensity decreased from a concrete paste into the coarse aggregate,
indicating the percentage of CH particles on the paste side is mainly responsible for the
porosity in the ITZ [44]. Si and Al are the main components of the N-A-S-H gel in the
metakaolin geopolymer [45], which were observed in the paste part of MKGP concrete
specimens. The presence of Al and Si leads to the formation of N-A-S-H, and together with
Ca could contribute to a cohesive mix during the concrete mixing, which is also supported
by visual observations during specimen preparation. The hydration product has different
Ca/Si and Al/Si ratios. EDS analysis of OPC samples showed the decrease of Ca atoms and
Si atoms with the size of the coarse aggregate. The decrease in Ca/Si ratio may attribute to
the porous ITZ area. Moreover, in MKGP samples, the Si/Al ratio increased with the size
of the coarse aggregate indicating the less dense structure.

3.5.2. Pore Structure Analysis Using MIP

The porosity and pore size distribution of the OPC and MKGP concrete specimens
were obtained using MIP tests. Figures 9 and 10 show the pore size distribution of the
concrete specimens. The test results were obtained from the crushed concrete specimens
weighing approximately 1.5 g. Figure 9 shows the variations in cumulative intruded pore
volumes plotted as a function of pore size diameters. The results show that the OPC
specimens’ intrusion curves are almost similar, as well as the MKGP specimen curves. The
MKGP intrusion curves, however, exhibit significant differences when the diameter of the
pores is between 0.2 µm and 20 µm. It yields the differences in pore structure between
MKGP specimens and OPC specimens. Moreover, the MKGP curves show that an increase
of the coarse aggregate size slightly changes the pore size distribution, especially when
the diameter of the pores is between 0.05 µm and 6 µm. It could lead to a decrease in the
mechanical properties of the MKGP specimens.

Figure 10 shows more information on the evolution of the tested specimens’ pore
structure. MIP results showed that the MKGP concrete contains dual pore peaks (the big
pores of 10 µm and the gel pores of 20 nm), while the OPC concrete shows only one pore
peak (the capillary/gel pore peak of 100 nm). It shows that most of the pore sizes in the
OPC specimens are distributed between 0.35 µm and 32 µm, whereas the majority of the
pore sizes in the MKGP specimens are between 0.06 µm and 32 µm. Peaks corresponding to
the MKGP specimens appear in the pores between 1 µm and 32 µm, of which the MKGP3
shows the highest peak compared to the other specimens. Results revealed that the MKGP3
exhibits a dominant pore size distribution of less than 7 µm. With a decrease in the coarse
aggregate size, a less porous structure emerges in the MKGP1.



Materials 2021, 14, 3316 13 of 19

Figure 9. Cumulative intruded pore volume vs. pore diameter for OPC and MKGP specimens.

Figure 10. Differential pore size distribution curves of the OPC and MKGP specimens.

The specimens tested by MIP in this study contain pores with distinct size ranges, one
being micropores (<1 µm) and the other being macropores (>1 µm). Figure 11 presents the
effects of the pore structure on the compressive strength of the OPC concrete and MKGP
concrete. It reports the total porosity, macropore porosity, total pore area, and average
(median) pore diameter that were determined from the MIP test. The average pore size can
be calculated as the ratio of pore volume multiplied by four to the pore area (4V/A).

Noticeable pore structure change could be observed from the presented data. Unlike
the average pore results, the total porosity, macropore porosity, and total pore area in
MKGP specimens are higher than in the OPC specimens. It shows that the pore structure
significantly resulted in a change of the mechanical properties of the MKGP specimens.
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Figure 11. Pore structure characterization of the OPC and MKGP specimens.

The mercury intrusion porosities of OPC1, OPC2, OPC3, MKGP1, MKGP2, and
MKGP3 are 20.49%, 21.05%, 20.70%, 22.78%, 24.77%, and 23.11%, respectively. Although
the results show that the effect of the coarse aggregate size is insignificant on the total
porosity of the specimens, the MKGP concrete specimens’ porosities are higher than
the OPC concrete specimens. For the MKGP concrete specimens, the macropore porosity
results indicated that the larger coarse aggregate size resulted in a larger macropore porosity
compared to OPC concrete, which consequently could lead to a decreased compressive
strength of the MKGP concrete specimens.

Figure 11 shows that the variation of the total pore area in the OPC specimens is not
remarkable, while the average pore size exhibited an increasing and decreasing tendency
with an increase in the coarse aggregate size. Although the total pore area of OPC2 is
smaller than that of OPC3, the average pore size of OPC2 is larger than the OPC3, which
resulted in a slightly smaller compressive strength. For the MKGP specimens, however,
with the increase of the coarse aggregate size, the total incoming mercury decreased, while
the average pore size increased, which subsequently resulted in a decreased compressive
strength. The results show that the compressive strengths of the MKGP specimens tend
to decrease as the average size of pores increase. The average pore diameter of the tested
specimens, according to the coarse aggregate size and type of concrete, appear in the
following order: OPC2 > OPC1 > OPC3 > MKGP3 > MKGP2 > MKGP1.

4. Further Discussion

Compared with OPC concrete cubes, a visual inspection of the MKGP concrete cubes’
surface before the compression test showed more visible and finer cracks, as shown in
Figure 12. It was associated with early surface drying. It was observed that an increase in
the size of the coarse aggregate in MKGP concrete specimens increased the surface cracks
after hardening. Moreover, it is known that the content of water in the MKGP concrete
mixture consisted of water in the activators and added water. Therefore, the increased
surface cracking in larger coarse aggregate size specimens could be related to the concrete
shrinking due to the excess water that evaporates out of the MKGP specimens. Under
uniaxial compression loading, as the applied load increased, small cracks appeared and
propagated almost parallel to the direction of the applied load. In this situation, the weak
bonding between the coarse aggregate and paste could yield interfacial cracks, as reported
by Van Mier [46]. These cracks could develop and result in lateral tension. However, the
findings after the compression test showed that cracks mostly occurred in the MKGP paste,
which could be attributed to its higher shrinkage compared to OPC concrete.
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Figure 12. Surface cracks of the specimens before the compression test.

Moreover, the central core of the OPC concrete cubes was relatively undamaged
compared to the MKGP specimens. As the size of the coarse aggregate increases in the
OPC concrete, the continuous crack growth could be delayed due to the confinement
stresses because of the friction between the platens of the testing machine and the concrete
cubes [47]. It can therefore be concluded that in the MKGP concrete specimens with a coarse
aggregate of larger size, the confinement could not restrain the crack growth, as it yields
lower strength compared to the smaller size of the coarse aggregate. It may be because of
the high shrinkage of the MKGP concrete due to the large surface area of metakaolin [48].

The coarse aggregate could significantly influence the characteristics of concrete, as
it occupies 70–80% of the concrete volume [49]. It is reported that in the OPC concrete of
the large coarse aggregate, the increasing volume of the coarse aggregate will result in a
decrease in concrete shrinkage. [49]. It is reported that the larger coarse aggregate restrains
the inner strains and prevents the transition of microcracks into macrocracks [50] and hence
decreases shrinkage. Consequently, the compressive strength of concrete increases with
the increase of the coarse aggregate size.

SEM observations confirmed the non-uniform microstructure of the MKGP paste com-
pared to that of the OPC concrete. It may be because, in geopolymer production, the water
is not combined directly with the gel product; accordingly, a small amount of the water
remains as interstitial water in the gel [51]. Moreover, a large amount of water demands to
mix the metakaolin, which yields a large excess of free water. It could result in a porous
microstructure due to the evaporation under ambient temperature conditions with low rel-
ative humidity [52], which yields an extensive shrinkage of the specimen [53]. Besides, the
water absorption increases as a result of increasing the Si/Al ratio and decrease in the rate
of the geopolymerization process, which, in turn, affects the MKGP concrete and leads to a
porous and less dense microstructure and ITZ area. Therefore, the results of the previous
studies, including the findings from Mastali, Kinnunen, Dalvand, Mohammadi Firouz and
Illikainen [48], confirm that the MKGP paste tended toward a high shrinkage. Thus, it can
be concluded that the MKGP specimens exhibit lower strength due to higher shrinkage.

Table 6 shows the obtained values of the drying shrinkage from the previous studies,
whereas, for the MKGP paste, the results are larger than for the OPC paste. It could be
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attributed to the effect of the large surface area and particle shape of metakaolin, and
subsequently, its influence on the physical and mechanical properties.

Table 6. Values of drying shrinkage were reported in previous studies.

OPC paste drying shrinkage (×10−6) MKGP paste drying shrinkage (×10−6)

Bakharev et al. [54] 600 Yang, et al. [55] 5976

Neupane [56] 550 Xiang, et al. [57] 2505

The observed pore structure measurements change in MKGP concrete could be at-
tributed to its higher shrinkage, which yielded a porous structure in the MKGP specimens.
The study of Yang, Zhu and Zhang [55] on geopolymers reported an enhanced relationship
between the shrinkage and their micropore structure. Moreover, the lower compressive
strength of the MKGP specimens can be related to the increased shrinkage [58].

Figure 13 illustrates the effect of shrinkage on the MKGP specimens. A larger MKGP
paste volume appears around the coarse aggregate as the size of the coarse aggregate
increases. The larger MKGP paste volume yields higher shrinkage due to its porous
microstructure. Consequently, higher shrinkage results in a larger number of macropores
(>1 µm), as shown in Figure 13b. As a result, it leads to a decrease in compressive strength.

Figure 13. Schematic of MKGP specimens. (a) Before shrinkage; (b) after shrinkage.

5. Conclusions

This study investigates the effect of the coarse aggregate size on the mechanical
properties of the MKGP concrete and OPC concrete. The compressive strength and splitting
tensile strength of the specimens were determined after 28 days and were analyzed. From
the results of the experimental work conducted in this study, the following conclusions can
be drawn:

(1) The compressive strength of MKGP concrete and OPC concrete decreased and in-
creased, respectively, as the size of the coarse aggregate increased. This behavior can
be explained by the higher shrinkage of the MKGP concrete.

(2) The maximum reduction and increment in compressive strength due to the increase
of the size of the coarse aggregate of OPC concrete and MKGP concrete were 13% and
36%, respectively.

(3) The splitting tensile strength decreased in both groups because coarse aggregates
with larger sizes yield higher microcracks in the vicinity of the coarse aggregate.
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(4) The maximum reduction in the splitting tensile strength due to the increase of the
size of the coarse aggregate of OPC concrete and MKGP concrete were 28% and
114%, respectively.

(5) SEM/EDS investigations revealed that the size of the coarse aggregate does not
significantly affect the ITZ area in this study. MIP results showed a larger pore
diameter with increasing size of the coarse aggregate. The role of paste between coarse
aggregates is therefore more pronounced as the size of the coarse aggregate increases.

(6) It can be concluded that the changes in pore structure with the size of the coarse
aggregate significantly influences the strength development of the tested specimens.
An increase in the size of the coarse aggregate results in a higher shrinkage of MKGP
concrete and subsequently results in a larger number of macropores. Hence, the
influence of macropores is significant.
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