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Abstract: In the last twenty years, due to an increasing medical and market demand for orthopaedic
implants, several grafting options have been developed. However, when alternative bone augmenta-
tion materials mimicking autografts are searched on the market, commercially available products
may be grouped into three main categories: cellular bone matrices, growth factor enhanced bone
grafts, and peptide enhanced xeno-hybrid bone grafts. Firstly, to obtain data for this review, the
search engines Google and Bing were employed to acquire information from reports or website
portfolios of important competitors in the global bone graft market. Secondly, bibliographic databases
such as Medline/PubMed, Web of Science, and Scopus were also employed to analyse data from pre-
clinical/clinical studies performed to evaluate the safety and efficacy of each product released on the
market. Here, we discuss several products in terms of osteogenic/osteoinductive/osteoconductive
properties, safety, efficacy, and side effects, as well as regulatory issues and costs. Although both
positive and negative results were reported in clinical applications for each class of products, to date,
peptide enhanced xeno-hybrid bone grafts may represent the best choice in terms of risk/benefit
ratio. Nevertheless, more prospective and controlled studies are needed before approval for routine
clinical use.

Keywords: autograft alternatives; commercial bone allografts; cellular bone matrices; growth factors;
bioactive peptides; xeno-hybrid bone grafts

1. Introduction

Many clinical conditions, such as arthritis, tumours, traumas, infections (e.g., os-
teomyelitis, periodontitis), and teeth extraction, may result in bone loss requiring a surgical
intervention to replace or restore the lost tissue [1,2]. Furthermore, the ageing population,
poised to become one of the most significant social transformations, explains the increasing
number of bone graft procedures performed every year.

Musculoskeletal tissue, which includes bone tissue, is a complex system mainly sup-
porting body shape, structure, and locomotion. Over the years, several clinical procedures
and material options were investigated for defect repair and bone regeneration [3,4]. Nev-
ertheless, to date, autologous bone is still considered the ideal source for graft procedures
since it provides all the three elements necessary for bone healing: (i) an osteoconductive
scaffold for cell attachment promotion, (ii) extracellular growth factors for cell proliferation
and differentiation, and (iii) viable cells with osteogenic potential [5].

However, the clinical application of autologous tissues is limited because of procure-
ment morbidity and constraints on obtainable quantities. These shortcomings are often
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overcome by advantageous alternative grafts derived from allogeneic or animal sources,
albeit these natural replacement materials, compared to autogenous tissues, provide low-
ered osteoinductive and osteoconductive properties with no osteogenic activity [6]. In this
regard, many researchers focused their efforts to combine human or animal bone-derived
grafts with specific biological (e.g., growth factors [7], platelet-rich plasma [8], collagen [9])
or synthetic agents (e.g., as calcium sulphate [10], tri-calcium phosphate ceramics [11],
bioactive glasses [12], or polymer-based substitutes [13,14]) to enhance the process of
osseointegration and bone neoformation in the host.

Although the scientific literature abounds with promising studies aiming at recon-
struction and regeneration, only a few orthopaedic products mimicking autografts reached
the market [15].

Among these, cellular bone matrices (CBMs) are a class of products that combines
osteoinductive and osteoconductive properties provided by nonstructural allografts with
the osteogenic potential of viable cells [16]. Each product is made using proprietary
techniques and differs in cell type, donor age and gender, and cryopreservation media [17].
Therefore, characteristics related to immunogenicity, cytotoxicity, vascularisation, ability to
deliver inductive factors, and cells can potentially endure a variation between different
products and within batches of the same grafts.

Another class of commercial products intended as an alternative to autologous grafts
is represented by the growth factor enhanced bone grafts, a combination of natural or
synthetic scaffold materials and growth factors produced with recombinant gene technol-
ogy [18]. In contrast with CBMs, these products exploit growth factors’ signalling activity
inducing host multipotent mesenchymal stem cells (MSCs) to become osteoblasts.

Similarly, a recent class of xeno-hybrid bone grafts does not use viable cells to provide
osteogenic activity but biomimetic peptides to activate pre-programmed cells to differ-
entiate into competent cells [19]. Since the clinical use of CBMs and growth factors has
been associated with significant issues, such as high costs, regulatory matters, or severe
complications, the use of bio-active peptides may have the potential to overcome these
problems and provide a safe and cost-effective bone grafting option.

The purpose of this review is to describe commercial grafts, which are claimed to
be a valid alternative to autologous tissue in terms of osteogenic, osteoinductive, and
osteoconductive properties. To this aim, a comprehensive characterisation of each prod-
uct is performed, considering the manufacturers’ declared properties and critical factors
emerging from the scientific literature, which may entail benefits as well as potential short-
comings. Thus, among the complex landscape of current grafting options in orthopaedics,
this review aims also at providing an easy and helpful tool to guide clinicians in selecting
the products which best fit the clinical indications and relative expected outcomes.

2. Materials and Methods

This review was performed by evaluating only the commercially available products
claimed as an alternative to autografts for orthopaedic indications.

The search was performed by employing Google and Bing to acquire information from
reports or website portfolios of important competitors in the global bone graft market. Only
products used for orthopaedic indications and featured osteoinductive/osteoconductive/
osteogenic properties were selected. Using this strategy, in the last twenty years, about
twenty distinct commercial products were identified on the global market. Successively,
based on their characteristics (i.e., presence of cells, growth factors, or bioactive peptides),
they were divided into three main categories as reported in Figure 1 and Tables 1-3: cellular
bone matrices, growth-factor-enhanced bone grafts, and peptide enhanced xeno-hybrid
bone grafts.
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Figure 1. Flowchart showing product classification and study selection.

The bibliographic databases Medline/PubMed, Web of Science, and Scopus were
employed to acquire data and information from preclinical and clinical studies performed
to evaluate the safety and efficacy of each product released on the market.

The following term combinations were searched: “commercial name” and “allograft”,

Zawi

“commercial name” and “cellular bone matrices”, “commercial name” and/or “specific
growth factor”, “specific growth factor” and “allograft”, “commercial name” and/or “spe-
cific peptide”, or “specific peptide” and “xenograft”. Only some representative preclinical
studies were discussed to evaluate the safety and efficacy of the selected products, both
in vitro or animal models. Regarding clinical studies, the searches were filtered with pub-
lished data from 2000 to the present, considering I-III Level of Evidence [20]. Only articles
written in English were selected.

The list of website links of these products and the related selected clinical studies

discussed in the text are provided in the Supplementary Materials, such as Table S1.

3. Results

As listed in Table 1, seventeen cellular bone matrices were identified, although some of
them, such as Osteocel® Plus and Osteocel® PRO (Nuvasive, San Diego, CA, USA), Trinity
EVOLUTION® and Trinity ELITE® (Orthofix Medical Inc., Lewisville, TX, USA), Via® Graft
and Via® Form (Vivex Biologics Inc., Miami, FL, USA), ViviGen® and ViviGen® Formable
(DePuy Synthes, Raynham, MA, USA), V92™ and V92-FC "™ (Paragon 28, Englewood,
CO, USA), and SCYLLA™ and SCYLLA™-F (Chamber Spine. King of Prussia, PA, USA),
only differ for composition or formulation. Furthermore, four growth-factor-enhanced
bone grafts and two peptide-enhanced xeno-hybrid bone grafts were found, as reported in
Tables 2 and 3, respectively.
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3.1. Cellular Bone Matrices

Cellular bone matrices (CBMs) or cellular allografts are obtained by proprietary
processing techniques that remove all immune-responsive signals generated by bone
marrow components. Such components are hematopoietic cells, retaining bone-forming
cells within the cancellous bone matrix. However, apart from this feature common to all
products, CBMs differ in some critical variables, such as cell type, cell amount, cell viability
after thawing, bone tissue processing and subsequent formulation, and cryoprotectant
agents. Regarding clinical indications, all products are primarily used as bone filling in
surgical treatments of musculoskeletal defects.

3.1.1. Cell Type, Cell Amount, and Post-Thaw Cell Viability

Viable cells contained within CBMs are cell populations capable of promoting the
synthesis of new bone, such as multipotent adult progenitor cells (MAPC), mesenchymal
stem cells (MSCs), osteoprogenitor cells (OPCs), or osteoblasts (OBs). MAPCs and MSCs
are both non-haematopoietic cells found in bone marrow stroma. These cells retain the
ability to self-replicate and differentiate into a specific phenotype by intrinsic and local
environmental cues (spatial organisation, mechanical forces, growth factors) [21]. MAPCs
are perceived to be a more biologically primitive population and appear to have a greater
propensity towards endothelial differentiation than classical MSCs [22]. Besides, both
cell populations do not express Class II and co-stimulatory antigens, avoiding immune
system recognition and T-cell activation [23]. However, since several authors demonstrated
that MAPCs and MSCs elicit humoral and cellular host immune responses, Ankrum et al.
suggested considering them not as immune-privileged but instead as immune evasive [24].
Nevertheless, immunomodulatory factors secreted by these cells were shown to suppress
the host immune response. Consequently, the true therapeutic effect of these undiffer-
entiated cells relies on their paracrine and autocrine capabilities rather than their innate
characteristic of multipotency

The OPCs are located on the endosteal and periosteal surface of the bone and the
inner surface of the Haversian canals. They share several features with stem cells, such as
differentiative potential and low immunogenicity [25].

The OBs are differentiated mononucleate cuboid cells that are responsible for bone
formation. When OBs cease to create new bone, they can become trapped within the matrix
and terminally differentiate into osteocytes (OCs; i.e., the most abundant cell type of adult
bone tissue [26]). Cryopreservation contributes to reducing the immunogenic potential of
allogeneic lineage-bone committed cells [27].

Concerning cell type, cell amount, post-thaw cell viability, and cryoprotectant agents,
these characteristics may also be considered as interconnected variables. In this regard,
products that contain MSCs and OPCs generally show a high range of cell amounts—
between 250,000 and 750,000—especially when dimethyl sulfoxide (DMSO) is used for
cryopreservation. On the other hand, in DMSO-free products, this range decreases to
150,000, and post-thaw cell viability percentage exceeds 80%.

Map3"™ (RTI Surgical, Alachua, FL, USA) utilises only MAPCs as the osteogenic viable
cell source. Although the cell count decreases to 50,000 per cc, no information regarding
cell viability percentage and cryoprotectant agent is provided.

Up to the present, ViviGen® is the only cellular allograft focused on committed-bone
cells instead of the broad-spectrum MSCs: it contains the lowest number of cells per cc (i.e.,
>16,000/cc) and cell viability exceeds 96%.

3.1.2. Bone Tissue Processing, Components, and Formulations

Osteoconductive and osteoinductive properties of CBMs derive from the use of do-
nated bone tissue that each company processes by its proprietary approach. Specifically,
cortical-cancellous bone is machined and transformed in particulate, microparticulate chips
or fibres to guarantee essential parameters for maintaining osteoconductive architecture,
such as surface area and porosity [28].
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Besides, cortical bone particulate or fibers are generally processed through an acid
extraction procedure to remove the mineral matrix (i.e., demineralised bone matrix, DBM)
and to enhance the bioavailability of collagen and growth factors, such as bone morpho-
genetic proteins (BMPs), insulin growth factor (IGF), transforming growth factor (TGF), or
fibroblast growth factor (FGF), which provide osteoinductive capabilities [29].

So far, BIO*™ (Stryker, Kalamazoo, MI, USA) is the only cellular allograft that contains
naturally occurring angiogenic growth factors, such as the vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth fac-
tor (bFGF).

CBMs are available in different formats and packaging, although they are commonly
provided in three main formulations: particulate, microparticulate, or putty/paste. Differ-
ently, Map3'" is processed as chips or moldable strips with flexible yet cohesive properties.

Some CBMs, such as V92-FC"", SCYLLA™-F, and Magnus (Royal Biologics, Hacken-
sack, NJ, USA), use a not well-specified bone gel mixture to obtain a moldable paste with
hydrophobic properties that make the graft more lavage resistant.

Interestingly, in v92™, V92-FC™, Magnus, and CeLLogix (Omnia Medical, Morgan-
town, WV, USA), each component is provided separately (e.g., cell vial, microparticulate
jar, bone gel jar) and needs to be mixed before using.

3.1.3. Bone Cryoprotectant Agents

Cryoprotectant agents were developed to maintain cell viability at extremely low
temperatures for long-term storage and transport. They prevent cells from shrinking
too quickly and thwart the formation of intracellular ice. Thus, in the case of CBMs,
cryopreservation has the purpose of ensuring the osteogenic potential of allogeneic cells
providing benefits for the bone grafting site [30].

Among cryoprotectants, dimethyl sulfoxide (DMSO) is widely used because it pro-
vides good cell viability after thawing, although its intrinsic cytotoxicity requires rapid
removal from grafts before implants [31,32].

However, when DMSO is incorporated with the cells into cortical-cancellous bone
components, as it happens for Osteocel® Plus, Osteocel® PRO, Trinity EVOLUTION®,
Trinity ELITE®, or PrimaGen®, the removal procedure requires rinsing and decanting steps
with 5% dextrose in lactated Ringer’s solution or sterile saline.

Otherwise, more recent CBMs aim at providing a minimal amount of DMSO cryopro-
tectant (e.g., BIO*™) or proprietary DMSO-free cryoprotectant agents (e.g., Via®, V92-FC™,
SCYLLA™-F, Magnus, CeLLogix), which make allograft preparation easier since rinsing
and decanting steps are not necessary.

3.2. Growth Factor Enhanced Bone Grafts

Growth factors are soluble signalling proteins that induce specific biological responses,
such as chemotaxis, proliferation, differentiation, anti-apoptotic effects, extracellular matrix
synthesis, and angiogenesis [33,34].

Promising preclinical and clinical results may lead to the subsequent introduction of
various recombinant human growth factors into the commercial market. However, so far,
only two genetically engineered proteins are used within commercially claimed autograft
replacements to regulate bone healing and growth (Table 2). Such proteins are recombinant
bone morphogenic protein 2 (thBMP-2) and recombinant human platelet-derived growth
factor-BB homodimer (rhPDGEF-BB).

Bone morphogenic proteins (BMPs) are a soluble member of the transforming growth
factor-beta (TGF-3) superfamily, involved in the osteoinduction process and the resulting
endochondral ossification [35].

With the scientific advances in genetic cloning, it was possible to produce large quantities
of BMPs for clinical use. Mainly, rhBMP-2, produced by a genetically engineered Chinese
hamster ovary cell line, represents the active agent in INFUSE® (Medtronic Spinal and
Biologics, Memphis, TN, USA), one of the most used products in spinal fusion procedures.
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As a carrier for the delivery of thBMP-2, INFUSE® exploits an absorbable collagen
sponge (ACS) made from bovine Type I collagen obtained from the deep flexor tendon. ASC
is a soft and pliable matrix that also acts as a scaffold for new bone formation. However,
due to the lack of mechanical support, it should not be used to fill space in the presence of
compressive forces.

PDGEF-BB is a potent chemo-attractant and mitogen factor for cells involved in wound
healing, including MSCs, OCs, and tenocytes [36]. In addition, PDGF-BB plays a pivotal
role in blood vessel formation and angiogenesis upregulation. An engineered version of
this native protein is firstly provided by Gem 21S® (Lynch Biologics, Franklin, TN, USA)
and then by Augment® (Wright Medical Group N.V., Memphis, TN, USA), growth-factor-
enhanced bone grafts that combine the osteoinductive capabilities of thPDGF-BB with the
osteoconductive properties of a bioresorbable synthetic scaffold, namely beta-tricalcium
phosphate (3-TCP). Specifically, 3-TCP facilitates the delivery of the added growth factor
and prevents soft tissue from collapsing into the void.

OsteoAMP® (Bioventus LLC, Durham, NC, USA) may be considered as an exception
among this class of products since its peculiarity is represented by a proprietary processing
procedure designed to retain essential endogenous growth factors from allogeneic iliac
crests. This unique production process allows obtaining a sort of allogeneic morphogenic
protein (AMP) that retains up to 23 different growth factors, such as BMP-2, BMP-7, TGF-
1, aFGF, VEGEF, and angiopoietin 1 (ANG1). Therefore, no recombinant growth factors
or carriers are added to formulations. Furthermore, when OsteoAMP® is provided as
granules with the addition of mineralised cortical-cancellous allograft chips, it confers
load-bearing structural support.

3.3. Peptide Enhanced Xeno-Hybrid Bone Grafts

Different strategies were implemented to improve bone regeneration using a different
combination of bone sources, biomaterials, or biomolecules. Recent trends point towards
a composite approach for best mimicking the human bone structure [37]. In this regard,
xeno-hybrid bone grafts that combine osteoconductive properties provided by animal
origin bone matrix with osteoinductive/osteogenic capabilities derived from bioactive
peptides, resulting particularly efficient for bone tissue regenerative purposes. However, at
present, we can only find a limited amount of these innovative products (Table 3).

Arginyl-glycyl-aspartic acid (RGD) sequence is found in several extracellular matrix
(ECM) molecules, such as fibronectin and collagen. It is well-established that RGD peptides
enhance cell attachment and the spreading of OBs onto graft materials. Peptides also
increase cellular proliferation and promote OB differentiation and mineralisation [38].

SmartBone® (IBI, Mezzo-Vico Vira, Switzerland) is a bone substitute composed of
bovine bone matrix, micrometric thin poly(l-lactic-co-e-caprolactone), and RGD-containing
bovine collagen fragments, used for dental and orthopaedic indications. SmartBone® is
provided in several formulations, such as microchips, blocks, plates, wedges, or custom-
made bone grafts specifically designed on the patient’s defect.

The P-15 peptide is a highly conserved peptide that consists of a 15 amino acids linear
sequence (GTPGPQGIAGQRGVYV) identical to the cell-binding region of collagen type 1.
The P-15 is immobilised on a bovine anorganic bone matrix, suspended within an inert,
biocompatible hydrogel, which represents an ideal scaffold for bone growth [39].

This patented synthetic non-RGD protein segment, originally contained within Pep-
Gen P-15 (DENTSPLY Friadent CeraMed, Lakewood, CO, USA), today within i-FACTOR®
(Cerapedics, Westminster, CO, USA), provides a novel mechanism of action based on the
cell binding of OPCs via integrins, or signal receptors, which promote cell attachment to
bone substitutes and upregulates extracellular matrix production. Specifically, once cells
attach to the P-15, the signalling pathways are activated, and the cascade of events leading
to new bone formation commences. Regarding formulations, i-FACTOR® is provided as
putty and available worldwide. i-FACTOR can also be provided in the form of flexible
strips following a freeze-drying treatment, not commercially available in the USA.
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4. Discussion

Bone grafting surgical interventions performed worldwide per year exceed two mil-
lion procedures [40]. Therefore, although autografts are still considered the best option for
hard tissue repair, autografting cannot meet the overall medical demand for orthopaedic
implants. Nowadays, many bone graft alternatives are available for clinical use, follow-
ing the evolution of biomaterials, implant designs, and innovative processing techniques.
However, effective reconstructive treatments remain challenging, especially considering
that each bone substitute has advantages and disadvantages [41]. Furthermore, although
the market offers a wide variety of products for clinical use, this range is significantly
reduced to three main categories of products when searching for alternative bone augmen-
tation materials mimicking autografts: (i) cellular bone matrices (CBMs), (ii) growth factor
enhanced bone grafts, and (iii) peptide enhanced xeno-hybrid bone grafts.

Advances in stem cell technology and the innate capability of allogeneic bone tissue to
allow a uniform loading and retention of MSCs, rapid vascular ingrowth, and incorporation
into the bone host, focused the attention on the development of cellular allografts showing
all three elements necessary for bone growth and healing: osteoinduction, osteoconduction,
and osteogenic activity.

Such products are manufactured in the USA, where they are regulated by the less
scrupulous section 361 of the Public Health Service Act and Code of Federal Regulations
(CFR) title 21 section 1271, which does not require Food and Drug Administration (FDA)
premarket review and approval [16,42,43]. However, this approach should not mislead the
assumption that CBMs are not continuously supervised. Indeed, so far, there have been
injunctions issued by the FDA against several companies for providing products that do
not satisfy the following criteria: minimal manipulation; homologous use only; systemic
effect absence; the primary function not dependent on the metabolic activity of viable cells,
unless the product is intended for autologous use or use by a first- or second-degree blood
relative. If a product fails to meet at least one of these criteria, it must be regulated as a
drug, device, or biological product and requires a lengthy premarket review [44]. This is
the case of Map3® cellular allograft, which was removed from the market in 2018 by RTI
Surgical after losing a four-year battle with the FDA [43]. Another similar case was the one
of Ovation® which was warned after an FDA inspection of Osiris Therapeutics (Columbia,
MD, USA) in early 2013 (Table 4) [45].
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Table 1. Summary of cellular bone matrices commercially available for use.

. Cell .. .
Nami?ﬁi?ﬁgiiurer Type/:?}r;ls(:??;/a\/‘j’ability Composition Formulations Cryoprotectant Agent Clinical Indications C[III{I:E? loftlggl,:fs
Osteocel® Plus MSCs and Cryoprils erved v1e?ble . .
Osteocel® PRO osteoprogenitor cells cancelious matrix. Particulate Spine, orthopaedics, oral
- - ) Ground demineralised DMSO and maxillofacial [46-51]
Nuvasive, San Diego, >250,000 cells/cc . Putty ..
CA, USA > 70% bone matrix. applications.
Cancellous bone.
Trinity EVOLUTION® MSCs and Demineralised bone
Trinity ELITE® osteoprogenitor cells. particulates or Treatment of
Orthofix Medical Inc., >750,000 cells/cc Cancellous bone. Putty DMSO musculoskeletal defects. [52-55]
Lewisville, TX, USA >70% Demineralised bone fibres.
100-300 uM demineralised
cortical bone. Mineralised Spine, upper extremity, foot
- ® _ . . 7 4
. .Vla . Bone-derived cells. cortical an.d (gancellous bone Particulate ViaCoat™ DMSO-free and ankle, oral and
Vivex Biologics Inc., >150,000 cells/cc (Via® Graft). Paste voprotectant maxillofacial. and [56]
Miami, FL, USA >80% Cortical shavings, crushed cryoprotec olacal
cancellous chips orthopedic oncology.
(Via® Form).
Fusion, non-union, and
ViviGen® Osteoblasts, osteocytes, . . . malunion for foot/ankle,
e ® . Corticocancellous chips. . Proprietary long bone, and
ViviGen®Formable and bone lining cells. . . Particulate . . . .
Demineralised bone cryopreservation craniomaxillofacial trauma [57-60]
DePuy Synthes, >16,000 cells/cc . . Putty . ..
Ravnham. MA. USA ~96% particulate or fibres. medium and reconstruction in
yn ! ! - patients with
compromised biology.
B MSC gyt Endogencns Mmool o
Stryker, Kalamazoo, ) Osteoinductive and Putty prop y catment o NCT03077204
>600,000 cells/cc ) . cryopreservation musculoskeletal defects.
MI, USA ~70% angiogenic growth factors. medium
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Table 1. Cont.

Cell
Commercial . qets o, . . . . . Clinical Studies
Name/Manufacturer Type/Amount/Viability Composition Formulations Cryoprotectant Agent Clinical Indications [Ref.] or NCT
Post-Thaw
MSCs,
PrimaGen® osteoprogenitorcells,
Zimmer Biomet, Warsaw, pre-osteoblasts Demiriearglcizgglzill‘)t?;?bone Putty N/A musctilf;lzgll:gtl Cc)lfe fects NCT02182843
IN, USA >750,000 cells/cc ’ )
>70%
®
Map3 MAPC-class cells. Cortical cancellous bone . . P
RTI Surgical, Alachua, . . . Strips Small joint repair, filling
>50,000 cells/cc chips. Demineralised . N/A n.a
FL, USA . Chips bone defects.
n.a. bone matrix.
Vo™ Bone-derived cells Cortical cancellous bone
V92-FC ™ 150,000 cells/cc ’ particulate. Microparticulate DMSO-free Orthopaedic and spine na
28, Englewood, CO, USA ! o Demineralisedbone matrix. Paste cryoprotectant applications. ’
>80% . ™
Bone gel (only in V92-FC )
SCYLLATM Bone-derived cells COrhcalaC;ltrilcifllzla(’c)(le1 > bone
SCYLLA™-F ’ P . Microparticulate DMSO-free Treatment of
. . >150,000 cells/cc DBM and bone mixture gel n.a
Chamber Spine. King of ~80% (only in SCYLLA™-F) Paste cryoprotectant musculoskeletal defects.
Prussia, PA, USA ¢ y ’
Cell population with Cortical shav1ngs, crushed
. cancellous chips, and
Magnus MSC and pluripotent cell . ) .
> . demineralised cortical bone DMSO-free . . .
Royal Biologics, markers microparticulate scaffold Paste crvoprotectant Fusion, midfoot arthrodesis. n.a
Hackensack, NJ, USA >150,000 cells/cc P . yop
o blend with bone gel mixture.
>80%
Ce.LLogD.( Bone-derived cells. Cortlcal—capcellous bone Microparticulate DMSO-free Treatment of
Omnia Medical, >150,000 cells/cc particulate. crvoprotectant musculoskeletal defects n.a
Morgantown, WV, USA >80% DBM yop '
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Osteocel® was introduced to the market about sixteen years ago and represents the
first CBM used in clinics. Several studies have shown that it is a safe and effective product
for bone healing in several surgical treatments, such as hindfoot and ankle arthrodesis [46],
anterior cervical discectomy [47], lumbar or extreme lateral fusion procedures [48-50], and
maxillary sinus floor augmentation [51].

Likewise, Trinity Evolution®, released in 2009 by Orthofix, has demonstrated high
fusion rates and no safety-related concerns after the implant. Specifically, prospective
clinical studies were performed to assess the radiographic and clinical outcomes of this
viable cellular bone allograft in subjects undergoing single- or two-level anterior cervical
discectomy and fusion [52,53], and undergoing one- and two-level posterolateral lumbar
arthrodesis with decompressive laminectomy [54].

Four years later, Orthofix announced the full market release and launch of Trinity
Elite® that differs from Evolution® ‘s formulation for the count of MSCs and /or OPCs that
is 2-fold greater (>100,000/cc vs. >50,000/cc cells, respectively). Moreover, the presence of
DBM fibres, instead of DBM particulates, makes Trinity Elite® more resistant to irrigation
and more deeply packed into bone defects. Recently, Loveland et al. [55] performed a
retrospective clinical comparison of these two similar products, showing that both Trinity
Evolution® and Elite® effectively achieve comparable fusion rates in patients undergoing
foot and/or ankle arthrodesis.

In 2014, the Via® series (Graft or Form) and Vivigen® were launched on the market
by Vivax and DePuy Synthes, respectively. A retrospective study on patients treated with
Via® Graft for both primary and revision surgery showed a 96% fusion rate at 12 months
postoperative follow-up, demonstrating the safety and effectiveness of the cellular allograft
used during surgical interventions [56]. However, at present, this is the only published
study. On the other hand, several studies reporting good results were presented on the
use of Vivigen® in anterior and posterior cervical fusion [57], posterolateral lumbar spine
fusion [58], two-stage total hip arthroplasty [59], and ankle arthrodesis [60]. ViviGen®
represents a sort of paradigm shift among CBMs since it is the only one focused on
committed bone cells instead of the broad-spectrum MSCs. This choice was based on
studies that demonstrated that OBs stay at the defective site longer [61] and secrete the
chemotactic factor IGF-1 to recruit additional osteoblasts [62].

In 2015, Stryker introduced on the market BIO*™ claimed as the next generation of
CBMs since it exploits a fourth characteristic involved in bone repair and regeneration:
angiogenic activity. This peculiarity derives from the presence of growth factors, such as
VEGE, PDGEF, and bFGF, kept intact after the non-proteolytic processing of periosteum.
However, to the authors’ best knowledge, no clinical studies exist to carry out a retrospec-
tive or comparative evaluation of this product. Only a prospective open-label study was
launched in 2017 (Identifier: NCT03077204) to evaluate clinical and radiographic outcomes
of BIO*" in 20 patients undergoing 1- or 2-level anterior cervical discectomy and fusion
surgery. However, at present, no data are yet available. Recently, in 2020, Lin et al. [63]
compared the ability of several commercially available CBMs, including BIO*", to form a
stable spinal fusion using an animal model of posterolateral fusion. However, the results
show that BIO*" failed this aim, although it was possible to observe an increase in total
bone volume.

PrimaGen®, formerly called Cellentra®, was introduced in 2016 by Zimmer Biomet.
Apart from a clinical trial, registered on ClinicalTrials.gov (Identifier: NCT02182843), with
the purpose to assess the clinical and radiographic outcomes in patients who undergo
anterior cervical discectomy and fusion procedures using Cellentra, at present, there is no
data to suggest a fusion rate by PrimaGen®.

More recently, DMSO-free viable grafts such as V92™, Scylla™, Magnus, and CeLLogix
reached the market. However, the research on Medline/PubMed, Scopus, and Web of
Sciences, does not yet show available studies on these products.

Therefore, although for older CBMs retrospective studies show promising results in
terms of efficacy and safety, large randomised clinical trials may be required to solidify
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the role of allograft with viable cells. The need for well-designed clinical studies on
cellular graft materials is also emphasised by current studies on animal models that show
controversial data [17,63]. Besides, CBM comparative studies on patients may contribute
to better understanding, which product represents the best choice for a specific clinical
indication and cost-effectiveness ratio. However, for each CBM, it should be taken into
account that several intrinsic biological characteristics, such as viable cell sources, the donor
age at the time of graft harvest, or cell survival after transplantation, may cause variations
among different lots of the same product in terms of expected outcomes.

Another class of products emerged to meet the need for grafting materials capable
of circumventing the inherent drawbacks of autologous transplantation is represented by
the growth factor enhanced bone grafts, even if they are associated, as well as CBMs, with
higher costs compared with other conventional grafts [16,64].

INFUSE" is the first commercially available product that has exploited the advances in
genetic engineering and biological technology for bone grafting purposes. From 2002, when
INFUSE"™ was initially approved by the FDA, up to now, it is probably the most researched
and published bone graft material. Indeed, thBMP-2 is an active agent and was extensively
studied in several preclinical animal models, including non-human primates [65]. These
studies consistently showed rhBMP-2 to be equivalent and, in many cases, superior to
autogenous bone. Likewise, the rhBMP-2 fusion rate on patients was usually compared
with the autologous iliac crest bone graft (ICBG) both for its ability to form de novo bone
as well as clinical outcomes [66,67].

Thus, after the FDA approval, the use of thBMP-2 dramatically increased in the
USA [68], thanks also to initial industry-supported studies that showed no significant side
effects in various surgical procedures [69-71].

However, many notable complications, such as retrograde ejaculation, seroma for-
mation, heterotopic ossification, osteolysis, neurological deficits, and an increased risk of
cancer, started to be observed in patients treated with rhBMP-2 [72]. Moreover, an FDA
warning (Table 4) was issued not to use thBMP-2 in the anterior cervical spine due to
inflammation causing severe dysphagia and a potential increase in mortality [73].

At present, INFUSE™ is indicated for use in interbody spine fusion, fresh tibial
fractures, and oral maxillofacial bone grafting procedures. Moreover, Medtronic has
recently announced a new clinical trial for expanding the use of INFUSE™ in transforaminal
lumbar interbody fusion (TLIF) spine procedures [74].

Nevertheless, the controversy surrounding the use of thBMP-2 in bone augmentation
procedures was not completely addressed. Although it is difficult to determine the ideal
candidate for thBMP-2 enhanced bone grafts, James et al. asserted that their use might be
indicated as a second adjunct line to spinal fusion where other alternatives are either not
available or not likely to lead to effectiveness [75].

On the other hand, in a recent meta-analysis and systematic review on comparative
clinical effectiveness and safety of hBMP-2 vs. autologous ICBG in lumbar fusion, Liu et al.
concluded that there was no difference in the incidence of adverse events between rhBMP
and ICBG [76].

In 2005, the FDA approved Gem 215, the first entirely synthetic product combining a
purified recombinant growth factor (thPDGF-BB) with a synthetic bone matrix (3-TCP) to
treat periodontal-related defects. Specifically, rhPDGF-BB provides a biological stimulus
for the recruitment and proliferation of cells, including OBs, responsible for the formation
of bone, while 3-TCP provides mechanical support. About ten years later, the FDA
approved AUGMENT®, nearly identical to Gem 218 regarding composition but developed
for ankle and/or hindfoot fusion indications. These FDA approvals are consequent to
preclinical [77-80] and clinical [81-84] studies that have shown the safety and efficacy of
rhPDGE-BB. However, its use is not without risks. Specifically, as well as for thBMP-2,
the possibility of increased cancer rates for drugs with a cell growth-promoting property
should be taken into account since thPDGF-BB promotes the growth of granulation tissue
and wound healing via interaction with receptors on fibroblasts and endothelial cells.
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Therefore, thPDGF-BB should be used with caution in patients with known malignancy
and only used when the benefits can be expected to outweigh the risks [85].

Table 2. Summary of growth factor enhanced bone grafts commercially available for use.

Commercial Active Clinical
Manufacturer Carrier Formulations Clinical Indications Studies
Name Molecule
[Ref.] or NCT
Spinal fusion
procedures.
Medtronic Treatment of open
Spinal and tibial fractures with
Biologics, INFUSE® rhBMP-2 ACS Vial + sponge an intramedullary [66-76,86]
Memphis, TN, (IM) nail fixation.
USA Sinus floor and
alveolar ridge
augmentations.
Lynch Biologics,
Franklin, TN, ® . .
USA Gem 21S rhPDGF-BB B-TCP Vial + granules Periodontal defects. n.a.
Wright Medical Arthrodesis (i.e.,
Group N.V,, fusion procedures) of
Memphis, TN, Augment® rhPDGF-BB B-TCP Vial + granules p [81,82,84]
the ankle and/or
USA .
hindfoot.
Bioventus LLC, .
Durham, NC, Osteo AMP® AMP na Granules, putty, Cerv.lcal / lu.mbar [86,87]
USA or sponge spine fusion. NCT02225444

OsteoAMP? is an innovative bone allograft that was processed to retain multiple
endogenous growth factors for use in spinal fusion procedures. Therefore, no recombinant
highly purified proteins are added to this product. However, despite the attractive rationale
for the use of OsteoAMP®, few studies demonstrating its efficacy are available, performed
mainly by authors with competing interests, since they declared to be unpaid consultants
for Advanced Biologics (i.e., the company that had launched OsteoAMP®) and /or hold
shares in the company [86,87].

A clinical study was launched in 2015 (Identifier: NCT02225444) to evaluate the
efficacy of OsteoAMP®, in terms of fusion rates, adverse events, and pain and health scores,
in patients requiring instrumented posterolateral spinal fusion procedure of the lumbar
or lumbosacral spine, 1 to 2 adjacent levels. However, although this clinical trial was
concluded in 2019, at present, no data are yet available. Therefore, further studies to better
assess long-term results are needed.

Hence, commercially available growth factor enhanced bone grafts can improve
surgical outcomes and represent a valid alternative to autogenous bone transplantation.
Nevertheless, long-term effects not clearly identified, off-label use in the paediatric popula-
tion, and limited use in oncologic patients, are relevant issues that may lead to the demand
for new signalling systems. In this regard, the discovery that some peptides have the ability
to upregulate bone healing without severe side effects and prohibitive costs may contribute
to overcoming some of the abovementioned problems [88].

However, although a significant number of peptides were developed and investigated
as potential candidates for bone healing, to date, only a few of them reached the market as
active agents.

In 2012, IBI introduced SmartBone® on the EU and international market, an inno-
vative osteoconductive and osteoinductive bone substitute featured by a bovine mineral
bone matrix, bioresorbable polymers, and RGD-containing bovine collagen fragments.
To date, several studies demonstrated its capabilities to promote osseointegration and
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cell differentiation in oral, maxillofacial, and cranial surgery [89-92]. Furthermore, in
recent years, IBI has received approval to expand the use of SmartBone® (i.e., SmartBone®
ORTHO) also in the orthopaedic field, albeit available clinical studies are still limited and
performed mainly by authors with competing interests [93,94]. Therefore, although data
show that SmartBone® is a safe biomaterial that induces a high grade of osseointegration
and remodelling with satisfactory mechanical performances, further independent clinical
studies are needed to confirm these promising results in orthopaedic applications.

In 2014, Cerapedics launched i-FACTOR® on the market, a biologic bone graft featured
by the P-15 osteogenic cell-binding peptide bound to an anorganic bovine bone matrix.
Investigations on the ability of this product to favouring cellular attachment, and conse-
quent new bone formation, started about 20 years ago, as attested by numerous preclinical
studies [95-100], and continued by clinical trials [101-104] that allowed the establishment
of its safety and the efficacy to replace or augment autologous bone.

To date, i-FACTOR® is indicated for common orthopaedic applications, such as spinal
fusion procedures, treatment of non-union or fresh traumatic fractures, and joint recon-
struction. Besides, last year, Arnold et al. showed that diabetes is not a contraindication
for patients requiring single-level surgery for cervical degenerative disc disease when
i-FACTOR® or local autologous bone is used [105].

Table 3. Summary of peptide enhanced xeno-hybrid bone grafts commercially available for use.

Manufacturer

Clinical

Commercial Clinical

Name

Peptide Composition Formulations Indications Studies
[Ref.] or NCT

IBI, Mezzo-Vico
Vira,
Switzerland

Cerapedics,
Westminster,
CO, USA

Bovine bone matrix.

Micrometric thin Microchips Dental and
SmartBone® RGD poly(l-lactic-co-e- Blocks, plates, orthopaedic [89-94]
caprolactone). wedges indications.
Anorganic bovine Bone filling
bone matrix. Putty defects in the
i-FACTOR® P-15 ) . Strips (not in . [101-106]
Inert biocompatible spine and
the USA) o
hydrogel. extremities.

Compared to SmartBone®, the composition of i-FACTOR® lacks a resorbable biopoly-
mer that confers mechanical support. As a consequence, it is not intended to provide
load-bearing structural support during the healing process, while rigid fixation techniques
are strongly recommended to assure stabilisation of the defect in all planes.

Concerning the use of peptide enhanced bone grafts in the young population, little
is recorded with regards to their potential complications. Oxborrow et al. recommend
long-term studies to assess the efficacy, safety, and complications associated with the use of
i-FACTOR® in children since they documented heterotopic ossification following spinal
fusion with this bone graft substitute in an eight-year-old patient affected by mucopolysac-
charidosis [106].

Interestingly, the IBI company has declared on its website to be committed to the
clinical studies that will soon introduce in the market a new composite bone substitute
intended for the regeneration of bone defects and losses in paediatric applications, includ-
ing oncological ones. This innovative bone graft material, named SmartBonePep® [107],
has the same composition as SmartBone® except for the addition of synthetic peptides
that reproduce several proline-rich regions present in the intrinsically disordered proteins
(IDPs), a protein family involved in biomineralisation [108]. Therefore, considering the
limited number of bone grafting options in children, SmartBonePep® may sound like an
appealing alternative to autogenous iliac bone graft that is still considered the benchmark
of bone transplantation procedures in the paediatric population.
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Table 4. Summary of withdrawn or warned commercial bone grafts.

Manufacturer Commercial FDA Injunction Status
Name
The manufacturing process alters the original
relevant characteristics of the tissue. .
. Withdrawn.
The product is dependent upon the L .
.. . - .. . . . It was transitioned to Ovation
Osiris Therapeutics, . ® metabolic activity of living cells for their .
. Ovation . . . . OS and currently available as
Columbia, MD, USA primary function and is not intended for AT e,
. . . BIO*  (distributed
autologous use or allogeneic use in a first- or by Stryker)
second-degree relative [45]. y Sty ’
The processing does not meet the definition
RTI Surgical, Alachua, ® of minimal manipulation for cells or .
FL, USA Map3 nonstructural tissues [109]. Withdrawn.
o FDA warning was issued not to use in the Av'allable‘ for use in . n.terbody
MedtronicSpinal and . : . : . spine fusion, fresh tibial
. - . ® anterior cervical spine due to inflammation
Biologics, Memphis, INFUSE causine severe dvsphaeia and a potential fractures, and oral
TN, USA 5 ysphag P maxillofacial bone grafting

increase in mortality [73]. procedures.

5. Conclusions

Over the last two decades, researchers and clinicians have striven to achieve technolog-
ical advances in bone grafting to ameliorate spinal fusion treatments, bony voids, fractures,
and post-traumatic non-unions. Commercially available cellular bone matrices and growth
factor/peptide enhanced bone grafts are claimed as a valid alternative to the autologous
bone for osteogenic/osteoinductive and osteoconductive properties. Nevertheless, an
accurate characterisation of each product has shown potential drawbacks that may reduce
the emphasis related to these bone substitutes. Furthermore, most of the scientific litera-
ture evaluating autologous bone alternatives consists of low-level studies and case series.
On the other hand, large randomised clinical trials and prospective cohort studies with
high-quality design and execution are mandatory to better enhance the optimal treatment
for patients undergoing bone grafting, especially for products that continue to dominate
the market.

Taking into account critical issues, mainly related to CBMs and growth factor-based
products, such as high costs, regulatory issues, or severe complications, peptide enhanced
xeno-hybrid bone grafts may represent the best choice in terms of risk/benefit and cost-
effectiveness ratios. Peptides can trigger some specific signalling pathways that control
osteogenic-related cellular functions, have low immunogenicity, are easily synthesised and
handled, and to date, no severe side effects have been reported.

Nevertheless, at present, bioactive peptides are exclusively used in combination with
xenogeneic bone sources. In contrast, based on the biomimetic principle (i.e., a material
as similar as possible to the host bone is recommended to allow for the best biological
behaviour [6,110]), it could be interesting to investigate the synergistic effect exerted by
peptides and allogeneic bone tissues.

Hence, further scientific efforts should be encouraged to promote a translational
approach that bridges research and clinical setting, intending to minimise potential biases
concerning the efficacy and safety of both innovative and outdated products.

Supplementary Materials: The following is available online at https:/ /www.mdpi.com/article/10
.3390/ma14123290/s1, Table S1: List of website links of commercially available products claimed as
an alternative to autografts.
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