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Kurzyna, M. Topological Atomic

Chains on 2D Hybrid Structures.

Materials 2021, 14, 3289. https://

doi.org/10.3390/ma14123289

Academic Editor: Gennady L. Gutsev

Received: 31 March 2021

Accepted: 10 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physics, Maria Curie-Skłodowska University, PL-20031 Lublin, Poland;
marcin.kurzyna@live.umcs.edu.pl
* Correspondence: tomasz.kwapinski@umcs.pl
† These authors contributed equally to this work.

Abstract: Mid-gap 1D topological states and their electronic properties on different 2D hybrid
structures are investigated using the tight binding Hamiltonian and the Green’s function technique.
There are considered straight armchair-edge and zig-zag Su–Schrieffer–Heeger (SSH) chains coupled
with real 2D electrodes which density of states (DOS) are characterized by the van Hove singularities.
In this work, it is shown that such 2D substrates substantially influence topological states end evoke
strong asymmetry in their on-site energetic structures, as well as essential modifications of the
spectral density function (local DOS) along the chain. In the presence of the surface singularities
the SSH topological state is split, or it is strongly localized and becomes dispersionless (tends to the
atomic limit). Additionally, in the vicinity of the surface DOS edges this state is asymmetrical and
consists of a wide bulk part together with a sharp localized peak in its local DOS structure. Different
zig-zag and armachair-edge configurations of the chain show the spatial asymmetry in the chain
local DOS; thus, topological edge states at both chain ends can appear for different energies. These
new effects cannot be observed for ideal wide band limit electrodes but they concern 1D topological
states coupled with real 2D hybrid structures.

Keywords: atomic chain; Su-Schrieffer-Heeger model; density of states; van Hove singularities;
localized states; hybrid systems

1. Introduction

Nowadays, one can notice a growing interest of scientists in low-dimensional struc-
tures which find almost constantly new applications in many branches of science and
technology, e.g., in nanoelectronics [1,2], biotechnology, engineering [3], chemistry [4] and
medicine [5]. Atomic wires as the thinnest possible electrical conductors are especially
interesting objects to study mainly from practical point of view. Their electronic properties
are the subject of many theoretical and experimental papers as they reveal a great deal of
interesting physical phenomena which are often hard to notice in bulk materials, e.g., spin-
charge separation [6,7], Majorana topological states [8,9], charge-density waves [10–12],
turnstile effects, photon-assisted tunneling and pumping effects, or coherent destruction
of tunneling [13–20]. In low-dimensional structures one can also observe unique solid-
state phases such as time crystals [21–23], transient crystals [24] or Floquet topological
insulators [25,26]. Especially interesting are hybrid systems composed of different low-
dimensional structures where quantum states of one structure could penetrate to the second
one leading to a kind of proximity effect which was studied, e.g., in one-dimensional (1D)
coupled systems [27,28].

The main topic of interest in this work are the electrical properties of 1D topolog-
ical chains which are fabricated on a flat two-dimensional (2D) electrode or which are
placed between two 2D leads. Such a hybrid system can reveal constructive or destructive
coexistence of 1D and 2D features of different quantum structures thus it is desirable to
investigate their properties thoroughly. Topological chains are special materials where
energy gaps appear inside the system and the edge states (topological states) are observed
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at the system boundaries. Such materials have unique electrical properties, i.e., topological
states are insensitive to external perturbations, they survive for different substrates, reveal
long-range conductance oscillations and can play a role of effective electron pumps [11,20].
Simple topological phases in one-dimensional chains can be obtained within a fermionic
Su–Schrieffer–Heeger (SSH) model [29,30]. The model possesses two different topological
phases: the trivial phase with an energy gap along the whole system, and the nontrivial
one with spectrally isolated mid-gap states at the system boundaries.

In this paper we analyse modified SSH chains (straight, zig-zag and armchair edge
geometries) in contact with different types of 2D electrodes which play a role of electron
reservoirs. The leads can be characterized by a flat band structure or can possess van Hove
singularities in their density of states (DOS). Such singularities (peaks or dips in DOS) are
commonly found in real 2D structures like graphene, silicene, antimonene or other atomic
layers that could be fabricated and modified to obtain fully functional materials [2,31,32].
Although topological insulators, as well as topological 1D structures have been intensively
investigated in last years the influence of low-dimensional electrodes on topological states
in hybrid systems has been often overlooked. The main objective of this work is to find
how topological SSH states are influenced by the DOS singularities of 2D substrates. It is
crucial to verify if these states are robust to these singularities and if the space and energetic
symmetries of 1D edge states (which are responsible for the particle-hole symmetry) survive
in the presence of 2D substrates. Moreover, the question if the SSH topological states can
appear outside the electrode’s DOS (beyond the band) is going to be answered in this
paper.

2. Model and Theoretical Description

Hybrid systems under consideration are shown in Figure 1. In the simplest case
there is a straight SSH chain on 2D electrode (panel a). The surface is described by the
tight-binding Hamiltonian for a regular atomic lattice (e.g., rectangular or hexagonal)
which leads to the effective surface DOS with the van Hove singularities (see Appendix A).
The hybrid systems (Hybrid1 and Hybrid2) are depicted in panels (b) and (c) in Figure 1,
where a zig-zag (or armchair edge) SSH chain is placed between two 2D electrodes. In this
case, the electronic structure of the chain is influenced by two different electron reservoirs
(hybrid structures) which is the central point of studies prested in this paper.

L R

b) Hybrid1

R

S

c) Hybrid2a) Surface

L

Figure 1. Schematic view of the SSH atomic chain for different geometries: (a) straight chain on 2D
electrode, (b,c) zig-zag and armchair edge chains between two 2D electrodes called here Hybrid1
and Hybrid2, respectively. The broken and solid red lines represent different couplings between the
nearest-neighbour atomic sites in the SSH chain.

Such systems can be realized experimentally using modified vicinal surfaces where a
single or double chains as well as atomic ribbons can be easily fabricated within the epitaxy
method. These structures can be investigated by means of the STM (Scanning Tunneling
Microscope) technique which measures current-voltage characteristics or the conductance
that is proportional to the local DOS. Detailed analysis of this quantity allows one to distin-
guish different topological phases of the SSH chains [33,34]. Among many experimental
fabrication methods of 1D systems one can find atomic chains grown epitaxially on silicon
surfaces, such as Si(335), Si(557) [35–37], 1D chains with gate-defined quantum dot in 2D
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electron gas or chains of dopant atoms in silicon [38,39]. Alternatively, the SSH topology
was found in chlorine vacancies on Cu(100) surfaces [34,40]. In such systems, the role of
2D substrate electrodes can play the surface atomic reconstruction (like Si(111)-(6 × 6)Au
surface) or atomically flat graphene, silicene, antimonene or other layers which nowadays
can be easily fabricated [2,31,32,41,42]. It is also possible to combine one-dimensional SSH
chains between two 2D substrates (hybrid geometry). In such a case, the chain localized at
the step of the surface is coupled with both nearest terraces (they stand for 2D structures
with different DOS). Alternatively, one can use precisely controlled quantum dot chain
coupled with different electrodes characterized by the van Hove peaks.

The tight-binding model Hamiltonian in the standard second-quantized notation for
the system shown in Figure 1, can be written as follows: H = H0 + Hcoup, where:

H0 =
N

∑
i=1

εia†
i ai + ∑

α
∑
~k

ε~kα
a†
~kα

a~kα
(1)

describes the on-site electron energies in the atomic chain, εi, and in the α electrode, ε~kα
,

with the wave vectors~k (α = S corresponds to only one surface electrode (Figure 1, panel a),
and α = L, R corresponds to the hybrid geometries shown in Figure 1, panels b and c).
The operators ai(a†

i ) annihilate(create) an electron at i-th site of the chain (i = 1, ..., N) and
a~kα

(a†
~kα
) are the according leads annihilation(creation) operators. In calculations both spin

directions are independent of each other and the spin index in operators is suppressed. As
we are interested in the SSH topological state modifications, in the first step it is assumed
that the electron correlation effects do not play an important role. This assumption is
reasonably well satisfied, e.g., for lead or gold chains on vicinal silicon surfaces. For small
electron-electron correlation it can be captured by an effective shift of the chain onsite
energies [43–45]. The electron transitions along the chain and between the surface and
chain sites are described by the coupling Hamiltonian in the following form:

Hcoup =
N−1

∑
i=1

Vi,i+1a†
i ai+1 +

N

∑
i=1

∑
~kα

Vi,~kα
a†
~kα

ai + H.c. (2)

The first part of this Hamiltonian consists of the tunneling matrix elements Vi,i+1
which describe the couplings between the neighboring sites in the chain. Note that for
different every second couplings Vi,i+1 (Vi,i+1 = V, Vi+1,i+2 = W such that V 6= W) the
system corresponds to the topological SSH chain [46–48] and for equally coupled sites
(V = W) the system is in the normal state. By taking V < W one gets a topological chain
in the nontrivial phase (called here SSH1), i.e., with topological mid-gap states at both
chain ends. When one applies V > W it is obtained a chain in the trivial topological phase
without end states (SSH0). The second part of Equation (2) describes the chain-substrate
coupling where electron transitions between the i-th chain state and the surface states are
established by Vi,~kα

matrix elements (hybridization terms).
In this paper the topic of interest is the spectral density function at atomic sites in

the chain (local DOS) which can be obtained from the knowledge of the corresponding
diagonal matrix elements of the retarded Green’s operator at a given site [49,50]:

LDOSi(E) = − 1
π
Im(Gr

ii(E+)) , (3)

where E+ = E + iε (ε is positive infinitesimal number which tends to zero) and Gr
ii(E) for

the time-independent Hamiltonian satisfies the following equation of motion:

EGr
ij(E) = 〈[ai, a†

j ]+〉+ 〈〈[ai, H]−; a†
j 〉〉E, (4)

where the bracket 〈〈...〉〉E corresponds to new energy-dependent Green’s function which
includes~kα states due to the total Hamiltonian in the above equation. For N-site system
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the total Green’s function could be obtained by solving N coupled linear equations which
can be written in the matrix notation: Ĝr · Â = I, where I is the identity matrix. The matrix
Ĝr stands for N × N array of the appropriate Green’s functions and Â is a square N × N
complex array which can be found from Equation (4) and it takes the following form:

AN×N
i,j (E) = (E− εi)δi,j −Vi,j+1(δi,j+1 + δi+1,j) + Σi,j(E), (5)

where Σi,j(E) = ∑~kα

V∗
i,~kα

Vj,~kα

E+−ε~kα
. The off-diagonal elements of the matrix Σ̂(E) depend expo-

nentially on i-th and j-th atomic distance [45,51] so they rapidly vanish and in the paper
are negligible. It allows one to consider the electrode as a set of equivalent leads such
that each chain site is coupled with its own electrode. Thus, assuming that only diagonal
terms of the matrix Σ̂(E) play an important role (and they are the same for all chain sites,
Σi,j(E) = δijΣ(E)) one can express this function by the real and imaginary complex forms
as Σ(E) = Λ(E) − iΓ(E)/2. Here Γ(E) = 2π|V~kα

|2 ∑~kα
δ(E − ε~kα

) = 2π|V~kα
|2DOSα(E),

where DOSα(E) stands for energy dependent α lead (surface) DOS. Both functions Λ(E)
and Γ(E) are not independent, see Appendix B, and they are responsible for the localized
states in the system which appear for some values of the chain on-site energies. For a
flat and~k-independent surface DOS, i.e., within the wide band approximation one has:
Λ(E) = 0 and Γ(E) = Γ which is constant and energy independent [44,45,49,51]. On the
other hand, assuming a specific surface DOS like for 2D materials (see Appendix A for the
2D van Hove DOS) one can find Γ(E) function and then using the Hilbert transform can
obtain the second Λ(E) function. It allows one to write explicitly all matrix elements of
Â , Equation (5), and the retarded Green’s functions can be obtained by inversion of this
matrix, i.e.,

Gr
ii(ε) = (Â−1)ii =

cofÂii

det Â
, (6)

where cofÂ and det Â mean the cofactor (algebraic complement) and determinant of the
matrix Â. For a regular chain with the same atom-atom couplings and homogenous on-site
energies these functions can be expressed analytically by means of the Chebyshev poly-
nomials of the second kind [45,52]. In general case, for topological SSH chains analytical
solutions are also possible but they have no simple transparent forms. Thus, we obtains
here the local DOS along the chain for a given leads DOS numerically (using Java and
Fortran codes) and compare the results for different system geometries.

In the calculations homogenous on-site energies for all chain sites are considered,
εi = ε0 and there is used the zero temperature limit. The energies are expressed in units
of Γ = 1 where Γ is defined as usually for a flat,~k-independent lead DOS of the width w
as follows: Γ = 2π|V~k|

2/w (which is related to the wide band limit approximation). The
energy reference point is the chemical potentials of the leads, EF = 0. For experimentally
available values of Γ ' 0.5 eV the typical coupling units between atomic sites would be
0.5–2 eV.

3. Results and Discussions
3.1. Straight SSH Atomic Chain

The first system under consideration is a straight SSH chain on 2D electrode (see
Figure 1, panel a). In Figure 2 we analyze the local DOS of the chain for different surfaces.
In particular it is assumed a flat rectangular surface DOS (panels a and d), surface DOS
with one van Hove singularity in the middle of the band (panels b and e), and the surface
DOS with two van Hove singularities with vanishing value in the middle of the band
(panels c and f). These functions are shown in Figure 2 (dashed black curves) and they
correspond to the wide-band approximation, 2D rectangular lattice, and 2D honeycomb
lattice, respectively. The surface DOS can be obtained exactly for different regular atomic
latices [53–56] and their analytical forms are shown in the Appendix A. Note that such



Materials 2021, 14, 3289 5 of 15

atomic lattices are fabricated in many experiments e.g., Pb atomic films form a hexagonal
close-packed structure on Al(111) substrate, Sn atoms on Al(100) or Al(111) are found
to form square-like structures [57,58] similarly, Sb films form square-like structures on
Rh(111) [59]. In addition, on vicinal surfaces one can obtain multiple Pb chains which form
regular atomic nanoribbons on each terrace of Si(553)-Au substrate [43]. We are interested
in the local DOS of the chain at the edge site (where the mid-gap topological state appears,
i = 1, dashed blue curves) and also at one inner site with no topological states (here i = 2,
red solid curves). Additionally, both symmetrical and asymmetrical cases, i.e., ε0 = EF = 0
(left panels) and ε0 = 4 (right panels) are considered.
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Figure 2. Local DOS at two sites of the straight SSH chain (see panel a in Figure 1), i = 1 (blue broken
curves) and i = 2 (red solid curves) as a function of energy, and for different surface DOS shown by
the dashed black curves: rectangular DOS (panels a and d), 2D-DOS with one van Hove singularity
(panels b and e) and for 2D-DOS with two van Hove peaks (panels c and f). The left (right) panels
correspond to ε0 = 0 (ε0 = 4). The chain length is N = 12 sites, the couplings are V = 1, W = 4, and
the surface DOS width is w = 30 (all energies are expressed in Γ units).

For the SSH1 chain on the surface with rectangular DOS (panels a and d) the electronic
structure of the chain is characterized by two sideband peaks (bulk bands) with the
energy gap between them for the interior sites (e.g., for i = 2) and the mid-gap state
localized at E = ε0 for the edge site (i = 1 and i = N). In this case, the surface DOS is
flat (energy independent) and can be effectively described within the wide-band limit
approximation. Thus, the surface described within this approximation does not influence
the chain topological states which is in agreement with the literature results [60]. The
situation changes for realistic 2D square lattice substrate with the van Hove singularity in
the middle of the band (panels b and e). This van Hove peak can be considered as a kind of
sharp atomic state which is coupled with the mid-gap edge state of the SSH chain. It is the
reason that the topological SSH state splits for E = 0 (panel b) and it is not robust against
the surface states. In addition, for the asymmetrical case (panel e, ε0 = 4) the energy of
the van Hove peak corresponds to the energy of the lower (left) sideband in the chain and
there is a small local minimum in the structure of this band at E = 0. For other energies,
i.e., beyond the van Hove singularity the substrate spectral density is relatively flat and
thus the chain DOS is almost the same as for the rectangular case (see the upper panels).
The most interesting case one can observe for the honeycomb lattice underneath the chain
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(panels c and f). Now, the substrate DOS is characterized by two van Hove peaks at E = ±5
and a local minimum in the middle of the band. As before these peaks are responsible for
the local minima in the chain DOS, i.e., in both sidebands (panel c) or in the mid-gap state
(panel f). However, for very low values of the substrate DOS (near E = 0) the chain-surface
effective coupling Γ(E) tends to zero which leads to the atomic limit for this energy span.
Thus, for the symmetrical case the mid-gap topological state is very narrow (and almost
disperssionless) than for non-zero surface DOS (shown in panels a and b). One can see
that 2D substrates essentially modify topological states and change effectively their shape.
For the asymmetrical case (panel f) low values of the substrate DOS correspond to the left
sideband of the chain DOS. The sidebands consist of many bulk states (due to the surface
coupling they form relatively smooth function of the energy) but in this case the lower one
reveals an atomic structure around the zero energy and has many sharp peaks. At the same
time the second (upper) sideband of the chain DOS (around E = 9) remains in the form of
the bulk shape. As a consequence, very regular structure of the chain DOS can drastically
change in the presence of the van Hove singularity or energy dips in the substrate DOS.
Note that for ε0 = 0 (left panels) all local DOS functions are symmetrical in the energy scale
which results from symmetrical structures of the surface DOS with respect to the Fermi
energy and the particle-hole symmetry is not broken in this case. For different value of ε0
this symmetry still exists for a plane surface DOS (right upper panel) but it is broken for
real 2D lattice DOS (panels e and f). Thus, strong asymmetry in the local DOS of atomic
system can come from the peaked structure of the surface DOS which was not reported
before and it leads to breaking of the system particle-hole symmetry.

3.2. Boundary Effects in Chain DOS

It was shown that local dips in the structure of the substrate DOS strongly modify
electronic properties of the SSH chain for symmetrical as well as asymmetrical cases (i.e., for
different positions of the chain on-site energies, ε0). However, for larger ε0 or for relatively
narrow surface band the chain on-site energies can lie in the vicinity of the substrate DOS
boundaries or even beyond the band. In such a case one expects localized states in the
system (like for an adatom on the surface [50]) and significant changes in the chain DOS
structure can appear. Thus, it is desirable to study this effect for topologically trivial and
nontrivial SSH chains on a surface. The corresponding results are depicted in Figure 3 for
both chains, SSH0 (upper panel) and SSH1 (bottom panel) in the form of heatmaps of the
local DOS along the whole chain, i.e., at each chain site, i = 1, ..., 12. The position of ε0 is
very close to the surface DOS boundary, ε0 = 14, such that the bottom sideband of the SSH
chain lies inside the surface DOS and the second one is outside this band. For the trivial
SSH chain (upper panel) the boundary of the surface DOS (E = 15) corresponds to the
chain energy gap and there are still two sidebands of the chain DOS (inside and outside the
surface band). The lower sideband is quite smooth (like the sidebands in Figure 2, upper
panels) as its energy lies inside the surface band. On the other hand, the outside sideband is
characterized by very sharp and high DOS peaks as in this case there are no corresponding
energy states in the substrate and the effective coupling Γ(E) = 0 for E > 15. Thus, outside
the substrate band the chain states tend to atomic limit and strong asymmetry of the local
DOS appears (as a function of the energy). For nontrivial SSH1 chain (bottom panel) both
chain sidebands are also nonsymmetrical and they behave in the same way as for the SSH0
chain. However, at both edge sites, i = 1 and i = N, there exist topological states and as
one can see for E > 15 (outside the substrate band) these states suddenly disappear and no
extra states are observed above this energy. In this case, the structure of topological state
becomes asymmetrical and this interesting effect is going to be studied in more details.
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Figure 3. Heatmap plots of the energy and site dependent local DOS along the whole chain, N = 12,
for the same system as in Figure 2 for the rectangular surface DOS and for ε0 = 14 (in the vicinity of
the edge surface DOS). The upper (bottom) panel corresponds to the SSH0 chain with V = 4, W = 1
(SSH1 chain with V = 1, W = 4).

In order to analyze the SSH mid-gap states near the surface DOS boundary there
were performed additional studies which are described in Figure 4. Here it is considered
the local DOS at i = 1 for different on-site energies in the chain, around ε0 ' 15, as it is
depicted in the legend. Note that the surface is described by a rectangular DOS with nozero
constant value for |E| ≤ 15, thus the chain on-site energies correspond to the surface band
edge. For ε0 = 12 the whole mid-gap state lies inside the surface DOS region and its shape
is almost the same as for smaller ε0 (see Figure 2, upper panels) or as for the surface DOS
obtained within the wide band limit. Here, the maximum of this state is somewhat shifted
from ε0 = 12 towards higher energies due to nonzero Λ(E) function which effectively
shifts the on-site energies (see Appendix B). Note that for small value of ε0 (in the middle
of the band) the local DOS peak at the edge site appears for E ' ε0 because Λ(E) tends to
zero for E = 0 as was shown in Figure A1 in the Appendix. However, for larger value of
ε0 this function increases thus the local DOS maximum is slightly shifted and appears for
E = 12.4 in this case (ε0 = 12). For ε0 = 14 the state lies closer to the band edge (red curve)
and the structure of topological state drastically changes. As before there is no maximum
of this state at E = ε0 = 14 but it is shifted towards higher energies. However, outside the
surface band only dispersionless localized states can be observed (a very high and narrow
peak appears for the energy near the surface DOS edge). Its position is determined by the
cross of E− ε0 linear function with Λ(E), as was shown in the Appendix B. In consequence
the mid-gap topological state assumes asymmetrical structure which consists of a wide
part together with strongly localized peak (red curve). Such a shape of the edge topological
state in 1D chain has not been reported before and it cannot appear in a system described
by the wide band approximation. For further values of ε0, beyond the surface band, one
can observe only sharp dispersionless states of the chain local DOS (ε0 = 16, 18) but also
some small DOS spikes are visible for E > 15. These small peaks are related to the sideband
structure of the local DOS in the chain. It is worth mentioning that for the SSH0 chain the
local DOS at the edge sites has only two sidebands structure and for the SSH1 chain this
structure still exists together with the mid-gap states.
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Figure 4. Local DOS at the first site of the SSH1 chain on a surface described by a rectangular DOS (the
same as in Figure 2, upper panels) for different values of the chain on-site energy, ε0 = 12, 14, 15, 16
and 18, respectively. The SSH1 couplings are V = 1, W = 4.

3.3. Zig-Zag and Armchair-Edge Chains between 2D Systems

Thus far, there was investigated a straight SSH chain on different 2D substrates. Now
the objects of study will be more complex hybrid systems composed of a chain between
two 2D electrodes which are schematically shown in Figure 1 (panels b and c). We consider
a simple zig-zag geometry of the SSH chain, as well as an armchair edge chain structure
which can be fabricated on various vicinal surfaces. For the same lattice structure of both
(left and right) leads the results are similar to those discussed in the previous sections,
thus in this part there is considered two different surface leads composed of a square or
hexagonal 2D atomic lattices which are characterized by the van Hove singularities.

Let us first assume a simple zig-zag SSH chain which sites are coupled alternately
with the left or right electrodes (so called Hybrid1 system, Figure 1, panel b). It is analysed
the energy dependent local DOS at each chain site along the whole chain (N = 20) for
the symmetrical case (Figure 5, upper panel) and for ε0 = 4 (Figure 5, bottom panel). In
this system every odd chain site is coupled with an electrode characterized by a single
van Hove peak in the middle of the band. Thus, for the first atomic chain the nontrivial
state is relatively wide with small local minimum appearing for E = 0—the same effect
was discussed in Figure 2 panel b. On the other hand, every even number of atom in the
chain is coupled with a honeycomb lattice electrode characterized by two van Hove peaks
and minimum value of DOS in the middle of the band, thus the edge topological state at
the last site, i = 20, becomes narrower and higher (as was discussed in Figure 2, panel c).
However, this state has some effective dispersion as it is coupled via the last but one site
(and also other sites) with the left electrode for which there is a finite value of DOS at the
Fermi level. It is also interesting that every second site in the SSH1 chain is characterized
by small but nonzero DOS in the energy gap region. This effect is known in the SSH chains
where topological states appear mainly at both chain ends but they also symmetrically leak
inside the chain with decreasing intensities [29,46]. Here one can observe asymmetrical
values of DOS along the chain. It is a consequence of much higher topological state at the
last site i = 20 in comparison with the first site DOS, which allows for deeper penetration
of this state into the chain. As an unexpected result it was found that nonzero local DOS at
the Fermi level in the chain is observed for these sites which are directly coupled with the
right electrode (which has no states at the Fermi energy).
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Figure 5. Heatmap plots of the energy and site dependent local DOS along the whole zig-zag chain
for the Hybrid1 system (see panel b in Figure 1) for the on-site energies ε0 = 0 (upper panel) and for
ε0 = 4 (bottom panel). The left (right) 2D electrode is described by DOS with one van Hove (two van
Hove) singularity and the chain length is N = 20 sites, V = 1, W = 4.

For the non-symmetrical case (ε0 = 4, bottom panel) both topological states in the
chain are coupled with nonzero DOS of the leads and their energy dispersions are similar
to each other. However, the local DOS along the chain is not symmetrical and the maxima
of both topological states appear for slightly different energies (the left one for E ' 4.2 and
the right one for E ' 3.5). It results from the fact that the last chain site (and also every
even site in the chain) is coupled with the lead characterized by two van Hove singularities
(they appear for E = ±5). Thus, the edge state for i = 20 is split (cf. also Figure 2, panel
f), and the topological peak becomes asymmetrical with shifted maximum. This effect
shows that maxima of topological edge states in the SSH chain can appear at both edges
for slightly different energies in 2D hybrid systems which is a new feature of topological
states. It is interesting that the edge state at the first site is symmetrical (as it is coupled
to the plain lead DOS around E = 4) and it much more effectively spreads over the chain
in comparison with the last site topological state which is strongly suppressed inside the
chain due to the splitting effect. Moreover, the upper and bottom sideband structures of
the local DOS are non-symmetrical in this case-the upper one is relatively smooth but the
bottom one reveals periodical oscillations from site to site along the chain depending on
the lead band structures. In general, the bottom sideband maxima for this system should
appear near E = 0 but for this energy the left lead possesses a single van Hove peak and
the right lead is characterized by a local dip in DOS. Taking into account that the sites are
coupled directly with only one electrode and non-directly with the second one (via the
neighbouring sites), one observes mixed effects from both leads-split states with shifted
maxima at every second chain site.

In the last study of this paper there is considered armchair edge geometry of the
SSH chain (Hybrid2 system), i.e., every atomic dimer of the chain (two sites) is coupled
alternatively with the left or right electrodes (see Figure 1, panel c). As before it is plotted
energy and site dependent local DOS for two positions of the chain on-site energies ε0 = 0
and ε0 = 4, Figure 6, upper and bottom panels, respectively. Note that in our case the
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chain length is N = 20, thus the first and last sites are coupled to the same left electrode
which leads to fully symmetrical structure of the local DOS along the chain (they are the
same for i-th and (N − i + 1)-th sites). This armchair edge geometry is also reflected in
the results depicted in both panels in Figure 6. In the upper panel the edge topological
states are split and have local minimum at the Fermi energy due to the coupling with the
van Hove singularity of the left lead. Two next sites are coupled to the right lead with
the singularities localized at E = ±5, and for these energies one observes local minima in
the upper and bottom sidebands. It is the reason that the sideband maxima appear below
|E| = 4. The further two sites are coupled again to the left lead with relatively flat DOS
around the chain sideband energy so the maxima of these sidebands are for E = ±5. Note
that beside the space symmetry of the local DOS along the chain there is also full energy
symmetry of DOS at each atomic site with respect to the Fermi energy.
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Figure 6. The same as in Figure 5 but for the armchair edge SSH1 chain (Hybrid2 geometry-see panel
c in Figure 1). All parameters are the same as in Figure 5.

This symmetry is broken for nonzero value of the on-site energies, ε0 = 4 (bottom
panel). Now, the edge topological states at i = 1 and i = N are described by almost
symmetrical local DOS with respect to E = ε0 but at the rest chain sites this function is
non-symmetrical. The upper sideband energy lies beyond the singularities of the lead
DOS and for this energy the sideband structure is relatively simple with a local maximum
at E = 8 (see also the right panels in Figure 2). On the other hand, the bottom sideband
corresponds to the Fermi energy of the system where there are extrema of the lead band. In
particular, the right lead for the zero energy has no states (local minimum in DOS); thus,
the corresponding chain states tend to the atomic limit which is well visible for every two
sites of the chain coupled with this electrode (light narrow peaks for E = 0). The other
chain sites are coupled with the left lead characterized by a single van Hove peak at the
Fermi level. In this case, the bottom sideband is split leading to a local minimum in the
chain DOS for this energy. In consequence, the local DOS function is asymmetrical with
respect to the energy and it reveals double-site periodical oscillations in space (along the
chain).

To conclude, for non-linear chain in 2D hybrid configurations one observes interesting
periodical in space structures of the local DOS which reflect topological nature of the chain
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and singularities of both leads. In consequence, one can obtain modified topological chain
with asymmetrical sideband structures and split edge states. Such a behavior makes these
structures very attractive to potential applications in nanoelectronics. In the next step, it
could be interesting to consider superconducting electrodes which can lead to the Majorana
states in the chain and analyze time dynamics and proximity effect with topological states
in 2D hybrid structures.

4. Conclusions

In this paper, the electronic properties of different hybrid systems composed of the
SSH topological chain coupled with 2D electrodes were investigated. In particular, the
mid-gap state modifications due to real structures of the surface characterized by the van
Hove singularities were analysed. For rectangular or hexagonal 2D atomic lattices, such
singularities in DOS often appear (like in graphene or silicene). The calculations were
performed within the tight binding Hamiltonian and the Green’s function technique. The
main conclusions of this work are as follows:

1. Surface with singularities in DOS essentially influences the spectral density function
(local DOS) along the chain and is responsible for strong asymmetry in the topological
chain energetic structure. It leads to the particle-hole symmetry breaking in the
system.

2. The surface van Hove singularities can split the SSH topological state of the chain.
On the other hand dips in the surface DOS lead to dispersionless strongly localized
states (topological or normal) in the chain.

3. There was also discovered that topological mid-gap states can exist outside the surface
band boundaries. It is important that when the chain on-site energies lie near the
surface DOS edges topological state reveals partially localized behaviour with both
wide dispersion due to continuous band states and sharp localized peak which comes
from the surface band boundaries.

4. Different geometries of the SSH atomic chain between two 2D electrodes systems
show spatial and energetic asymmetry in the structure of chain DOS which leads to
different energies of both topological edge states at the chain ends.

The above findings can be verified experimentally for self-assembling or
STM-manipulated atomic chains in the SSH geometries fabricated on different 2D materials
(in particular on vicinal substrates).
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Appendix A

The energy-band dispersion, DOSs(E), for the surface described by a regular tight-
binding Hamiltonian can be expressed analytically by the relation:

DOSs(E) = ∑
n

∫ d~k
(2π)2 δ[E− εn(~k)] , (A1)

where the summation over n concerns the energy bands in the Brillouin zone with the
energy dispersion, εn(~k). In 2D tight-binding models e.g., for square, triangle, honeycomb,
graphene-like, Lieb, Kagome and other lattices the energy dispersion is derived analytically
and can be expressed by means of the elliptic integrals [53–56]. In particular for 2D
rectangular lattice one has:

DOSs(E) =
4

π2w
K

√1−
(

2E
w

)2
Θ

(
w2

4
− E

)
, (A2)

where K(x) =
∫ π/2

0

(
1− x sin2 ϕ

)−1/2dϕ, and w is the bandwidth of DOS. This relation
is characterized by a van Hove logarithmic singularity in the middle of the band as it is
shown in Figure 2 (dashed black curve, panel b). For the honeycomb lattice the structure of
DOS is described by the following formulae:

DOSs(E) =
2|E|
π2t2


1√

f (|E|/t)
K
(

4|E|/t
f (|E|/t)

)
, f or 0 < |E| < t

1√
4|E|/t

K
(

f (|E|/t)
4|E|/t

)
, f or t < |E| < 3t

(A3)

where f (x) = (1 + x)2 − (1− x2)2/4, and t = w/6. In this case, the structure of DOS has
two van Hove singularities localized at E = ±t with a local minimum in the middle of the
band, which is shown in Figure 2 (dashed black curve, panel c). It is worth noting that
in three dimensions a simple cubic lattice is characterized by a flat dispersion of DOS in
the middle of the band thus a rectangular DOS (or even wide band limit approximation)
relatively well describes this structure.

Appendix B

Localized states which can appear at the chain sites are related with the Green’s
function determinant in the form E− ε0 − Σ(E), where Σ(E) is expressed by the relation
below Equation (5) and satisfies the relation: Σ(E) = Λ(E)− iΓ(E)/2. These functions,
Λ(E), Γ(E), are related through the Hilbert transform:

Λ(E) =
1

2π

∫ ∞

−∞

Γ(E′)
E− E′

dE′, (A4)

thus the knowledge of Γ(E) which depends in the substrate DOS structure allows one to
determine all other functions. Moreover, it is also possible to predict the appearance of
localized states in the system. These states are observed for vanishing Γ(E) (outside the
surface band) and they appear for minimal value of E− ε0 −Λ(E), i.e., for E− ε0 = Λ(E).
In this case, Λ(E) function renormalizes the on-site energy position leading to the localized
state outside the substrate DOS. It can be shown graphically in Figure A1, where Λ(E),
Γ(E) and E− ε0 functions for a rectangular lead DOS are analysed.
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Figure A1. Real and imaginary parts of the Σ(E) function, ReΣ(E) = Λ(E) and ImΣ(E) = −Γ(E)/2,
respectively, for a rectangular lead DOS of the width w = 30. The cross point of E− ε0 and Λ(E)
indicates a localized state in the system, here it is set ε0 = 15.

As one can see Γ(E) function (red solid curve) is strictly related to the lead DOS. Its
Hilbert transform, ImΣ(E) = Λ(E) (broken blue curve), is nonzero even for vanishing Γ(E),
and the localized state appears for the crossing point of E− ε0 and Λ(E) functions.
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and resistivity of Pb atomic chains on the Si(553)-Au surface. J. Phys. Condens. Matter 2016, 28, 284003. [CrossRef]

44. Krawiec, M.; Kwapiński, T.; Jałochowski, M. Double nonequivalent chain structure on a vicinal Si(557)-Au surface. Phys. Rev. B
2006, 73, 075415. [CrossRef]
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