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Abstract: Currently, novel inorganic alumino-silicate materials, known as geopolymer composites,
have emerged swiftly as an ecobenevolent alternative to contemporary ordinary Portland cement
(OPC) building materials since they display superior physical and chemical attributes with a diverse
range of possible potential applications. The said innovative geopolymer technology necessitates less
energy and low carbon footprints as compared to OPC-based materials because of the incorporation
of wastes and/or industrial byproducts as binders replacing OPC. The key constituents of ceramic
are silica and alumina and, hence, have the potential to be employed as an aggregate to manufacture
ceramic geopolymer concrete. The present manuscript presents a review of the performance of
geopolymer composites incorporated with ceramic waste, concerning workability, strength, durability,
and elevated resistance evaluation.

Keywords: ordinary Portland cement (OPC); construction and demolition wastes (CDW); porcelain
tile polishing residue (PPR); geopolymer; ceramic powder waste (CPW); waste clay brick powder
(WBP); ceramic sanitary-wares wastes (CSW)

1. Introduction

Over several years, OPC has been extensively employed globally as a binder to man-
ufacture concrete and an assortment of edifice materials. However, it is a scientifically
proven fact that the contemporary production process is highly energy intensive with
necessitating elevated temperatures of about 1450 to 1550 ◦C and, more importantly, not
an ecobenevolent one since it causes grave environmental pollution through the emission
of a substantial quantity of greenhouse gases (GHG) [1–5]. Unfortunately, OPC production
alone is blamed for virtually 6 to 7% of total CO2 emissions—a primary GHG, as estimated
by International Energy Agency (IEA) [6]. In fact, among total GHG, around 65% of the
dilemma of global warming is assigned to the emission of CO2 alone. Incredibly, it is
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predicted that the global mean temperature could increase by around 1.4 to 5.8 ◦C over
the next one hundred years [7]. One ton of production of OPC emits an almost equal
quantity of CO2 in the atmosphere [8,9]. Worldwide, in the existing backdrop of emissions
of CO2 mediating the climate alteration, the mean sea level is also supposed to rise because
of, on the one hand, the thawing of permanently frozen ground on the earth and, on the
other hand, the thermal expansion of water, in addition to frequently occurring natural
calamities may cause titanic losses to the economy [10,11]. Furthermore, emitted GHG,
viz., CO2, SO3, and NOX, from the OPC industries can cause damage to the fertility of
the soil and acid rain [12]. Generally speaking, the industrial consumption of natural raw
materials is estimated as 1.5 tonnes for one tonne of Portland cement production [13,14].
Key natural raw materials, such as limestone, coal, clay, etc., are running out swiftly.
In order to resolve these problems, scientists, researchers, engineers, and the industrial
workforce are ceaselessly dedicating many endeavours in order to find new progressive
and innovative building materials and substitute binders. Globally, ceramic industries
are generating enormous amounts of wastes every year, creating huge landfills that are
harmful to environmental dilemmas. Statistically, the world’s ceramic tile production is
greater than 10 million square metres per year [15]. An estimation has been made that
roughly 15 to 30% of this production is regarded as unutilized wastes [15] forming great
heaps. It has been proven [16–19] that ceramic is strongly resistant to biological degradation
processes. Ceramic is an appropriate supplementary cementing material for enhancing the
mechanical properties and durability properties of concrete since ceramic is found enriched
with silico-aluminium crystalline materials [20,21]. However, the reuse of ceramic waste in
the construction industry is still in its primary stage in a negligible quantity [22]. It is worth
mentioning that millions of tons of natural, agricultural, and industrial wastes, viz., waste
ceramic powders, cement dust, fly ash, byproducts generated from coal and oil burning,
bottom ash, palm oil fuel ash, bagasse ash, discarded tires, marble, and crushed stone, are
disposed of in Malaysia every year [19,23–28] and responsible for severe environmental
concerns, namely the leaching out of perilous substances and air pollution. China, as the
world’s greatest consumer and producer of ceramics, generates over one million tonnes of
all kinds of ceramic wastes, such as tiles, blocks, pan forms, etc., which are filling useful
land spaces or piled up each year. This is why it is desirable to investigate the possibilities
to use waste of ceramic as a replacement for natural aggregates such as gravel or sand. Sen-
thamarai and Manoharan [16] have studied the attributes of concrete with electrical ceramic
waste aggregate, whereby they observed that the compressive, splitting tensile, and flexural
strengths of ceramic waste coarse aggregate concrete were inferior to traditional concrete.
Analogously, a generation of construction and demolition wastes (CDW) of ceramic and the
bricks are found increasingly all over the world due to the reconstruction and renovation
activities of older structures, which make up approximately 45% of the total CDW [29–31].
Senthamarai and Manoharan [16] and Hussein et al. [19] have reported that around 30% of
the total ceramic waste is produced by the ceramic industry. The researchers are taking
an ever-increasing interest in exploring new alumina-silicate materials. Various attention-
grabbing endeavours have been made for recycling and reusing these CDW-containing
ceramic wastes and bricks as pozzolanic materials along with them [32–35]. Astonishingly,
it has been accounted that more than one million tons of ceramic wastes are generated
each year in China alone [36]. Although the abovementioned residue can be reused in a
few ceramic material productions, most of it is discarded in open landfills [37]. However,
ceramic residue wastes must possess certain prerequisites to be activated, such as higher
solubility in the basic alkali medium, and its precursors must be rich in alumina and silica.
Advantageously, the ceramic wastes can be effortlessly separated from dumps because they
are not attached to gypsum, cement, or other binders, which makes them easy to reuse and
facilitates their valorisation. The peculiar feature of biodegradation of ceramic residues,
such as ceramic sanitary-ware wastes, is found to be long-lasting, even up to 4000 years.
For these reasons, its potential application and valorisation as a precursor to manufacture
novel optional binders with low CO2 footprints through Geopolymerization remain an
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attractive alternative. Research on the applications of porcelain tile polishing residue (PPR)
in OPC materials is scarcely conducted [38–41]. However, the investigations have demon-
strated the impacts of the PPR supplement on OPC mortars and that the substitution of
OPC with PPR partly contributes to the hydration process. The said effect was assigned to
the pozzolanic activity, filler impact, and heterogeneous nucleation caused by the residue.
The blending of PPR in OPC production is a well-recognized strategy for recycling the
said waste. Another application of this residue, taking into consideration its chemistry, is
in geopolymeric binder manufacturing due to sufficient concentrations of alumina and
silica, which lowers the cost of geopolymer carbon footprint impact. Interestingly, wastes
of ceramic sanitary-wares products, such as washbasins, lavatories, bidets, etc., are not
only the result of the renovation of buildings but also due to product rejection due to
manufacturing defects during production, such as breakage, shape deformation, and/or
trivial defects, such as finishing, etc., which often crop up while firing the pieces and affect
the physical, chemical, and aesthetic attributes of the ultimate product. Following data
revealed by Baraldi et al. [42], the global production of sanitary wares is estimated to have
escalated by 61.3% in a decade, increasing from 216.6 to 349.3 million pieces produced
in 2004 and 2014, correspondingly. Additionally, it has been noted by Medina et al. [43]
that 5 to 7% of the pieces are discarded because they have defects. This simply means that
roughly 20 million of pieces can be regarded as waste. Moreover, more ceramic damaged in
the course of storage, transportation, construction, and the renovation of houses increases
the abovementioned percentage of waste generation. Furthermore, the disposal procedures
are turning out to be more costly on account of the ever-rising limit to restrictions on
landfills. All the above problems have compelled industries to look for solutions to these
predicaments and turn to recycling such wastes to transform them into useful products.
Looking at some recent studies on ceramics, how ceramic wastes can be employed in
manufacturing building materials for construction and infrastructure industries has been
investigated. For example, ceramic wastes can be reused in concrete production, although
the majority of research has been focused on the analysis of the mechanical and durable
attributes of ceramic as a binder or fine and/or coarse aggregate for the partial replacement
of OPC [44]. The course of action of employing wastes of ceramic has been studied, but the
echelons of waste which were utilized efficiently for this objective were very small and no
dedicated investigation has accounted for the methodical characterization of the synthesis
and high-temperature characteristics of geopolymer pastes employing ceramic wastes as
raw material. The chemistry of ceramic with extremely crystalline aluminosilicate made it
feasible to be employed to develop good-quality geopolymer mortars and concrete. Sun
et al. [36] have applied one more kind of ceramic residue to attain geopolymeric cement
and estimated its mechanical behaviour while taking into account the effect of elevating
the temperature. After 28 days, the composition attained a compressive strength of 71 MPa,
which augmented to 75 Mpa following exposure at 1000 ◦C for 2 hrs. Nevertheless, the
ceramic residue was obtained from municipal solid wastes, a tile mix, pan forms, and
blocks which were treated before. At first, the ceramic residue was washed ultrasonically
to remove impurities, viz., scraps of paper, plastic, organic matter, and metals. Afterwards,
the dried ceramic wastes were crushed and pulverized through a ball mill for 45 min. The
PPR possesses a pozzolanic nature and its chemistry is enough to facilitate the production
of geopolymeric binders. Hence, the acceptable outcomes were obtained by Sun et al. [36].
Initial investigations have demonstrated homogeneity in the granulometric and chemical
composition of this kind of residue, which was gathered once every seven days for up to
90 days [41]. The incorporation of ceramic in manufacturing ceramic geopolymer concrete
not only provides a systematic solution to the problem of its disposal but also assists
in addressing the environmental issues arising due to its piling up. Likewise, the cost
savings associated with its disposal in landfills can be made, and the substitution of natural
aggregates from restricted natural resources will help the conservation of natural wealth
in addition to safeguarding the environment. This means that the reuse of said wastes
as aggregate in concrete might prove to result in a win-win situation. In other words, on
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the one hand, the solution to the consumption of ceramic industry waste can be achieved
through its well-organized disposal, while, on the other hand, this contributes to a more
sustainable construction material. In addition to this, ceramic geopolymer concrete also
provides relief to the great dilemma of global warming with its user and ecofriendly nature,
as well as being indicative of an affordable, durable, and sustainable construction material
for the future.

In the year 1979, the term “geopolymer” was coined by J. Davidovits to describe
complex inorganic polymers made up of alumina-silicates and possessing a 3D structure
network united by several tetrahedral units of SiO4 and AlO4 linked with oxygen pro-
duced through an exothermic process of “geopolymerization” at low temperature and
atmospheric pressure [9]. This means that geopolymers are produced from aluminosilicate
minerals of either geological origin or industrial byproducts as precursors, and they are
synthesized in a highly alkaline medium with alkali activators. The process of geopolymer-
ization is analogous to natural rock-forming “geosynthesis”.

RILEM, the International Union of Laboratories and Experts in Construction Materials,
Systems and Structures, has considered geopolymers as a class of alkali-activated materials
exercising acronyms such as C–A–S–H and N–A–S–H to designate the hydration of the
geopolymeric system, which develops a gel structure when having higher and lower
calcium systems. Geopolymerization is the exothermic reaction of solid aluminosilicates
with hydroxide and silicate solutions of alkali that encourages the dissolution of Al+3 and
Si+4 ions from starting materials and, subsequently, the formulation of an alkali-activated
gel demonstrating good-quality mechanical and durable characteristics in the hardened
phase [45,46]. Geopolymers based on fly ash, blast furnace slag, or natural pozzolan are
found to be quite cost effective. Geopolymers demonstrate not only six times lower energy
costs but also, significantly, nine times lower emissions of CO2 (carbon dioxide) gas in
comparison to the present OPC system. The abovementioned alkali-activation of industrial
byproducts significantly lowers the call for long-established natural raw materials and
aggregates in cement and concrete, which immediately mitigates CO2 emissions, landfilling,
and energy consumption, too [47]. Furthermore, their user-friendly nature and exhibition
of outstanding attributes in relation to strength, durability, thermal and chemical resistance,
etc., are significant. They seem to be a potential replacement material for OPC due to some
other excellent properties, such as high initial strength and lower acoustic and thermal
conductivities, which are identical or even superior to OPC [48,49].

2. Ceramic Powder Waste [CPW]

Ceramic powder is the principal waste found to be generated by the ceramic industry
in the form of discarded dust during dressing and polishing ceramic items. Quite often,
CPW is partly consumed on site for refilling the excavation pit. Ceramic wastes are
nonbiodegradable and require spacious lands to dispose of them. For those reasons,
finding an innovative way to recycle this waste and then to blend it for the development
of new construction materials for infrastructure through geopolymer technology can be
helpful to conserve not only limited natural resources but also the environment. However,
hitherto, the development of diverse geopolymers as ecowelcoming construction materials
by incorporating said waste materials has hardly ever been explored.

Preceding research has [20] unearthed that wastes from the ceramic industry possess
pozzolanic properties, and hence they can be employed to make concrete with enhanced
strength and durability. Following Pacheco et al. [22], it is possible to manufacture mortars
exhibiting superior strength and durability performance through the replacement of con-
ventional sand with CPW. Geopolymers with the replacement of fine natural aggregates by
CPW were found to be efficient with a little lower absorption of water. This kind of water
permeability of such geopolymers implies that the changeover of conventional sand by
CPW can be considered as a brilliant option.

The pozzolanic behaviour of clay brick powder WBP and CPW was explored previ-
ously to substitute OPC in manufacturing of cement paste and concrete [50,51]. Further-
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more, Rakhimova et al. [52] have examined the potential of employing WBP in producing
geopolymer cement containing 20% augmentation of GGBFS. The activation of WBP and
CPW is dependent on the Na concentration, i.e., the percentage of Na2O, silica modulus
(SiO2/Na2O), and curing techniques. In line with their report [52], compressive strengths
ranging from 0 to 120 MPa were recorded with a silica modulus value as 1.5, a 5% Na
concentration, and a high temperature of about 90 to 95 ◦C, along with curing for 3 h, and
a conclusion was made that red clay brick waste may substitute for GGBFS up to 60%.
Geopolymer mortar incorporating WBP was manufactured by Reig et al. [31] using dissim-
ilar concentrations of alkali activator. The use of 7% Na concentration, a silica modulus
value of 2, and a high temperature of 65 ◦C along with curing for one week has resulted in
a compressive strength gain of up to 50 MPa.

Despite gaining optimistic benefits, the high-temperature curing has escalated the
cost of the paste/mortar, noticeably hindering its practical application and restricting its
utilization in cast-in situ constructions [53].

3. Ceramic Waste as Aggregate

Additionally, industrial wastes can be employed as recycled aggregate. Since the
quality, quantity, size, and kind of recycled aggregates to be utilized impact strongly on
the durability and mechanical attributes of the concrete being designed, they need to be
characterized correctly in accordance with Silva et al. [54] and Behera et al. [47]. The
monitoring of Elgaali and Elchalakani [55] has revealed that recycled concrete strength
was influenced strongly by the quality of aggregates. The abovementioned conclusion was
found to be corroborated in diverse studies, whereby ceramic waste has been utilized as a
recycled aggregate in PC systems. Medina et al. [56] have noted that an enhancement in
context to mechanical characteristics in concrete can be made by the application of recycled
aggregate derived from CSW—waste of ceramic sanitary ware. The ceramic tiles are a
special sort of CDW found to be massively generated in the east of Spain. The research
work of Alves et al. [57], in which fine ceramic aggregates were used, witnessed shrunken
mechanical properties as compared to the reference concrete. The report of Stock [58] has
revealed that the Spanish industry has manufactured 420 out of the total production of
11,913 million square metres of tiles in the year 2013, attaining the fifth position for top
manufacturing nations after China, Brazil, India, and Iran. The said Spanish manufacturing
was about 3.5% of total global production. The investigation of the potential application
of gigantic quantities of ceramic tile waste as both a precursor and recycled aggregate in
preparing geopolymer mortars is a fascinating and attractive option for tile and cement
industries, together with interest in recycling as well as the production of more sustainable
edifice materials.

The primary investigations on the geopolymerization of waste of ceramic sanitary-
wares (CSW) were fruitfully carried out by Reig et al. [59], who examined the optimum
mix proportions of sodium hydroxide/sodium silicate and the impact of supplements
of Ca(OH)2 on the fresh behaviour, mechanical strength, and microstructure of the de-
signed binders. The conclusion was made that mortars activated by solutions blended with
4.5 wt.% of Ca(OH)2 have displayed the best workability with good-quality compressive
strength benefits of 21 and 27.5 MPa after a curing of 3 and 7 days at 65 ◦C, correspondingly.
Additionally, it was monitored that the addition of Ca(OH)2, has proven to be essential
for geopolymerization kinetics, which prompts a vast interest in advance analyses on
the impact of a variety of Ca sources on the mechanical attributes and microstructure of
geopolymer mortars incorporated with CSW. In this context, the preceding investigations
have thrown light on this crisis and analysed the effect of supplements, viz., calcium
aluminate cement (CAC), Portland cement (PC), or Ca(OH)2, on the reactivity and charac-
teristics of blended geopolymer systems by using diverse precursors [60–62]. In general,
they concluded that these admixtures boost the reaction kinetics of the system, and the
contribution was made to the development of mechanical strength of the specimens. Unam-
biguously, the impact of Ca(OH)2 on geopolymerized ceramic materials was explored by
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Reig et al. [63]. Although wastes of porcelain stoneware tiles were productively activated
and mortars with compressive strengths in the vicinity of 30 MPa with 7 days curing at
65 ◦C were obtained, no activation happened to occur in the absence of Ca-hydroxide, and
swift setting took place when 5% of the residue was substituted with the said source of Ca.
Furthermore, the research investigated the effect of the concentration of alkali activator
and dosage of Ca on the activation course of porcelain stoneware tiles. The conclusion un-
earthed that mortars manufactured with an unvarying molar ratio of calcium and sodium
(MCa) represented an identical setting time. When both the SiO2 concentration and MCa
were constant, the mortars demonstrated a linear increase concerning the compressive
strength with the Na concentration. The review of Shi et al. [62] shows that supplements
of CAC have been monitored to augment the mechanical characteristics and reactivity
of geopolymer binders. The findings were corroborated in a study by Reig et al. [64],
whereby CAC provided evidence for the acceleration of the course of activation of red
clay brick waste, escalating the compressive strength by 68.6% and 165.7% in the mortars
containing 20 wt.% and 40 wt.% of CAC with a curing for 7 days at 65 ◦C, in that order.
Both investigations have revealed the same opinion about the case of systems blending up
to 20 wt.% cement; the pattern for CAC hydration diverges from that usually monitored
in water, and the aluminium and calcium from CAC are taken up in the geopolymeric
alumina-silicate gel formulated, so that the typical CAC hydrates that emerged through
standard water hydration were not identified in the geopolymer specimens.

4. Ceramic Industry Sludge

Sludge obtained from the ceramic industry is also considered to be waste material
which encompasses kaolinite—a metakaolin hydroxylated form. It is a kind of solid waste
produced by a few ceramic companies at the end of the wastewater management process.
The ceramic industrial waste region currently overruled the eco-logical influence of this
form of waste by a decrease from the restricted natural resources of the kaolinite. It may
be employed as a raw material through substitution as metakaolin in the construction
sector [65,66].

Many studies have made it known that the efficacy of the reaction of pozzolanic
nature or the kinetics of geopolymerization is linked to the dehydroxylation extent to raw
materials [67–69]. Consequently, the application of entirely dehydroxylated amorphous-
type metakaolin boosts the performances of concrete greater than the partly dehydroxylated
type. The path of dehydroxylation begins with the proton movement from a hydroxyl
group to a different hydroxyl group, followed by the H2O formulation molecule and ends
with the removal of the water molecule. The competency of this advance depends on
the calcination period [70,71]. In accordance with Ptáček [72], a great loss in mass was
monitored in the TGA pattern at around a temperature of 500 ◦C, which is due to the exit
of hydroxyl- groups enclosed in the mineral as water molecules. In reality, 4OH groups
depart the deposit to form two particles of H2O, leaving two particles of oxygen as per the
equation portrayed below [73]:

4OH−1 → 2H2O + 2O−2 (1)

In the structure of the crystal, the changes during the entire calcination vary markedly,
as many intrinsic parameters count the early material’s crystallinity. The Stoch Index (IK),
which is based on the XRD pattern, is based on material surface imperfections [73]. The
greater the IK value, the more mineral surface flaws. Furthermore, if the value of (IK) is
less than 0.7, the mineral has a well-thought-out network, while if (IK) is higher than a unit,
it is considered that the mineral has a distorted network.

The ceramic industrial sludge used in the study was more crystalline as compared
to kaolin. Conceptually, a geopolymeric cement may be produced by any type of alkali
solution. However, Na2CO3 and NaOH or KOH—are most prevalent in the usage of
its manufacturing. The alkaline cations impact geopolymerization kinetics in several
ways. The presence of an ion of sodium boosts the dissolution of the source of alumina-



Materials 2021, 14, 3279 7 of 30

silicate because of its smaller size by the formulation of the geopolymer through additional
regimented forms. Nevertheless, the existence of ions of potassium is inclined to enhance
the extent of polycondensation due to their bulky size, which supports the development of
larger silicate, inducing an inferior aptitude to the formulation of a crystalline type. The use
of a water glass combination and potassium hydroxide thereby increases the mechanical
characteristics of geopolymers [74].

5. Characteristics of Ceramic Waste Incorporating Geopolymer Composites
5.1. Flow/Slump

Huseien et al. [75] have unveiled the findings of the flow test of the synthesized
geopolymers with flow values of 16.5, 18.5, and 23 cm when the quantity of ceramic was
augmented from 50 to 60 to 70%, in that order, in comparison with the control specimen
which represented a 13.2 cm flow diameter. One more cause to boost the workability of
mortars is to enhance the waste ceramic powder (WCP) quantity and trim down the GBFS
content by substituting it with FA and WCP. This influences the rate of chemical reaction
kinetics [53,76,77] and augments the plasticity of a mix which enhances the workability of
geopolymers. Furthermore, they monitored that an enhancement in fly ash (FA) content
has declined the workability of geopolymers because of the higher water adsorption of FA
with a porous structure [78–80].

Hwang et al. [81] have manufactured strongly workable WBP incorporating geopoly-
mer paste and WCP-blended geopolymer paste by using waste red clay brick powder
(WBP) and waste ceramic powder (WCP), in that order. The slump flow benefits were
found to range from 235 to 285 mm and 245 to 300 mm for the mixtures of WBP incorporat-
ing geopolymer paste and WCP-blended geopolymer paste, correspondingly. The WBP
incorporating geopolymer paste displayed an inferior workability to the WCP-incorporated
geopolymer paste because of its larger specific surface area and higher porosity.

5.2. Setting Time

Huseien et al. [82] have also examined mortars with the maximum WCP content,
which has taken the longest time of 92 min to set. A sharp drop off in the setting time was
reported when the amount of WCP was lessened and the quantity of GBFS was boosted.
Enhancement in the quantity of FA has affected the setting time substantially. Both the early
and final setting times were found to be escalated with the boosted level of FA substituting
GBFS. That means that the higher setting time was reported. Additionally, it has been in
line with the fact that the more the GBFS quantity is in the mortar, the quicker the setting
rate is [79,83].

5.3. Compressive Strength

Huseien et al. [75] have worked on the compressive strength of geopolymers and
found it to vary inversely with the escalating quantity of WCP from 50 to 70%, whereby the
strength was found to be trimmed down from 70.1 to 34.8 MPa after 28 days, correspond-
ingly. The negative impact of the inferior quantity of Ca and higher amount of silica was
assigned to this fall [84–86]. This led to the development of lesser C-A-S-H gels and that is
why it mitigated the strength of geopolymers. This is because WCP contains more than
70% silica with a larger particle size than GBFS, which affected the strength development
of the samples of geopolymers manufactured with a higher quantity of WCP. Furthermore,
the samples manufactured with a higher amount of WCP have also obtained 81%, 94%,
and 97% strength at the ages of 28, 56, and 90 days, in that order (See Figure 1 [75]). Addi-
tionally, comparable findings were recorded by Rashad [13] who monitored a dwindle in
the compressive strengths with a rising amount of FA in the matrix of geopolymer. The
second aspect is the lower rates of reaction kinetics of WCP and FA compared with GBFS,
which was dissolved partly.
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Reig et al. [87] have investigated the application of ceramic tile waste (TCW) as both
a precursor (TCWP) and a recycled aggregate (TCWA) to attain a binding mix through
the course of geopolymerization. The findings for the compressive strength of the TCWP
containing geopolymer mortars cured at 65 ◦C for 3 days chiefly rely upon the kind of
material utilized as the recycled aggregate and vary based on the total (w’/b) ratio of the
mixture or, to some extent, with particle size. The RCB incorporating geopolymer mortars,
whose recycled aggregate demonstrated the highest water absorption, have displayed the
best benefits, whereas the least strength development is encountered with the aggregate
having the minimum water absorption values (CSW).

Hwang et al. [81] have reported the values for compressive strength from 36 to 70 MPa
for the geopolymeric paste with curing at ambient temperature. The best possible value for
strength was recorded from the WBP incorporating geopolymer paste and WCP-blended
geopolymer paste with 30% GGBFS, while the lowest strength value was obtained from
the WCP-blended geopolymer paste with 10% GGBFS. High-strength WBP incorporating
geopolymer paste and WCP-blended geopolymer paste mixtures were produced utilizing
higher percentages of WBP and WCP, in that order, under ambient temperature condition.

Huseien et al. [88] have studied WCP-based geopolymers incorporating FA and
found an influence on their development concerning compressive strength. The gain in
context to strength fell because the quantity of FA escalated from 0 to 40%. However, the
geopolymers manufactured with 40% FA as a substitution for GBFS obtained adequately
higher compressive strength (of about 45.9 MPa), which could allow this yield to be
applied and utilized in quite a lot of applications in the construction industry. Villaquirán-
Caicedo and Mejía de Gutiérrez [89] have also reported that the compressive strength
found improved upon utilizing an exposure temperature from 25 to 1200 ◦C because of
the densification and crystallization of the geopolymer gel. At 900 ◦C, all pastes have
demonstrated a drop in compressive strength. The referred loss of strength at 900 ◦C is
found to be linked to the augmented surface energy of the gel coming into existence due to
the loss of water from the surface and the appearance of smaller pores in the structure of the
gel of geopolymer, causing its structure collapse. In consequence of the restructuring of the
gel and the formulation of new crystalline phases at 1200 ◦C, the compressive strength in
every system is augmented. These benefits are analogous to those recorded and employing
conventional silicates [90].
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Reig et al. [91] have estimated the impact of dissimilar quantities and sources of Ca
[CAC, PC, and Ca(OH)2] on the mechanical characteristics of the alkali activation of the
waste of ceramic sanitary ware (CSW) and ultimately concluded that their mechanical
attributes are enhanced substantially with Ca supplement. In contrast, 40.06 and 64.41
MPa were achieved in mortars manufactured with 6 wt.% Ca(OH)2 and 10 wt.% PC, in
that order, and 56.65 and 70.69 MPa were attained in those containing 10 and 15 wt.% CAC,
correspondingly (each of them was cured at 65 ◦C for 7 days). The said findings were similar
to those observed before in Reig et al. [91] for porcelain stoneware tile waste incorporating
geopolymers, whereby a value up to 36 MPa was met within mortar specimens blended
with 5% Ca(OH)2, cured for 7 days at 65 ◦C.

The investigations by Garcia Lodeiro et al. [60], whereby FA and PC blended pastes
(30 wt.% PC) were activated with NaOH/Na2SiO3 solutions, resulted in 35 MPa strength
after 365 days at room temperature. Likewise, a value of 33 MPa was noted in a hybrid alka-
line cement containing 60 wt.% clinker and 40 wt.% incinerator waste (a mixture of fly ash
plus bottom ash), activated with a mixture of CaSO4, Na2SO4, and water, along with curing
for 28 days. The benefits demonstrated by the CSW/CAC-blended geopolymer mortars
vary from those formerly noted by Fernandez-Jimenez et al. [92] for metakaolin/CAC-
blended geopolymer pastes manufactured with 20% CAC, whereby strength values of
around 13 MPa were found after curing for 20 h at 85 ◦C. The strength of the CSW/CAC
geopolymer mortars were enhanced substantially with up to 20 wt.% CAC replacements
and typically declined with further additions. The abovementioned behaviour could be
assigned to the hindrance in the CAC hardening progression monitored previously by
Pastor et al. [93] when hydrating CAC with strongly alkaline solutions of NaOH. Here,
with the CSW-CAC-activated system under the studied conditions, they found that the
interaction between NaOH in the activating solution and CAC particles escalated with
high a CAC content, which, therefore, slowed down the hydration of CAC. Additionally,
this behaviour diverges from that previously monitored for red clay brick waste containing
geopolymer and CAC-incorporated systems, whereby values for compressive strength
accelerated gradually with the supplement of CAC (values around 40, 60, 70, and 92 MPa
in the geopolymer mortars that enclosed 10, 20, 30, and 40 wt.% CAC, correspondingly,
with curing at 65 ◦C for a week).

Ariffin et al. [94] have studied the compressive strength of mortar with a dissimilar
percentage of ceramic aggregate as river sand substitution. After a curing period for one
day, every sample attained the strength of 40MPa. The controlled specimen exhibited an
augmentation of 10 to 32% from 3 days to one week of age, whereas the cubes containing
50% and 100% quantity of ceramic as sand substitution represented an enhancement of 44
to 63%, correspondingly. A total of 100% of the ceramic-containing sample attained 80MPa
compressive strength on the 7th day. This may be due to the higher content of SiO2, CaO,
and Al2O3 in multiple amalgamated ash and ceramic aggregate, which provides the strong
reaction of N-A-S-H and C-A-S-H of multiple incorporated ashes together with the alkaline
solution in developing a higher strength to the geopolymer mortar.

Ramos et al. [95] have studied the influence of porcelain tile polishing residue on
geopolymer cement, and for all compositions, an augmentation of compressive strength
was confirmed with a curing time from 7 to 28 days. The synthesis of geopolymers incor-
porating waste, employing porcelain tile polishing residues as a raw material, encourages
their application as cost-effective and lower energy materials for the construction industry.
The application of PPR with metakaolin in manufacturing geopolymers can enhance the
compressive strength by an average of 10%, resulting in a compressive strength greater
than 70 MPa. The referred boost in strength is most likely due to the residue chemistry,
which is formed by alumina and silica and represents an amorphous structure because of
the attributes of ceramic tile processing.

Additionally, Zhang et al. [96] have monitored an enhancement in strength as to
different curing times for geopolymers based on metakaolin and sodium hydroxide. They
assigned this boost in mechanical resistance with curing time to the permanence of the
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process of geopolymerization. The concentration of NaOH showed no impact on the
compressive strength, whereas the stronger concentration of the water glass was exhibited
to be disadvantageous to compressive strength.

Following Zhang et al. [96], surplus alkali could dissolve the only recently developed
products of reaction again by breaking the chemical bonds, hence deteriorating the structure
of the geopolymer. The silica content present in geopolymer cement is in line with the
best mechanical resistance benefits for geopolymeric systems (between 45 and 55%), and
alumina content should range between 22 and 28% to achieve the optimum results for
mechanical strength.

Kuenzel et al. [82] have altered mortars with metakaolin-based geopolymeric materials
into polycrystalline nepheline/quartz ceramics with a higher compressive strength of
about 275 MPa and a higher Vickers hardness of around 350 MPa. The findings therein
demonstrated that the geopolymers incorporating PPR also represented a higher hardness
and that the PPR has contributed to enhancing this characteristic.

The greater hardness for compositions with 15% PPR are found to be about 300 MPa,
which is attributed to their contents of silica and alumina (SiO2/Al2O3

1
4 3.44) that outline

the poly-sialate-disiloxo structure, considered by Davidovits [9] to be a more resistant
microstructure.

Although the ratios of SiO2/Al2O3 > 4 are not the most widespread, it is feasible
to obtain superior mechanical benefits for a few compositions of geopolymer cement.
Nevertheless, Sun et al. [36] have already manufactured geopolymer cement utilizing only
ceramic residue treated earlier that was cured at 60 ◦C to examine its behaviour during
firing at temperatures ranging from 60 to 1000 ◦C. The residue chemistry of 65% SiO2, 21%
Al2O3 with its compressive strength of 70 MPa at 28 days, was very near to that found in the
referred work and reinforces the binding effect of PPR for utilization in geopolymer cement.

When only the residue is employed, the percentage composition diverges from the
references utilized in the factorial planning, intending to obtain a healthier performance.
Taking into consideration the findings represented by Sun et al. [13], the curing temperature
was 60 ◦C. The average strength was 16 MPa at 7 days of age, indicating the reactivity of
the PPR residue by itself.

Yun-Ming et al. [78] have established that geopolymer powder has been fruitfully em-
ployed to manufacture one-part mixing geopolymers and geopolymeric ceramics. Finally,
they concluded that the one-part mixing geopolymers only demonstrated an optimum
compressive strength of 10 MPa after 28 days. The incessant formulation of the geopolymer
matrix was evident after direct mixing with water. It was assumed that the presence of
zeolite crystallites due to the blending with water diminished the compressive strength of
the one-part mixing geopolymers.

Keppert et al. [79] have performed geopolymer synthesis employing two-poles-apart
red-clay ceramic powders and a varying quantity of Na2O/SiO2 activator. The experi-
mental findings demonstrated that despite the higher content of crystalline minerals and
inferior concentration of amorphous matter, both examined precursors facilitate the pro-
duction of geopolymers with agreeable mechanical characteristics. The measured values
of compressive strength in relation to SiO2/Al2O3 and Al2O3/(Na2O + K2O) ratios in
the manufactured geopolymer mixtures demonstrate that the consideration of a merely
amorphous portion of the ceramics is suitable. The abovementioned benefit is in good
harmony with the theoretical formula of geopolymeric materials and with the findings
achieved for metakaolin-based geopolymers by other researchers, too.

The mechanical attributes, such as compressive strength of geopolymers, are often
noted concerning SiO2/Al2O3, Al2O3/Na2O, and other ratios in the initial mix of activator
and precursor [80–100].

Statistically, Lahoti et al. [83] have analysed the factors affecting the strength of MK
based geopolymers and found the ratios of Si/Al and Al/Na to be the most effective
parameters; the optimum values were recorded to be 1.7 to 2.2, i.e., 3.4 to 4.4, when
articulated as SiO2/Al2O3, and 0.8 to 1.2, correspondingly. It is worth noting that the
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strength values met within the case of the MK-based geopolymer system of best possible
composition were about twofold in comparison with the benefits attained for ceramic
precursors in their study.

5.4. Split Tensile Strength

Huseien et al. [75] recorded that the tensile splitting strength was found to be influ-
enced by the escalating quantities of WCP and represented an inferior strength of 2.68 MPa
with 70% WCP content in comparison with 5.32 MPa attained for 50% amount of WCP and
5.84 MPa of a controlled specimen. An escalating amount of WCP led to the diminution
of calcium quantity and lowered the rate of chemical reactions kinetics to yield the C-S-H
gel [77,101,102]. An inverse relationship was encountered among the tensile splitting
strength of geopolymeric materials and the fly ash quantity. When the amount of FA
accelerated, the strength plunged. The account of Phoongernkham [103] unveiled that
the strength was in enhanced in fly-ash-based geopolymers with the boost of calcium
quantity where supplementary C–S–H and C–A–S–H gels co-existed with N–A–S–H gel.
This elucidated the decline concerning strength with an increasing quantity of FA and WCP,
as well as a cutback in the amount of GBFS. Ariffin et al. [94] have concentrated on the
splitting tensile strength and found that at the age of 3 days, in samples with 50% and 100%
ceramic aggregate as sand substitution, the tensile strength was augmented by around 18%
and 31%, in that order, in comparison with the controlled specimens. The enhancement in
the context of strength at 7-day curing was faintly boosted by roughly 8% and 17% higher
than the controlled specimens.

5.5. Flexural Strength

The experiments of Huseien et al. [75] have shown that the flexural strength was
found to decrease as the WCP quantity increased at the age of 28 days and were reported
to be 10.12 MPa, 9.26 MPa, and 4.62 MPa for 50%, 60%, and 70% of the amount of WCP,
correspondingly. The strength was found to drop when the quantity of FA was boosted
in each echelon of WCP. The findings have signified that the flexural strength amplified
on accelerating the amount of slag, which conforms with the results of preceding inves-
tigations [104]. The study by Ariffin et al. [94] demonstrated that the flexural strength of
geopolymeric materials incorporated dissimilar percentages of ceramic aggregate replacing
river sand. The findings led to a report that the curing period is fairly responsible for
the momentous effect on the flexural strength. The strength augmentation after 7 days of
100% ceramic aggregate substitution is found to be about twofold. The strength growth of
the controlled specimen for 3 days and 7 days is 3.28 MPa and 7.22MPa, in that order, in
comparison with 4.27 MPa and 9.06 MPa of the specimens with 100% ceramic aggregate
following 3 days and 7 days of curing.

5.6. Modulus of Elasticity

Research by Huseien et al. [75] has extended the values of MOE concerning geopoly-
mer materials with dissimilar WCP quantity percentages such as 50%, 60%, and 70% at
a curing time of 28 days. The results indicated that as the quantity of WCP-substituted
GBFS escalated, the values of the MOE dropped. The enhancement in the percentage of
WCP-substituted GBFS from 50%, 60%, and 70% led to a fall in the MOE figures from
16.3 GPa to 15.8 GPa to 7.4 GPa in comparison with 19.9 GPa reported with geopolymer
materials (100% GBFS). The findings exhibit that a growing content of FA boosted the
silicate quantity and mitigated Ca content. This, in turn, led to the plunge of the MOE of
the geopolymeric materials manufactured.

5.7. Water Absorption

A research study by Huseien et al. [75] on the topic of water absorption uncovered a
direct proportionality with the quantity of WCP. The boost in the level of WCP-substituted
GBFS augmented the water absorption from 8.5 to 8.6% and 11.2% with the swell in
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the amount of WCP from 50 to 60% and 70%, correspondingly, in comparison with the
5.6% noted for the controlled specimen. An escalation in the quantity of WCP and FA
could influence the nonreacted and partly reacted particles to augment and lead to a
structure which is more porous. In another investigation, Huseien et al. [88] illustrated
the impact of FA substituting GBFS on water absorption of higher volume WCP-based
geopolymer mortars at 28 days of curing. The records of water absorption disclosed
a direct proportionality with the amount of FA. The boost in the FA level substituting
GBFS amplified the water absorption from 7.3 to 8.5%, 9.4%, 9.7%, and 10.1% with the
growing quantity of FA from 0 to 10%, 20%, 30%, and 40%, in that order. The water
absorption of samples of geopolymer materials was affected by the pore structure of
mortar specimens manufactured with a higher amount of FA. A boost in the quantity of FA
could influence the nonreacted and partly reacted particles which led to an added porous
structure. Nevertheless, each of the samples of geopolymeric materials exhibited a value
of water absorption either equal to or less than 10% which could reach the acceptable
standard for scores of use in the construction and infrastructure industries.

5.8. Carbonation Resistance

Depending on the ratio of FA to GBFS substitution, Huseien et al. have [88] shown
the depth of carbonation of geopolymeric materials. The enhanced level of substitution of
GBFS by FA from 0 to 10%, 20%, 30%, and 40% led to a boost in the depth of carbonation
from 6.8 mm to 7.1 mm, 7.3 mm, 7.6 mm, and 8.2 mm, in that order. The abovementioned
atypical conduct could be linked to a higher level of FA geopolymer materials matrix,
which led to an added pore structure as the development of gel was confined by inferior
Ca quantity and demonstrated an elevated permeability and porosity to water than in the
control [105–107].

5.9. Acid Resistance

In the context of resistance to acid of geopolymeric materials, Huseien et al. [88] have
explained the findings of residual strength at ages of 6 months and one year after immersion
in a 10% H2SO4 solution. It was established that the residual strength is directly related to
FA quantity. Following the immersion period, each of the geopolymeric materials exhibited
a diminution in residual strength in comparison with a controlled specimen. Enhancement
in the FA substituting GBFS from 0 to 10%, 20%, 30%, and 40% led to a swell in residual
strength from 78.3 to 87.1%, 93.8%, 95.4%, and 99%, correspondingly, after exposure for
6 months. A comparable drift in benefits was also achieved within FA substituting GBFS in
a higher WCP level following a one-year period. The Ca(OH)2 compound in the mortar
reacted with the SO4

−2 ion upon exposure of the geopolymer materials to sulphuric acid,
forming gypsum (CaSO4 2H2O). This phenomenon is accountable for the spreading out of
the geopolymer matrix as well as supplementary cracking in the interior of samples. Much
research [108–110] has found that augmented Si, Al, and Na quantities trimmed down the
formulation of gypsum, therefore raising the durability of geopolymer materials.

5.10. Sulphate Attack

Huseien et al. [88] have replaced GBFS with FA in higher volumes of WCP-based
geopolymer materials produced far above the ground performance mortars in severe
environmental conditions. Following residual strength, XRD patterns as well as loss in
mass, the resistance of geopolymer materials to an attack of sulphate improved as the
amount of FA incorporating the said geopolymer materials was augmented. Geopolymer
materials manufactured with 40% of fly ash demonstrated the maximum resistance amongst
every mix. The inferior quantity of CaO in FA has contributed chiefly to putting a ceiling
on the formulation of gypsum all through the immersion period.
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5.11. Freeze–Thaw Cycles

Huseien et al. [88] have exemplified the impact of FA substituting GBFS on the residual
compressive strength and percentage of loss in weight of geopolymer material samples in
the open for freezing–thawing cycles. The findings have signified an inverse relationship
among residual strength and loss in weight with a rising amount of FA. With an increased
substitution of GBFS with FA, the drying shrinkage is found to be improved and exhibits
inferior performance under freeze–thaw cycles, i.e., under aggressive environments. The
number of voids may allow the ice development and smash the interlock among the
particles [111].

5.12. Wet–Dry Cycles

The impact of FA substituting GBFS on the residual compressive strength of geopoly-
mer materials was estimated through their exposure to wet–dry cycles. As shown by
Huseien et al. [88], the strength loss of geopolymer materials was established as directly
proportional to the quantity of FA present and the number of wet–dry cycles. This is
because when the entire porosity escalates, there will be more added pores in the matrix,
which provide supplementary chances for water to penetrate the matrix all through the
wetting and drying cycles, which in turn leads to an increase in the inside and outside
deterioration as well as durability loss with time [112]. Fortunately, every geopolymer
materials represented much higher performance under wet–dry cycle checks.

6. Thermal and Elevated Temperature Study
6.1. Thermal Conductivity

Thermal conductivity (TC) is a physical attribute of hardened paste which influences
heat transfer by conduction throughout the toughened paste [113]. Thermal conductivity
is influenced by the microstructure of hardening consolidated paste and the thermal
properties of its constituents. A hard-bitten paste with high thermal conductivity shows
evidence far above the ground values for heat transfer and energy consumption [114]. In the
study of Hwang et al. [81], The values of thermal conductivity of the WBP incorporating
geopolymer paste and WCP-blended geopolymer paste specimens were gauged at 7,
28, and 56 days of curing. The benefits of the examination of thermal conductivity are
portrayed in Figure 2.
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The greatest thermal conductivity was encountered for the hardened paste with 7-day
curing and exhibited a declining tendency with an escalating curing period. Along with
the augmented curing age, the quantity of extremely conductive free water was decreased
by either an alkali activation reaction or evaporation from alkali-activated paste (AAP).
Furthermore, with rising age, the formulated geopolymer gels such as C–S–H, C–A–S–H,
and N–A–S–H are ever-increasingly dehydrated. Hydrated gels turn out to be dehydrated
on account of the evaporation of free water, and air voids take the place of water. The
thermal conductivity of AAPs having noteworthy free water and hydrated gels will be
higher than that of AAPs with minimum free water and dehydrated gels because the ther-
mal conductivity of water is 25-fold greater than the thermal conductivity of air [115–118].
Generally, the WBP incorporating geopolymer paste mixtures displayed higher results for
thermal conductivity during the investigation than the WCP-blended geopolymer paste
mixtures. There was a superior course of gelation in the WBP incorporating geopolymer
paste mixtures than in the WCP-blended geopolymer paste mixtures, which subsequently
provided the previously high compressive strength and a denser microstructure. Uysal
et al. [119] formerly accounted that the thermal conductivity of concrete improved with an
enhancement in compressive strength and a denser microstructure. On the other hand, the
WBP incorporating geopolymer paste mixtures have shown notably higher benefits for ther-
mal conductivity at early curing times, probably due to the higher porosity of WBP leading
to its absorbing a huge quantity of water, which is extremely thermal conductive [120].
Following one-week-long curing, the benefits for thermal conductivity plunged at a steeper
rate, as the water was consumed either during geopolymerization or was evaporated.
The thermal conductivity of both types of referred mixtures escalated with boosting the
quantity of GGBFS. This may be attributed to reasons such as: (1) as the amount of GGBFS
augments, hydrated gels will be formulated, and as a consequence, a denser microstructure
will be developed, and (2) as GGBFS is denser than FA, the supplement of GGBFS will
boost the density of both these mixtures, which may augment the thermal conductivity of
the hardened AAP. Uysal et al. [121] and Asadia et al. [122] have noted that the disparities
in context to the density of its constituent ingredients influence the thermal conductivity
of concretes.
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6.2. Residual Mechanical Strength after Elevated Temperature Exposure

The exploration by Huseien et al. [88] has extended the findings for the residual
compressive strength and percentage of loss in weight of geopolymeric materials, whereby
GBFS was substituted with FA at 0, 10, 20, 30, and 40 percentages, which exhibited the
residual strength values augmented in line with the increasing percentages at rates of
18.2, 19.2, 28.1, 29.6, and 32.6%, correspondingly. Contrarily, the percentage loss in weight
declined from 14.1 to 13.8%, 13.7%, 13.3%, and 13.5% when the quantity of FA was aug-
mented from 0 to 10%, 20%, 30%, and 40%. Kovářík et al. [123] have put in plain words the
thermomechanical attributes of particle-reinforced geopolymer composites with a variety
of aggregate gradations of fine ceramic space filler. The outcomes have made it known
that a greater quantity of fine ceramic particles under 90 mm and gradual distribution of
other fractions from 150 to 710 mm leads to enhanced dimensional stability subsequently
exposed to heat. Potassium-based geopolymers reinforced with fine ceramic particles di-
vulged an unvarying flexural strength of 12 MPa and compressive strength of 90 MPa, both
in an early state and following exposure at 1000 ◦C. According to Huseien et al. [21], the
residual compressive strength encountered was directly proportional to the WCP quantity.
Upon increasing WCP substituted GBFS from 50 to 70%, the values for residual strength
were augmented from 17.7 to 40.1%, correspondingly. It is well known that the elevated
temperatures lead to the speeding up of the procedure of the breakage of bonds in the
geopolymer matrix [124]. The degree of damage and loss in strength appeared to be greater
with specimens incorporating a higher level of Ca, the product of decomposition of CaCO3
(calcium carbonate) resulting in volume enhancement and causing the formulation of
cracks [103]. During an experiment by Wang et al. [125], a Metakaolinite-based geopolymer
synthesized through the process of geopolymerization displayed a good-quality mechanical
strength [126].

6.3. X-Ray Diffraction (XRD)

Lemougna et al. [127] have described the synthesis and portrayal of the lower tem-
perature of <800 ◦C ceramics manufactured from red mud geopolymer precursor. It was
monitored based on the outcomes that the main crystalline phases existing in red mud
are cancrinite and hematite and a small quantity of Si-rich, katoite, and diaspore. The
hematite phase is not agitated to 800 ◦C, while the authors monitored a vanishing of the
crystalline-type peaks linked to katoite and diaspore beyond 300 ◦C, and over 700 ◦C,
cancrinite was observed. A new phase appears at 800 ◦C, gehlenite, probably formulated
from the decomposition of cancrinite (Figure 3). Additionally, katoite was accounted to be
present as a product of hydration in calcium-aluminate-cementitious materials [128,129].
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A few investigations on the thermal behaviour of red mud assigned the decomposition
of cancrinite at a temperature lower than 900 ◦C to the CO2 emission, hematite composing
the fundamental phase up to 1100 ◦C [130]. The existence of the initial crystalline phases in
inorganic polymers manufactured from red mud, chiefly hematite and cancrinite, have also
been accounted formerly [131–133], which is suggestive of the absence or lower dissolution
of the abovementioned minerals in the alkaline state of the inorganic polymer synthesis.
Following Belmokhtar et al. [134], XRD analysis disclosed that the mineral phases of the
ceramic sludge and kaolin are equivalent. The crystalline nature of kaolinite in kaolin is
shown to be higher than the ceramic industrial sludge used for testing. Consequently, the
ceramic sludge waste(C) is therefore easier to dehydroxylate than the kaolin (K). The XRD
investigation revealed that the ceramic sludge contains kaolinite. Nevertheless, the mineral
content is lower than that of kaolin clay in ceramic sludge waste. In ceramic sludge waste,
quartz (Q) and muscovite (M) are present after calcination (Figure 4), and their crystallines
are somewhat decreased. The corresponding behaviour of the kaolin XRD is observed
(Figure 4). The difference in the strength of reflection between the kaolin XRD pattern and
the ceramic industrial sludge XRD pattern is due to the difference in the crystalline phase
in every particle.
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Kovářík et al. [123] have expressed the relative XRD patterns: MK largely made up of
illite belonging to the monoclinic crystal system and quartz to the hexagonal system and a
noticeable quantity of anorthic kaolinite and orthorhombic mullite. Additionally, tetragonal
anatase and a trace quantity of rutile are present. The phase composition altered somewhat
after the geopolymer was treated thermally at 1000 ◦C. In accordance with the XRD data, the
kaolinite phase disintegrated entirely, and the quartz content was considerably decreased.
No noteworthy disparities in the content of illite, mullite, titanium dioxides, anatase, and
rutile were monitored. The said outcomes signify that during the thermal treatment at
1000 ◦C, no noticeable quantity of kalsilite or leucite crystalline phase formulated, contrary
to previous findings for potassium-based geopolymers [135,136]. In the XRD pattern of
metakaolinite employed in Wang et al.’s [125] experiment, it has been demonstrated that the
metakaolinite was made up of an amorphous phase with a semicrystalline structure. There
was little quartz and mullite present in the metakaolinite. The appearance of the broadband
among 181 to 251 indicates that the geopolymer developed in the experiment was more
or less entirely made up of an amorphous structure. Additionally, this points out that the
quartz and mullite present in the metakaolinite did not participate in the reaction kinetics of
geopolymerization. No palpable dissimilarity among the XRD patterns of the geopolymer
and the calcined materials formed at 300 ◦C, 600 ◦C, and 900 ◦C was found; however,
their bending strength was not the same. Akin to metakaolinite, these materials were all
made up of an amorphous phase with a semicrystalline type structure. Significantly, the
SEM image was of the calcined product at 900 ◦C. Hence, the conclusion can be made
that the temperature of 900 ◦C was a significant transition temperature for the calcining
course of action of the geopolymer developed for the experiment. At a temperature of less
than 900 ◦C, the course of calcining could not make a noticeable structural modification in
the geopolymer, although calcining declined the bending strength of the geopolymer. At
900 ◦C, the geopolymer was found partially melted and locally coagulated. Substantial
interspaces marked their presence at 900 ◦C and removed the locally melted geopolymer.
A smaller quantity of pores was available in the locally melted geopolymer. Barbosa et al.
found that the K-geopolymer demonstrated a small sign of melting at 1400 ◦C [114], while
the calcining temperature was elevated at 1200 ◦C; a material having a significantly higher
crystallinity was developed. The investigation on XRD signified that the chief phase of
the material was the mullite, which is an imperative mineral with brilliant heat resistant
potential. The key phase of the resultant ceramic is mullite possessing a unique chemistry
with the chemical formula 3Al2O3 2SiO2. Still, there are a few impurities such as NaO,
etc., found present in the ceramic. The melted geopolymer continued congealing, and
interspaces condensed remarkably. While the temperature for calcining was elevated to
1500 ◦C, their key phase was still represented by mullite. However, the whole of the
pores having a pore size of approximately10 µm was formulated at this temperature, i.e., a
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sort of mullite ceramic having a macroporous structure was formed. On the basis of this
experiment, it was made known that complex-shaped metakaolinite-based geopolymers
can effortlessly be manufactured through the technique applied. Huseien et al. [21] have
represented the XRD patterns of geopolymer materials previous to and after elevating the
temperature from 27 ◦C and raising it to 900 ◦C. Before and after the exposure of the early
specimen to the elevated temperature of below 400 ◦C, an appearance of semicrystallized
alumina silicate gel and quartz (Q) was encountered. The broader peaks of each geopolymer
mortar component were visible in the region. Zeolites occurred as secondary reaction yields.
This means they were formulated as the crystalline phase after the completion of a fire
resistance test. The XRD patterns of geopolymer mortars were brought to exposure at
700 ◦C and 900 ◦C, in that order. The strong peaks in the WCP-based geopolymer largely
identified the existence of quartz, nepheline, and mullite at the temperature of 700 ◦C.
The only steady crystalline phase of the system of Al2O3–SiO2 was found as Mullite since
it retained its strength both at room and elevated temperatures, proving its admirable
stability even at higher temperatures with lower thermal expansion and resistance to
oxidation. After exposure at 700 ◦C, quartz peaks continued to be stable, and the mullite
peaks gradually turned out to be stronger. A phase transition from goethite to hematite
happened at roughly 400 ◦C, whereby the majority of constitutional water molecules
was discharged. The departing flux of hydroxide (OH) groups and concurrent diffusive
reshuffle of the grain structure might provide grounds for the local accretion of in-house
stress and may even be competent for fracturing the grains of hematite. At this particular
temperature, the size and shape of a grain of the freshly developed hematite phase were
still largely alike as those of the original goethite. When the exposure of the XRD pattern of
a sample at 900 ◦C was made, the disclosed hematite started to vanish, whereas crystalline
nepheline (AlNaSiO4-sodium aluminium silicate) was still present in the specimen while
quartz remained the most important phase jointly with the mullite phase. In the context
of a mortar containing 70% of WCP and a higher FA content, the peaks were steady at
towering temperatures in comparison with other specimens. The investigation of Huseien
et al. [88] has revealed the XRD patterns of geopolymeric materials incorporated with
diverse levels of FA substituting GBFS, prior to and after the escalation of temperature
from 27 to 900 ◦C. The existence of aluminosilicates gel and quartz having a semicrystalline
form were monitored in the original sample both previous to and following the exposure to
high temperatures of less than 400 ◦C. Aside from the test for fire resistance, the crystalline
phase developed zeolites as a secondary reaction yield. At a temperature of 700 ◦C, the
firm peaks in the geopolymeric WCP base, were decorated with the presence of mullite,
quartz, and nepheline. At this time, mullite was also the single stable crystalline phase
of the system of aluminosilicate, Al2O3-SiO2, by upholding the strength it had at room
temperature, even after elevating the temperature to higher figures with a display of an
inferior thermal expansion and resistance to oxidation. Upon exposure at 700 ◦C, quartz
was found steady, and the enhancement in the strength of mullite was observed. Around
400 ◦C, the bulk of the molecules of the constitutional water were freed, and the phase
altered from goethite to hematite. The simultaneous setting free of the OH groups of
hydroxides took place with the modification of the grain structure, which could benefit by
a stocking up of inner pressure that might be accountable for the fracture development in
hematite grain structure. At this high temperature, the size and grain shape of the recently
produced hematite phase harmonize to a great extent as the original goethite. While the
specimen of XRD pattern was subjected to 900 ◦C, the initiation of the disappearing of the
hematite phase occurred. Quartz retained the primary phase besides mullite along with
the presence of crystalline nepheline—a sodium aluminium silicate having the chemical
formula AlNaSiO4. The peaks exhibited stability at elevated temperatures when comparing
them with the specimens made with samples sans FA and those containing 40% FA.
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6.4. Scanning Electron Microscopy

The SEM analysis by Belmokhtar et al. [134] on kaolinite containing geopolymeric ma-
terials has validated that the course of action of calcining does not adapt the morphology of
the particles of kaolinite. Different particle sizes were observed in the obtained micrographs
from the SEM study of ceramic sludge. In addition, the kaolinite particles as individual
layers have broken borders and are covered by finer particles. On the surfaces of kaolinite
particles, the smaller crystallites are simply found instead of attaching to the surface. The
SEM investigation of ceramic industrial sludge micrographs showed more agglomerated
particles than kaolin. The atmospheric absorption of H2O by ceramic waste is determined
to be better as compared to kaolin. The same values were found in calcined ceramic sludge
and a metakaolin SEM image. SEM from the calcinated ceramic sludge has shown that
the quartz concentration is higher as compared to the metakaolin. Lemougna et al. [127]
have carried out SEM analysis of red mud powder, which has revealed that many particles
of red mud are very fine in size. The polished specimens have exhibited little similitudes
in the microstructure of the inorganic polymer which has undergone curing for 28 days
at 60 ◦C and its homologues postheated between 300 ◦C and 800 ◦C. The resemblances
are possibly a result of the perseverance of lesser reactive phases, such as hematite, in this
range of temperature in the geopolymer. The modification, which, with better transparency,
was monitored in the microstructure evolution upon heating, is obvious through the alter-
ation in the colour of the postheated specimen which turned out to be less dark in colour.
Based on the weight and atom chemistry attained through EDX analysis, as depicted in
Figure 5, it can be said that the chemical composition of the inorganic polymer mix is
more or less homogenous at a microscopic scale. The heterogeneous type of distribution
of elements was found on the EDX map, which is much more noticeable for iron and is
instituted in harmony with the existence of nondissolved hematite in the XRD testing.
More homogeneously distributed elements, viz., Si, Al, Na, and Ca, probably advance
their participation in the inorganic polymer formulation. This finding conforms with a few
previous investigations on the geopolymerization of diverse red muds [137,138] and hints
that the inactivity of iron, more often than not in the form of hematite, is possibly a general
fact during the geopolymerization of red mud.
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Hairi et al. [138] have explored the role of iron through the geopolymerization of
Canadian red mud and encountered a resemblance among the Mössbauer type spectra of
the early materials of geopolymers, signifying that the Fe content, for the most part from
hematite and goethite, in their cases, was predominantly present as an onlooker species
rather than engaged in the structure of geopolymers. The SEM showed the metakaolinite-
based geopolymer and its calcined yields at dissimilar temperatures. All the referred
SEM images were taken at the cross-sections of specimens following the bending strength
examination. It was found from Band C that no basic structure alteration was encountered
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when the geopolymer was calcined at the temperatures of 300 ◦C, 600 ◦C, and 900 ◦C.
However, while the calcining temperature was augmented to 900 ◦C, local melting and
integration was witnessed, although substantial interspaces were still found to be present.
Since the temperature for calcining was accelerated incessantly, the melting level also
perceptibly amplified accordingly. Additionally, the size and shape of the interspace have
been modified with the boost in the temperature of calcining. At 1500 ◦C, macroporous
material having an average pore size of roughly 10 µm was formulated. The material
porosity reported was around 17%. The series of modifications in the morphology of the
geopolymer has thrown light on the alternations of bending strength, apparent density,
ratio of volume shrinkage, hardness, and escalation in the context of the temperature of
calcining. Looking to the impact of the said morphology change, Novoselova et al. [139]
have found that one sort of crack would have marked its presence in the products, while
the geopolymer was sintered at an elevated rate of heating. However, here, there was
no crack appearance at a heating rate of 150 ◦C/min. It was presumed that the root
cause of this discrepancy is the chemistry of the activator and the technique for producing
the geopolymer. The activator employed in the experiment was sodium hydroxide—
NaOH—whereas Jia et al. have experimented with potassium hydroxide-KOH solution
for activation. Furthermore, the wet mix was pressed under 4 MPa for 3 min to eliminate
possible air bubbles entrapped in the yield on account of a stirring course. Huseien et al.
have endeavoured to depict the outcomes of SEM micrographs of geopolymer materials
containing a higher volume of WCP. The impact of the temperatures at 400 ◦C, 700 ◦C,
and 900 ◦C on the structure of geopolymer materials incorporating 50%, 60%, and 70% of
WCP was estimated. Denser structures of geopolymer materials were converted to lesser
compact structures with a perceptible network of microcracks and bigger pores, which are
more prominent with an enhancement in temperatures. The SEM micrographs display
samples having 70% of WCP after exposing them to ambient temperatures of 400 ◦C,
700 ◦C, and 900 ◦C. The specimens have been imaged from a crashed section of mortars.
Only a few microlevelled cracks were visible on the sample surface when exposed to a
higher temperature. The particles of WCP with no participation in the reaction kinetics, FA,
and a few sphere-shaped holes were observable. It is a well-known fact that FA possesses a
considerable proportion of particles with hollow spheres and that is why when the hollow
and spherical shaped particles are partly dissolved, they form strongly distributed smaller
sized pores in the matrix. The said nonreacted particles were found to be present in hollow
spaces, which might be due to the gap left behind by the dissolved particles of FA. On
the contrary, the samples of 70% WCP have displayed much steadier surfaces at high
temperatures in comparison with 50% WCP samples.

6.5. Fourier Transform Infrared Spectroscopy (FTIR)

Belmokhtar et al. [134] confirmed through FTIR research that a complete disposal of
hydroxyl groups is caused by dehydrate in the ceramic sludge at an optimum temperature.
The FTIR research showed that the cause for a structural modification in the context of
kaolinites present in ceramic sludge, as observed in commercial kaolin, is dehydroxylation.

In the FTIR spectrum (Figure 6), the kaolin and ceramic waste employed were im-
mensely similar. There were two different absorption bands of the FTIR spectrum of
noncalcined raw materials observed. Due to the extended hydroxyl vibrations, four bands
are formed between 3700 cm−1 and 3600 cm−1. At the margins of kaolinite layers, the
3696 cm−1 band is ascribed to the hydroxyl-group vibration [140]. Due to the hydroxyl
groups on the surface of the octahedral layers, the bands are 3668 cm−1 and 3653 cm−1. The
layer is attributed to the inner hydroxyl groups at 3620 cm−1. The disappearance following
the calcination of the referenced bands shows the elimination of most of the hydroxylic
groups. The bands at 1104 cm−1 and 1019 cm−1 are transformed to an amorphous nature,
characteristic to Si-O vibration in a small band positioned at about 1085 cm−1 following
calcination. At 797 cm−1, the thin strip turned to a wide one. The bands are decreased in
strength at 684 cm−1 and 539 cm−1. Additionally, there was a dislocation in the absorption
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band at 539 cm−1 at a higher frequency [140]. The abovementioned benefits indicate that
the phenomenon of dehydroxylation modifies the kaolinite structure of the ceramic sludge,
as in kaolin. Lemougna et al. [127] have found the large band at 1000 cm−1, which is
ascribed to the stretching vibrations of Si (Al)–O groups, and it is quick to respond to the
content of structural Si and Al [139]. It is monitored that the referred band becomes bigger
after treatment of the specimen with a solution of Na2SiO3, probably suggestive of an
augment in the amorphous content in the material. One more scrutiny is the comparatively
immense dissimilarity in the shape of the band in the sample treated at 800 cm−1 in com-
parison with those treated at 60–700 cm−1, suggestive of a comparatively vital alteration in
the structure of the material among 700 and 800 cm−1. The said modification is ascribed to
the onset of solid-state reactions for the formulation of higher temperature mineral-like
nepheline, as examined in the XRD section. The band around 1110 cm−1 crops up from the
existence of the Si-O-Si bond [137]. Additionally, this band diminishes in the samples of
inorganic polymers, suggestive of the replacement of Si–O–Si bonds with Si–O–Al bonds
all through the formulation of the inorganic polymer setup [141]. The stretching vibrations
of the Fe–O bands of the hematite structure are monitored around 450 and 550 cm−1. The
band in the region of 1400–1500 cm−1 points towards the existence of O–C–O. It is recorded
that the said band is gradually declined since the temperature accelerates [142]. The higher
concentration of this band in the inorganic polymer treated at 60 ◦C is attributed to the
existence of little structural water in the specimen. It is monitored that this band declines
on heating but does not vanish entirely, the residual concentration at elevated temperature
possibly cropping up from the water adsorption in the neighbouring air by the specimen,
as frequently monitored in the cases of red mud or hematite samples [143]. The FTIR anal-
ysis by Wang et al. [125] exhibits IR spectrums of the geopolymer and the calcined yields
under dissimilar temperatures. The IR spectrum of the metakaolinite employed in their
experiment is also depicted. The broad adsorption bands on the IR spectra of the referred
materials in the region of 1072 cm−1, 823 cm−1, and 457 cm−1 were ascribed to the Si–O
stretching vibration, the Si–O–Al vibration, and the flexural vibration, correspondingly.
The IR spectrum of the geopolymer differed from that of metakaolinite. Two broad bands
in the region of 3420 cm−1 and 1680 cm−1 on the IR spectrum of the geopolymer pointed
out that the geopolymer enclosed adsorbed atmospheric water. It could be found with no
trouble, based on a comparison of these IR spectra, that the adsorbed atmospheric water
could be eliminated by calcining. The FTIR spectrum by Huseien et al. [21] exhibits chief
bands of 600 to 1200 cm−1 of specimens of geopolymers exposed to 900 ◦C. The FTIR
shows band positions and matching band tasks for geopolymer materials containing a
higher volume of WCP at 27 ◦C. The alterations in the band vibrations prior to and after
exposing them to high temperatures were evidenced. The band frequency is enhanced with
escalating temperatures and the decreased content of WCP and FA as well as diminishing
GBFS quantity. In the cases of samples possessing 50% of WCP, the frequency of bands was
augmented from 943.1 to 967.7 cm−1 with an escalating temperature from 27 to 900 ◦C,
correspondingly. This monitored augment in the frequency of IR vibration was ascribed to
the diminution of C (N)ASH gel in the geopolymer material setup, deteriorating the 3D
structure in so doing.
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6.6. Thermogravimetric and Differential Thermal Analyser (TGA)

Belmokhtar et al. [134] compared the TGA ceramic sludge pattern with kaolin and
found that the kaolinite had a different dehydroxylating phase. In combination with two
dissimilar gasses, the TGA pattern in ceramic sludge reflects two mass losses. The initial
mass loss of around 4.07% begins with the emission of H2O vapours at 400 ◦C. The mass
loss may be validated by kaolinite dihydroxylation, which marks its presence in the sludge,
and the discussion of an amorphous natural phase called metakaolin. The second loss of
mass begins at about 2.86% at 600 ◦C and is associated with CO2 emission, which is a result
of calcite thermal breakdown in sludge [144,145].

Lemougna et al. [127] have explained the topic in Figure 7, which exhibits the TG/DTA
analysis and the derivative weight loss of the inorganic polymer. From this figure, it can be
seen that the total weight loss following the heating of the inorganic polymer at 1000 ◦C is
about 13%, almost half of the value achieved with the metakaolin-based inorganic poly-
mer [146]. The derivative loss in weight signifies that the loss in weight on heating varies.
There are four distinct regions of loss in weight. Based on the chemistry and the mineralogy
of the specimen, it can be said that the loss in weight in the vicinity of 100 ◦C matches
the loss of residual free water in the specimen. That in the region of 250–450 ◦C possibly
crops up from the loss of structural water in the inorganic polymer and the decomposition
of katoite and diaspore [129]. In contrast, that with around 500–600 ◦C is expected to
happen from a partial discharge of CO2 from cancrinite and/or the decomposition of re-
maining structural water in the inorganic polymer, whereas that with something similar to
650–700 ◦C is attributed to the decomposition of cancrinite, which wholly vanishes beyond
700 ◦C, inconsistent with the X-ray analysis and formerly reported exploration on red mud.
The specimens analysed by Kovářík et al. [123] have exhibited minimum dimensional
alterations up to 150 ◦C, with total positive spreading out values in the range of 0.002
to 0.041%. The region of temperature is characterized by a smaller extent of expansion
due to resistive dehydration of adsorbed water [147]. A remarkable shrinkage crops up
in the second region of temperature over 150 ◦C, which is formed due to evaporation of
water from the pores in the gel, leading to a collapse of micro- and nanopores [148]. The
strain is caused by capillary shrinkage influenced by the discharge of adsorbed water and
partial porosity reshuffling [149]. Subsequently, all specimens displayed a good-quality
thermal stability in the temperature range of 300 ◦C and 800 ◦C. A trivial shrinkage at the
commencement can mainly be attributed to the physical reduction of the gel on account of
the sluggish dehydroxylation of bound hydroxyls. Huseien et al. [101] have illustrated the
findings of the TGA curves of geopolymer materials possessing a higher volume of WCP.
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The impact of 400 ◦C, 700 ◦C, and 900 ◦C on the structure of 50%, 60%, and 70% of WCP
samples was estimated. Denser structures of geopolymer materials were converted to the
lesser compact structure with the perceptible setup of microcracks and bigger pores, which
are more prominent with escalating temperatures. The TGA outcomes provide an idea
about the loss in weight in the context of samples of geopolymers, where they declined
with rising WCP substituted GBFS quantities of geopolymer materials. The values of loss
in weight were reduced from 12.5 to 5.3% with increasing the WCP substituted GBFS from
50 to 70%, in that order. An analogous drift was encountered in TGA, as the FA substituted
GBFS quantity augmented the loss in weight dropped. The amplified FA quantity as a
substitution of GBFS in 50% of WCP samples from 0 to 30% led to a fall in loss of weight
from 12.5 to 8.6%.
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7. Conclusions

This review article reveals the competence of the reusability of ceramic wastes to
develop green geopolymer composites. The following conclusions can be drawn:

• The application of ceramic aggregate as a substitution of natural sand has an optimistic
result by fabricating higher compressive strength, flexural strength, and splitting
tensile strength;

• The workability and setting time properties of alkali-activated mortars heightened
with the upsurge in WCP content;

• Resistance against the elevated temperature of alkali-activated mortars was improved
through the rise in WCP content;



Materials 2021, 14, 3279 25 of 30

• The substitution of GGBS by FA in the ternary assortments led to the lessening of
deterioration up to 900 ◦C;

• The mortars incorporated with tile ceramic waste could provide a probable reapplica-
tion of waste material;

• Alkali-activated mortar incorporated a higher amount of FA and promoted the up-
grade of the presentation of sulphate as well as acid resistance;

• The XRD examination reveals that the ceramic sludge contains kaolinite;
• From the TGA analysis of ceramic sludge and kaolin, it could be concluded that

kaolinite is an inimitable phase able to be dehydroxylated;
• FTIR research shows that a structural modification of the kaolinite found in ceramic

sludge is caused by a dihydroxylation process;
• The combination of geopolymers with ceramic waste is promising for lowering the

energy and cost of materials in the construction sector.
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et al. Design of Experiment on Concrete Mechanical Properties Prediction: A Critical Review. Materials 2021, 14, 1866. [CrossRef]

6. Luhar, S.; Cheng, T.-W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass waste for development of Geopolymer
composites—Mechanical properties and rheological characteristics: A review. Constr. Build. Mater. 2019, 220, 547–564. [CrossRef]

7. Rehan, R.; Nehdi, M. Carbon dioxide emissions and climate change: Policy implications for the cement industry. Environ. Sci.
Policy 2005, 8, 105–114. [CrossRef]

http://doi.org/10.1016/j.buildenv.2018.01.026
http://doi.org/10.1016/j.compositesb.2019.107076
http://doi.org/10.1016/j.conbuildmat.2019.06.169
http://doi.org/10.1016/j.conbuildmat.2019.117152
http://doi.org/10.3390/ma14081866
http://doi.org/10.1016/j.conbuildmat.2019.06.041
http://doi.org/10.1016/j.envsci.2004.12.006


Materials 2021, 14, 3279 26 of 30

8. Stern, N.; Stern, N.H. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007.
9. Davidovits, J. Geopolymer Chemistry and Applications, 4th ed.; Institut Geopolymere: Saint-Quentin, France, 2015.
10. Pacheco-Torgal, F. Introduction to Handbook of Alkali-activated Cements, Mortars and Concretes. In Handbook of Alkali-Activated

Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–16.
11. Xing, R.; Hanaoka, T.; Kanamori, Y.; Masui, T. Estimating energy service demand and CO2 emissions in the Chinese service sector

at provincial level up to 2030. Resour. Conserv. Recycl. 2018, 134, 347–360. [CrossRef]
12. Asaad, M.A.; Sarbini, N.N.; Sulaiman, A.; Ismail, M.; Huseien, G.F.; Majid, Z.A.; Raja, P.B. Improved corrosion resistance of mild

steel against acid activation: Impact of novel Elaeis guineensis and silver nanoparticles. J. Ind. Eng. Chem. 2018, 63, 139–148.
[CrossRef]

13. Rashad, A.M. Properties of alkali-activated fly ash concrete blended with slag. Iran. J. Mater. Sci. Eng. 2013, 10, 57–64.
14. Asaad, M.A.; Ismail, M.; Tahir, M.M.; Huseien, G.F.; Raja, P.B.; Asmara, Y.P. Enhanced corrosion resistance of reinforced concrete:

Role of emerging eco-friendly Elaeis guineensis/silver nanoparticles inhibitor. Constr. Build. Mater. 2018, 188, 555–568. [CrossRef]
15. Daniyal, M.; Ahmad, S. Application of waste ceramic tile aggregates in concrete. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4,

12808–12815.
16. Senthamarai, R.; Manoharan, P.D. Concrete with ceramic waste aggregate. Cem. Concr. Compos. 2005, 27, 910–913. [CrossRef]
17. Senthamarai, R.; Manoharan, P.D.; Gobinath, D. Concrete made from ceramic industry waste: Durability properties. Constr. Build.

Mater. 2011, 25, 2413–2419. [CrossRef]
18. Huang, B.; Dong, Q.; Burdette, E.G. Laboratory evaluation of incorporating waste ceramic materials into Portland cement and

asphaltic concrete. Constr. Build. Mater. 2009, 23, 3451–3456. [CrossRef]
19. Hussein, A.A.; Jaya, R.P.; Hassan, N.A.; Yaacob, H.; Huseien, G.F.; Ibrahim, M.H.W. Performance of nanoceramic powder on the

chemical and physical properties of bitumen. Constr. Build. Mater. 2017, 156, 496–505. [CrossRef]
20. Samadi, M.; Hussin, M.W.; Lee, H.S.; Sam, A.R.M.; Ismail, M.; Lim, N.H.A.S.; Ariffin, N.F.; Khalid, N.H.A. Poperties of mortar

containing ceramic powder waste as cement replacement. J. Teknol. 2015, 77. [CrossRef]
21. Huseien, G.F.; Sam, A.R.M.; Mirza, J.; Tahir, M.M.; Asaad, M.A.; Ismail, M.; Shah, K.W. Waste ceramic powder incorporated alkali

activated mortars exposed to elevated Temperatures: Performance evaluation. Constr. Build. Mater. 2018, 187, 307–317. [CrossRef]
22. Pacheco-Torgal, F.; Jalali, S. Reusing ceramic wastes in concrete. Constr. Build. Mater. 2010, 24, 832–838. [CrossRef]
23. Huseien, G.F.; Mirza, J.; Ismail, M.; Hussin, M.W. Influence of different curing temperatures and alkali activators on properties of

GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Constr. Build. Mater. 2016, 125, 1229–1240. [CrossRef]
24. Hossain, M.; Karim, M.; Islam, M.; Zain, M. Durability of mortar and concrete containing alkali-activated binder with pozzolans:

A review. Constr. Build. Mater. 2015, 93, 95–109. [CrossRef]
25. Huseien, G.F.; Mirza, J.; Hussin, M.W.; Ariffin, M.A.M. Potential use coconut milk as alternative to alkali solution for geopolymer

production. J. Teknol. 2016, 78. [CrossRef]
26. Zulkifly, K.; Cheng-Yong, H.; Yun-Ming, L.; Bayuaji, R.; Abdullah, M.M.A.B.; Ahmad, S.B.; Stachowiak, T.; Szmidla, J.; Gondro,
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