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Abstract: Silicon oxycarbide ceramers containing 5% aluminum, zirconium, and cobalt with respect
to the total Si amount are prepared from a commercial polysiloxane and molecular precursors and
pyrolyzed at temperatures ranging from 500 to 1000 ◦C. HF etching is carried out to partially digest
the silica phase, thus revealing structural characteristics of the materials, which depend upon the
incorporated heteroatom. From the structural and textural characterization, it was deduced that
when Al enters into the ceramer structure, the crosslinking degree is increased, leading to lower
carbon domain size and carbon incorporation as well. On the contrary, the substitution by Zr
induced a phase-separated SiO2-ZrO2 network with some degree of mesoporosity even at high
pyrolysis temperatures. Co, however, forms small carbidic crystallites, which strongly modifies the
carbonaceous phase in such a way that even when it is added in a small amount and in combination
with other heteroatoms, this transient metal dominates the structural characteristics of the ceramer
material. This systematic study of the ceramer compounds allows the identification of the ultimate
properties of the polymer-derived ceramic composites.

Keywords: polymer-derived ceramics; ceramer; molecular precursors; HF etching; pyrolysis;
spectroscopy

1. Introduction

The partial conversion of polysiloxane precursors into hybrid materials (ceramers)
with high specific surface areas, tunable pore size distributions, and adjustable surface
characteristics has been widely studied over the past years. The chemical and physical
properties can be easily modified by using different heteroatoms, leading to the production
of completely new materials with high purity and homogeneous distribution of the con-
stituent phases. Bonding the heteroatoms to the hybrid precursor before crosslinking as
well as the use of coordination compounds are the most explored methodologies for the
preparation of metal-modified polymer-derived ceramics and ceramers [1]. At the early
stages of research in polymers and hybrid materials for nanostructured ceramics, much
effort was made on the modification of a silicon-based gel by aluminum and boron [2–4].
Since then, and despite the high potential of these materials, the majority of the studies
are based on incorporating various heteroatoms with the aim of increasing the operational
temperature [5]. Nanocomposites, based on silicon polymers with metallic nanoparticles,
are an exciting solution, enabling the development of sensors, chemical reactors, membrane
supports, or thermal insulators, among many other applications [6–9].

The different phase compositions of the SiMOC ceramers (M = Ti, Al, Zr, Hf, Fe, Mn,
etc.) has been demonstrated to be thermodynamically controlled by oxidation-reduction re-
actions, which depend on the type of heteroatom introduced into the ceramic network [10].
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It is known that SiAlOC materials minimize the extent of the carbothermal reduction,
compared to pure SiOC and can be employed as high-temperature pressure sensors [11,12].
The minimized amount of free carbon phase and SiO4 units, together with the formation
of mullite, contribute to the reduction of the extent of the carbothermal reaction, thus
permitting the development of novel high-temperature barrier resistant coatings [13]. The
low activation energy of mullite formation through the polymer-derived ceramic route
allows fast and quantitative crystallization of mullite at lower temperatures than the con-
ventional methods. Moreover, its crystallization extent can be further controlled with
the increase in temperature. Then, when mullite units appear, the carbon is segregated
from the SiOC network via vapor–liquid–solid mechanism, producing a highly densified
network, a reaction that is enhanced with the increase in the number of SiC units [14]. This
extraordinary microstructure has been used for the development of piezoelectric ceram-
ics in which the piezo-dielectricity of the material resulted from the formation of space
charges along the interface between the relatively insulating ceramic phase and the more
conductive free-carbon phase [15]. It must be highlighted that in piezoelectric materials,
the presence of relatively conducting grains and insulating grain boundaries is considered
to be responsible for the polarization mechanism; nevertheless, in the polymer-derived
ceramics, the presence of these space charges is not yet completely understood and must
be evaluated.

On the other hand, one of the first commercial applications of polymer-derived
ceramics was the production of SiC carbon fibers; the SiTiCO fibers were the first-generation
fibers commercialized by Ube Industries [16]. In order to reduce the oxygen content of the
fibers, Ti was replaced by Zr, leading to the consecution of improved strength retention at
high temperatures. Contrary to Ti, Zr does not usually form a TiC phase but ZrO2 instead,
which afterward evolves to the ZrC phase, inducing enhanced thermal stability [17]. Now,
the third generation of SiC fibers includes Al to help the crosslinking of the polymeric fibers.

Transition-metal-based nanoparticles (Ni, Fe, and Co) deposited over the surface of
a highly porous SiOC and SiCN matrix have also been investigated as efficient metal-
supported catalysts for CO2 methanation because of the selective modification of the
microstructure of the obtained materials [18,19]. The Ni-modified, polymer-derived ce-
ramers result in a dispersion of small nanoparticles, well distributed throughout the
network, where C tends to form large crystallites up to 10 nm when the ceramer materials
are pyrolyzed at temperatures higher than 600 ◦C, resulting in a highly hydrophilic surface
with 1D nanostructures [20]. The formation of these 1D carbon nanostructures within
the pores of the ceramics has also been reported by several authors [9,21], showing an
enhanced catalytic behavior. Co catalyst was more effective in the formation of the carbon
nanostructures, increasing considerably the available specific surface area for reaction [22].
The growth mechanism depends on the included heteroatom [20,22–24].

The characterization of a silicon-based material after HF etching and subsequent
oxidation allowed an increased number of the SiO4 tetrahedral to be identified, whereas
the relative number of SiC4 tetrahedral diminished, indicating that the surface of the HF
materials was completely heterogeneous [25]. After etching, remainders of Si-C on the
surface of the graphitic carbon layers, which evolves to SiO2, turned out to be dependent
on the pyrolysis temperature, thus highlighting the importance of studying the tendency
to segregate SiO2 clusters during the thermal transformation [26]. The work described here
aims to provide a comprehensive overview of the changes occurring during the pyrolysis
of several metal-modified silicon-based ceramers, focusing on the carbon phase and the
formation of the mixed SiOC network.

The selection of the heteroatoms is based on the effect these atoms exert on the
microstructure. While it is known that Al easily incorporates into the SiOC network,
forming a SiC-enriched network, Co tends to form 1D and 2D C nanostructures. In
addition, Zr is known to increase the thermal stability of the polymer-derived ceramics and
the formation of ZrO2 nanoclusters, thus minimizing the number of Si atoms bonded to O.
Here, the evolution of the microstructure is studied in a ceramer network deficient of Si-O
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bonds because of the addition of the heteroatom Zr. The matrix without Co is studied as
well. Through chemical etching in a post-pyrolysis process [7,9], we have removed the SiO2-
like clusters, allowing our materials to show the distinct features of the surface of the porous
materials and the free carbon phase, as well as allowing the study of the main structural
characteristics of the substituted networks [27,28]. Therefore, the final aim of the study
is to provide a comprehensive overview of the changes induced in the ceramer material
because of the presence of the different heteroatoms—alone and in combination—with a
focus on identifying the ultimate reason for their intriguing characteristics.

2. Materials and Methods

Commercially available polymethylsilsesquioxane (Silres® MK powder, Wacker Chemie,
Munich, Germany, empirical formula (RSiO1,5)n where R = CH3 and n = 130–150) was
used as raw material. Zirconium acetylacetonate (Zr (Acac), Sigma-Aldrich, Burlington
MA, USA), aluminum acetylacetonate (Al (Acac), Sigma-Aldrich, Burlington MA, USA),
and cobalt acetate (CoAc, Probus, Esparraguera, Spain) were mixed with MK preceramic
polymer in a planetary ball mill at 150 rpm for 15 min. The amount of Zr (Acac), Al (Acac),
and CoAc was fixed in such a way that the heteroatom/Si weight ratio was 5%. ((Zr/Si) =
(Al/Si) = (Co/Si) = 0.05). Once mixed, the materials were pyrolyzed in an alumina tube
furnace at a fixed heating/cooling rate of 5 ◦C/min to temperatures between 500 and
1000 ◦C under a continuous nitrogen flow of 150 mL/min, 5 h dwelling at 280 ◦C, plus 2 h
at the maximum temperature. Pyrolyzed samples were ground in an agate mortar and
sieved using the 100–200 micrometer fraction for all analyses and treatments. In this work,
sample labeling indicates the heteroatom used (or the two of them in the case of using two
modifiers together, such as Zr and Co), followed by an F in the case of the etched samples.

Etching of the sieved samples was carried out by magnetic stirring in an HF solution
(40% v/v) for 24 h, and the resulting materials were recovered by centrifugation at 2300 rpm
for 12 min. Etching in powdered materials was preferred rather than in bulk samples to
facilitate etching. No estimation of the etching efficiency was carried out. Then, the
materials were washed with distilled water until the final pH of the washing liquors was
5.0. Etched powders were subsequently dried at 110 ◦C until constant weight.

The chemical composition was calculated from the chemical analysis carried out in
elemental analyzers (LECO Corp, St Joseph MI, USA), CS-200 for the C determination,
RC-420 for hydrogen content, and TC-500 to determine the oxygen amount. At least four
analyses were carried out per sample and equipment, and the resulting value was calculated
by average. Silicon was determined by difference. Structural characterization of the SiOC
materials was carried out by means of FTIR and Raman spectroscopies. FTIR analyses were
performed in a PerkinElmer (Waltham MA, USA) model BX spectrophotometer by diluting
the samples in KBr and obtaining the spectra as the average of at least 32 collections with a
spectral resolution of 2 cm−1. Raman characterization was carried out in a Renishaw InVia
spectrophotometer by using the 514 nm Ar+ ion laser as an excitation source in the confocal
mode. The spectra were the accumulated signal of 10 collections with an accumulation
time of 10 s.

Differential scanning calorimetry analyses were performed in a piece of Q600 equip-
ment (TA Instruments, New Castel, DE, USA), using about 20 mg of the sample under
100 mL/min airflow. The instrument was calibrated with Aluminum and Gold for temper-
atures and sapphire for Heat Flow calculation.

Textural analyses were carried out in the Tristar equipment (Micromeritics, Norcross
GA, USA). From the adsorption–desorption N2 isotherm, the porous properties and the
specific surface area of all samples were determined by using the BJH and BET methods,
respectively [29]. Prior to the analysis, all the samples were degassed at 120 ◦C for 18 h.

3. Results

The percentage amounts of carbon, oxygen, and hydrogen in each sample were
determined to obtain the overall chemical formulae of the studied materials (Table 1). In
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these formulae, it is estimated that the weight of the heteroatom, calculated from the initial
molar ratio Si/M (M = Al, Zr, Co), is maintained constantly during the pyrolysis.

Table 1. Chemical composition of the studied materials (deviation ±0.05).

T (◦C) Al Zr Co Zr/Co

500 SiAl0.05O1.68C0.97H3.13 SiZr0.02O1.42C0.94H2.82 SiCo0.06O1.57C0.89H2.79 SiZr0.02Co0.03O1.59C0.94H3.02
600 SiAl0.05O1.18C0.74H2.31 SiZr0.02O1.52C0.86H2.41 SiCo0.07O2.18C1.09H3.75 SiZr0.02Co0.03O1.93C1.03H2.80
700 SiAl0.05O1.39C0.59H1.08 SiZr0.02O1.08C0.58H1.69 SiCo0.07O2.53C0.98H2.19 SiZr0.02Co0.03O1.99C1.01H2.36
800 SiAl0.05O1.55C0.68H0.70 SiZr0.02O1.43C0.73H1.12 SiCo0.06O1.85C0.80H1.83 SiZr0.02Co0.03O1.85C0.83H1.32
900 SiAl0.05O1.41C0.61H0.23 SiZr0.02O1.58C0.65H1.01 SiCo0.06O1.98C0.78H0.11 SiZr0.02Co0.03O1.94C0.74H1.18
1000 SiAl0.05O0.68C0.51H0.04 SiZr0.02O1.50C0.58H0.03 SiCo0.07O2.16C0.85H0.07 SiZr0.02Co0.03O2.35C0.86H0.04

Figure 1a shows the trend of the ratio O/C, along with the pyrolysis temperature
in all the materials. It is clear that this ratio varies with the elements incorporated into
the ceramic network, and it should be different when using different ligands attached to
the heteroatom. In contrast to the case of Al, in which a maximum in the O/C ratio is
reached at the intermediate pyrolysis temperatures (700–900 ◦C), when the heteroatom is a
transition metal, a gradual increase is observed in the O/C ratio with the increase in the
pyrolysis temperature. This ratio is also slightly higher when the Co (either alone or in
combination with Zr) is incorporated into the preceramic network leading to a major O
content when both the Zr and Co are introduced with respect to the Al-containing materials.
Similarly, in Figure 1b, the composition of the materials pyrolyzed at 1000 ◦C is represented
as a ternary diagram, in which the H amount has not been taken into account. There, the
previous observation is observed that the incorporation of Zr and Co (and both elements
together) induces an increase in the amount of O incorporated into the ceramic network at
the maximum pyrolysis temperature.
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Figure 1. (a) O/C ratio of the samples and its evolution with pyrolysis temperature (dotted lines are drawn to guide eye)
and (b) ternary diagram of the samples pyrolyzed at 1000 ◦C.

3.1. Structural Characterization of the Ceramer Materials

In Figure 2a, the FTIR spectra of all the samples pyrolyzed at 700 ◦C are plotted since
at this temperature, the bands are more clearly detected. In the low-frequency region, the
(O–Si–O) centered at 470 cm−1 is shifted to lower wavenumbers in the sample containing
Co, indicating a highly tensioned structure [30]. The tensioned structure contains distorted
O–Si–O bond angles with respect to the normal values found in the SiO2. Since the ceramic
network is partially formed, apart from the vibration of the Si–O bonds at 790 cm−1, the
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incorporation of the mixed C–Si–O units induced the appearance of a new band centered
at 810–845 cm−1, which shifts to high or low wavenumbers depending on the pyrolysis
temperature and the incorporated heteroatom. Figure 2b presents the position of this
band calculated by means of a deconvolution analysis. Here, it is shown that when Al or
Zr is added, the SiOC band shifts to 845–835 cm−1, at pyrolysis temperatures comprised
between 700 and 900 ◦C, and then decreases again to 810 cm−1, which is the reported
position for SiOC glasses [31,32]. If the incorporated heteroatom is Co or Zr/Co, a gradual
shift to high wavenumbers is produced when the pyrolysis is carried out up to 800 ◦C
and then drops to 800–810 cm−1, which is considered the normal range for SiO2 and SiOC
materials. Since the same trend is found in the two cases, it is reasonable to attribute the
observed behavior to the presence of the Co. At 1000 ◦C, in the sample containing the
two heteroatoms, the position of this band decreases to its lowest value, possibly due to
phase separation.
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Figure 2. (a) FTIR spectra of the samples pyrolyzed at 700 ◦C; (b) position of the band corresponding to the formation of
SiOC bonds as a function of the temperature; (c) relative intensity ratio of the bands assigned to the stretching mode of
the superstructural rings forming tridimensional (T) and chains (L/C); (d) relative intensity of the bands assigned to the
asymmetric stretching of double-bonded carbon. This intensity was normalized to the area of the band at 1080 cm−1.

The position and intensities of the IR bands vary with both the pyrolysis temperature
and the incorporation of the heteroatom. A systematic study of the infrared spectra is
carried out by performing the deconvolution analysis of the bands appearing in the spectra
of all the studied samples (spectra shown in Supplementary Material Figure S1). In the
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most intense region of the spectra, it is possible to distinguish the multiple combinations
of the Si–O rings and Si–O–X [33,34], where X can be substituted by the heteroatom
symbol. In this region, the band attributed to the stretching of Si–O bonds presents
the highest relative intensity in the materials containing Al, followed by the materials
containing Zr. This band is composed of the contribution of crosslinked SiO4 tetrahedral
(tridimensional) and SiO2-like tetrahedral in form of SiO2 rings and chains. In the spectra,
the band located at 1030 cm−1 is attributed to the ring-like superstructural units (TOL/C
transversal optic), and the tridimensional (TOT transversal optic) SiO2 structures appeared
at about 1080 cm−1 [35–37]. The plot of the relative intensity of the tridimensional SiO2
structures (TOT, 1080 cm−1) to ring-like superstructural units (TOL/C, 1030 cm−1) is shown
in Figure 2c, and it is observed that the relative intensity of this ratio undergoes low
variations when either Al or Zr is incorporated into the hybrid network, but it dramatically
increases when Co (and Co plus Zr) atoms are added at pyrolysis temperatures below
800 ◦C and then decreases. It should also be noticed that in the case of the Al incorporation,
this band increases progressively up to 700 ◦C and afterward decreases.

When the ceramic structure is not yet formed (low pyrolysis temperature), it is possible
to appreciate the asymmetric stretching of vinyl groups at 1410 cm−1 [38,39] (Figure 2d).
This band is the most noticeable in the samples containing Co because of the formation
of highly graphitized carbon structures at 700–800 ◦C [40,41]. Beyond 900 ◦C, none of the
samples except the one containing Zr present this characteristic feature.

For a better understanding of the structural characteristics of the materials and their
evolution toward the ceramic state during the pyrolysis, we subject the samples to a chemi-
cal etching to remove the major part of the SiO2 phase. The Gaussian deconvolution of the
FTIR spectra of the etched samples. Figure 3a is used to estimate the stability of the different
ring-like or tridimensional SiO2 structures against the etching process. As we proceed with
the un-etched samples, here (Figure 3b) we only show the spectra of the bands pyrolyzed
at 900 ◦C because the contributions to the different bands are more evident. Despite that, it
should also be noted here that we have performed the analysis on the samples pyrolyzed
and HF etched at temperatures beyond 800 ◦C. By comparing Figures 2c and 3b, the relative
intensity of the TOT to TOL/C bands drastically decreases in all samples and at all the
treatment temperatures, indicating that the tridimensional SiO2 is more susceptible to be
etched away. The most dramatic change in the TOT/TOL/C ratio is found in the samples
containing Co in which the relative proportion of tridimensional units in the HF-etched
samples decreases with the temperature. In the remainder materials, there is no relation-
ship between the pyrolysis temperature and the amount of linear and tridimensional SiO2
before and after HF etching ((TOT/TOL/C)pyrolyzed/(TOT/TOL/C)HF etch).

The effect of the HF etching is also observed in the carbon phase, as deduced from
Raman spectroscopy (spectra shown in Supplementary Material Figure S2). In Figure 4a,
the characteristic Raman spectra of the HF-etched materials pyrolyzed at 900 ◦C is shown,
with the D band appearing at 1350 cm−1, which is commonly attributed to the A1g mode
of the small graphite crystallites, and the G band, which is related with the in-plane bond
stretching of sp2 bonds (E2g mode) in carbon clusters [42]. Similar spectra are obtained
for all the remaining samples. Here, it is clearly observed that the D and G bands become
narrower in the materials containing Zr/Co and Co, indicating that the remainder carbon
phase after the etching process is the more graphitized. In the spectra of the as-pyrolyzed
samples, the ID/IG ratio (Figure 4b) varies with both the temperature and the included
heteroatom. For the calculations, and for considering the intensity of the band (I), we use
the height of the Lorentzian-shaped band obtained from the deconvolution analysis, and
background subtraction is carried out before the band deconvolution. In the case of the
incorporation of Al and Zr, the ID/IG ratio decreases with the temperature (i.e., the carbon
phase becomes more “ordered”), whereas the incorporation of Co and Zr/Co provokes
the opposite effect, with a decrease of the ordering of the carbonaceous phase. After
etching, however, there is a slight increase in the ID/IG ratio with the temperature when the
heteroatom incorporated is Al. Since the D band only accounts for sp2 rings, the observed
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increase suggests that, during etching, both the C atoms in sp2 and sp3 configurations were
etched away.
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3.2. Thermal Analysis

Valuable information about the carbon phase can be obtained when studying the
thermal stability in the air, both before and after the etching treatment. The different
behavior shown in all the samples is quite significant, with different decomposition temper-
atures and the number of decomposition stages depending on the substituent heteroatom
(Figure 5a). The most characteristic temperatures during the oxidation of the materials
are collected in Table 2 (differential thermal analysis curves are found in Supplementary
Material Figure S3). There, it should be noticed that despite the inorganic material is not
formed (the materials are still in ceramer state), we are carrying out the decomposition
in an oxidant atmosphere, i.e., preferentially the carbon phase. Solely in the materials
containing Al and pyrolyzed at the different temperatures, the thermal decomposition
occurs in a single step, at temperatures increasing from 450 to 650 ◦C, as the pyrolysis
temperature increases. The samples containing Zr as the single heteroatom decompose
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in a single step when the materials are heat treated at temperatures beyond 700 ◦C, but
two decomposition stages are found when they are pyrolyzed at 600 ◦C. By substituting
the heteroatom for Co, now we can observe that the number of decomposition stages as
well as the temperatures at which these reactions take place, depending upon the pyrolysis
temperature. In Table 2, however, the most prominent peaks are exclusively collected.
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Table 2. Temperatures (◦C) of the decomposition of the materials when heat treated in air atmosphere (n/d stands for none determined).

T (◦C)
Al Zr Co Zr/Co

Pyr HF Etch Pyr HF Etch Pyr HF Etch Pyr HF Etch

600 450 n/d 465 495 n/d 465 515 n/d 500 565 n/d
700 495 n/d 500 n/d 470 600 555 525 575 n/d
800 545 n/d 550 n/d 550 585 580 545 600 535
900 650 355 550 550 525 475 520 575 480 545

The calculation of the oxidation enthalpy of the materials from the DSC curves
(Figure 5b and Supplementary Material Figures S3 and S4) allows the detection of the
slight decrease in the decomposition enthalpy at pyrolysis temperatures below 800 ◦C,
and then a severe decrease occurs at 900 ◦C. Oxidation enthalpy is calculated from the
area under the DSC curve. This behavior is observed in the samples containing Al and
Co but not in the materials containing Zr in which the oxidation enthalpy does not show
significant variations among them.

3.3. Textural Characterization

It is well known that in most polymer-derived ceramics, transient porosity created
in the intermediate stages of the pyrolysis (i.e., in the ceramer state) and associated with
the elimination of gaseous species evolving from the decomposition of the preceramic
matrix (CH4, H2, C6H6, etc.) [43]. This transient porosity is observed in all the synthesized
materials. Table 3 summarizes the specific surface area of the pyrolyzed materials from the
application of the BET method to the nitrogen adsorption isotherms. In all the materials,
except in the case of the samples containing Zr as the unique heteroatom, this transient
porosity disappears at 900 ◦C.
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Table 3. Specific surface area of the studied materials as obtained from the BET method applied to
the nitrogen adsorption isotherms (the asterisk in Co * refers to already published data reprinted
from [44] with permission from Elsevier).

SSA m2/g

T (◦C) Al Zr Co * Zr/Co

500 220 40 190 60
600 370 390 475 165
700 320 325 335 360
800 265 270 255 290
900 3.0 243 2.3 2.0

1000 0.5 100 0.5 3.5

SSA m2/g after HF etching

700 – 1.2 2.0 –
800 – 41 43 –
900 91 3.3 74 17

The t-plot method [29] application to the N2 adsorption isotherms allows the calcu-
lation of the external surface (or area corresponding to the mesopores) from the slope of
the t-plot (t-plots are provided in Supplementary Material Figure S5). In Figure 6a, it is
observed that the maximum external surface corresponds to the samples pyrolyzed at
600 ◦C and containing Al and Co, whereas, in the presence of Zr, there is a delay in the
appearance of this porosity, which is attributed to enhanced preceramic network stability.
With regard to the micropore surface area (Figure 6b), apart from the abovementioned
porosity still remaining at 1000 ◦C in the material synthesized with Zr, it can be observed
that the amount of micropores gradually increases, reaching the maximum at 700 ◦C. In the
case of Co-containing samples, the increase of the microporosity to its maximum value oc-
curs in a more drastic manner, and the temperature at which this maximum microporosity
appears is different whether the sample is synthesized in the presence or the absence of Zr.
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Table 3 also includes the specific surface area of some of the HF-etched materials. It is
observed that the material presenting the highest SSA at 900 ◦C is the one synthesized with
the heteroatom Al, with this SSA being even higher than in the corresponding pyrolyzed
sample. The same occurs in the Co-containing material pyrolyzed at 900 ◦C, where the
SSA corresponding to the HF-etched sample is higher than its non-etched counterpart. The
pore size distributions calculated from the application of the BJH method to the desorption
branch of the isotherms obtained in the HF-etched materials are provided in Supplementary
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Material Figure S6. This behavior is attributed to the elimination of the stabilization of
the SiO2 clusters, which favors phase separation and therefore the elimination of this
component in the HF process. In the case of the Zr-containing materials, a pronounced
decrease in the SSA is observed after the digestion process.

4. Discussion

Generally, the description of the structural changes induced by the heteroatoms within
the hybrid network assumes a random and homogeneous distribution of the elements. The
change in the pore volume occurring after the HF etching and attributed to the removal
of some disordered C and SiOC units has already been reported [45]. The discontinuous
distribution of the different phases because of the presence of the different heteroatoms is
thus responsible for the observed variations in the ratio of the SiO2-like structure after the
HF etching as well as the graphitization of the carbon phase.

It is known that during pyrolysis, Al is able to form the AlOxCy at a relatively low
temperature through the reaction of the Al(OH)3 particles, which are dispersed within
the ceramer network with the free carbon, thus decreasing the amount of free carbon and
the observed decrease in the O/C ratio at temperatures beyond 800 ◦C [2]. Moreover,
the condensation mechanism of the Al-containing samples occurs via dehydrogenation
reactions [46,47] with the formation of the C=C bonds at 700 ◦C (Figure 2d) [48]. At
this temperature, the relative intensity of the TOT/TOLC band is the highest as well.
Zhang et al. [49] report the formation of Si-O-Al bridges during the pyrolysis at the
expense of the Si-H bonds. At this temperature, and accompanied with the decrease of
the Si-H band in the FTIR spectra (2100 cm−1), the position of the Si-O-C band is shifted
from 817 cm−1 to its maximum value, at 845 cm−1, which is assigned to the symmetric
stretching vibration of the Si–O–Si and Si-O-Al linkages [50]. The enhanced crosslinking
at lower temperature with respect to the non-modified polysiloxane has already been
described by many other authors, resulting in an increased proportion of highly crosslinked
SiO2 (tridimensional) units [51,52]. This resulted in an increased intensity of the band
centered at about 1100 cm−1, which contains the different modes of the Si–O–Si bonds
(Figure 2a). In the HF-etched samples, the TOT to TOL/C ratio decreases with respect to
their corresponding non-etched counterparts indicating that the SiO2 units, which were
preferentially etched, are the ones in interconnected rings or chains. This result can be
further corroborated from the SSA obtained after HF etching (Table 3). At 900 ◦C, there
might be a large number of interconnected rings or chains that are preferably removed
during the etching, leading to the appearance of large voids and thus increasing the SSA.

The decrease in the graphite nanodomain size of the pyrolyzed samples is attributed to
the rearrangement of distorted aromatic carbon rings to six-membered rings [53]. However,
after etching, the behavior of the ID/IG ratio is exactly the opposite, suggesting that etching
preferably affects the sp3 carbon. The differential thermal analysis data (Figure 5) show
that the decomposition of the carbon phase occurs in just one single step, indicating that
there are no secondary carbon phases evolving from this material and, as expected, the
temperature at which this decomposition takes place gradually increases as the treatment
temperature does. The decrease in the free-carbon phase content because of the cationic
substitution of Si by Al atoms might be also responsible for the minimum oxidation
enthalpy [48]. The presence of one type of carbon and the substitution of Si by Al atoms
might cause the space charges and thus the polarization of the structure upon determined
pressure and, ultimately, its piezoelectric behavior. This piezo-dielectricity of the material
results from the formation of space charges along the interface between the relatively
insulating ceramic phase and the more conductive free-carbon phase [15].

SiOC structural units are formed at temperatures as low as 700 ◦C either when the
substituent heteroatom is Al or Zr; however, when the Zr is the heteroatom, some authors
have reported that the relative amount of SiC units decreases with the Zr content [54].
Contrary to what occurs in Al- or Ti-containing SiOC glasses, during pyrolysis, it has been
reported that amorphous ZrO2 clusters are segregated from the matrix [54]. In all the
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remaining samples, the TOT/TOL/C ratio reaches a maximum of 700 ◦C, but the opposite
trend is found in the Zr-modified SiOC. The phase separation occurring in these materials
would be responsible for the decrease in Si-O-C formation and therefore, in the spectra of
the HF samples (Figure 3a); we particularly highlight the presence of a single peak in the
central band of the spectra because of the non-etched SiO2 units.

During the synthesis of SiOC/Zr materials, the added Zr may act as an inert or
active filler whenever the ZrO2 nanoclusters are already formed, or the ZrO2 are added as
additional particles. Ionescu et al. [55] report that the porosity of the obtained materials
increases with the addition of Zr. On contrary, when the Zr source is an active substance
such as the Zr alkoxide, the porosity dramatically decreases because of the crosslinking
effect of the heteroatom [55]. Acetylacetonate, however, is a complexing agent that hinders
the formation of the mixed oxycarbide structure with a preference for an early formation
of amorphous ZrO2 nanoclusters [56]. Some authors also report that the maintenance
of the mesoporous structure even at pyrolysis temperatures of 1000 ◦C can be attributed
to the decomposition of the Zr(Acac) used as a precursor, which was unable to form a
mixed network with the polysiloxane [57]. The maintenance of the microporosity at high
temperature in this work is attributed to the already observed phase separation, occurring
together with the decrease of the Si–O–C bonds. The formation of a highly interconnected
tridimensional network between the SiO2 and ZrO2 nanoclusters might also be responsible
for the delay in the appearance of the transient micro-mesoporosity and the observed
constant mesopore volume at temperatures beyond 700 ◦C [58]. The minimum content of
Si–O–C bonds also prevents pore collapse and thus the appearance of micropores even at
high pyrolysis temperature. In addition, this highly interconnected microporous network
almost disappears after the HF etching (Table 3), suggesting that the ZrO2 nanoclusters
could be somehow lixiviated in the digestion process because of the strong binding to the
SiO2 domains.

In addition, some authors have reported that the presence of the ZrO2 units inhibits
the graphitization degree of the free carbon in SiZrOC materials [59]. In our materials,
despite the decreased ID/IG ratio in the pyrolyzed samples, after etching, this ratio remains
constant at all the pyrolysis temperatures. Similarly, the combustion enthalpy of the carbon
phase does not alter with the temperature, suggesting that there are no further changes in
the free-carbon phase configuration. Liu et al. [59] suggest that the thermal stability of the
Si–C bond is decreased in the presence of Zr, and therefore, the cleavage of these bonds
during the redistribution reaction is facilitated.

One of the most remarkable characteristics of the spectra of the Co-containing ma-
terials is the large intensity of the band assigned to C=C bonds (Figure 2d). Although it
is still noticeable, this effect is not so evident when both the Zr and Co are introduced
into the preceramic matrix. In the HF-etched samples, the same behavior is repeated,
with a significant increase of the SiO2 interconnected in rings or chains (Figure 3b). In
both cases, either when the Co is introduced alone or together with Zr, the ID/IG ratio
increases with the temperature either before or after etching. Here, we should consider the
origin of the D band, which is attributed to the breathing mode of sp2 rings located at the
edge of the graphite planes [60] and, as mentioned before, it becomes narrower due to the
wet-etching process.

It is also known that Co forms a solid solution with Si, resulting in nucleation sites
for the SiC crystallization at high temperatures [61]. As mentioned above, contrary to Zr,
which preferably forms ZrO2 nanoclusters, large Co crystallites appearing in Co-containing
SiOC direct the microstructural characteristics of these samples [20,61]. The XRD patterns
showing the formation of these crystals are shown in Supplementary Material Figure S6.
The multiple decomposition steps appearing in the DSC thermograms are attributed to
crystalline cobalt carbides, which are not etched away [44]. In the presence of Zr, the
temperature at which this decomposition takes place is slightly higher than in the case
of Co alone and, as we observe in the Supplementary Material Figure S3, the multiple
carbidic forms are well revealed, suggesting that the ZrO2 nanoclusters that are formed
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from the decomposition of the Zr(acac) act as a protective phase for the stabilization of the
unstable carbides.

5. Conclusions

HF etching results in a quite convenient strategy to study the structural changes
occurring during the pyrolytic conversion of a polymeric or hybrid material subjected
to any molecular modification. Nevertheless, it should be kept in mind which phases
are more susceptible to the chemical etching and the structural changes induced by this
treatment. The systematic study of these changes in a series of metal-modified polymer-
derived materials allowed us to find that the highly interconnected tridimensional units
in the SiO2 phase are the most susceptible to wet etching in such a way that the materials
that are more favorable to produce this sort of arrangements will also be more attacked by
fluorine. In a similar fashion, the carbon atoms located near these structures will also be
etched away, thus provoking some changes in the remainder carbon phase.

By introducing Al atoms into the structure, AlOC bonds are formed even at low
temperatures, thus increasing the crosslinking degree of the preceramic network. The
ID/IG ratio after etching increases with the pyrolysis temperature, whereas if no further
treatment is performed, the trend of this ratio is exactly the opposite, suggesting that
etching preferably affects the sp3 carbon. The formation of the tridimensional network
formed by substitution of some Si atoms by Al, together with the presence of one type
of carbon, might be responsible for the piezoelectric properties reported for this material.
In the case of Zr incorporation, the relative amount of SiC units decreases with the Zr
content because of the occurrence of phase separation during pyrolysis and the carbon
phase almost shows no variation in its graphitization degree. The elimination of the SiO2
phase after HF etching occurs preferentially in these SiO2 clusters, arranged in a tightly
interconnected tridimensional network, increasing the well-known thermal stability of the
SiZrOC materials. Contrary to what occurs in the remainder metal-modified materials, the
combustion enthalpy of the carbon phase remains constant at all the temperatures because
of this increased thermal stability. In view of the Raman spectra, this carbon phase seems
to be the more amorphous among all the prepared materials. The complexation effect of
the acetylacetonate is also noticeable here since a delay in the formation of the transient
mesoporosity is observed as well as the maintenance of the porous structure at the highest
pyrolysis temperature.

Another area that has been investigated is the effect of incorporating a transition metal
capable of forming a solid solution with Si together with Zr. In this case, the formation of
small Co nanocrystals and the enhancement of the C=C bonds are the main characteristics
of these materials. The oxidant decomposition of the carbon phase occurs in different stages
depending on the pyrolysis temperature, indicating the transition of the carbon phase from
low to high graphitization. Similarly, the trend of the ID/IG ratio with the temperature
before and after etching confirms the higher graphitization degree induced by the cobalt
despite the presence of the Zr and its amorphization effect on the free-carbon phase.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14123276/s1, Figure S1: Infrared spectra of the pyrolyzed samples, Figure S2: Raman
spectra of the pyrolyzed and HF-etched samples, Figure S3: Differential scanning calorimetry curves
of the pyrolyzed materials, Figure S4: Differential scanning calorimetry of the HF-etched samples,
Figure S5: t plots obtained from the nitrogen adsorption isotherms of the pyrolyzed materials,
Figure S6: BJH pore size distributions of the HF-etched samples, Figure S6: XRD patterns of the
HF-etched materials.
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