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Krzysztof Dwiecki 4, Sławomir Borysiak 5 and Izabela Ratajczak 1,*

����������
�������

Citation: Babicka, M.; Woźniak, M.;
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60965 Poznań, Poland; slawomir.borysiak@put.poznan.pl

* Correspondence: izabela.ratajczak@up.poznan.pl

Abstract: Nanocellulose has gained increasing attention during the past decade, which is related
to its unique properties and wide application. In this paper, nanocellulose samples were pro-
duced via hydrolysis with ionic liquids (1-ethyl-3-methylimidazole acetate (EmimOAc) and 1-allyl-
3-methylimidazolium chloride (AmimCl)) from microcrystalline celluloses (Avicel and Whatman)
subjected to enzymatic pretreatment. The obtained material was characterized using Fourier trans-
form infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), scanning
electron microscopy (SEM), and thermogravimetric analysis (TG). The results showed that the
nanocellulose had a regular and spherical structure with diameters of 30–40 nm and exhibited lower
crystallinity and thermal stability than the material obtained after hydrolysis with Trichoderma reesei
enzymes. However, the enzyme-pretreated Avicel had a particle size of about 200 nm and a cellulose
II structure. A two-step process involving enzyme pretreatment and hydrolysis with ionic liquids
resulted in the production of nanocellulose. Moreover, the particle size of nanocellulose and its
structure depend on the ionic liquid used.

Keywords: nanocellulose; ionic liquids; Trichoderma reesei; enzymatic hydrolysis

1. Introduction

Nanocellulose has gained increasing attention during the past decade, as confirmed by
the number of patents and scientific papers related to its properties, production methods,
and potential applications [1,2]. Cellulose nanocrystals have found applications in various
fields, for example as food packaging, biodegradable polymers, biomedical utilization
(including drug delivery, substituted implants, biocatalyst or tissue regeneration), wood
adhesives, or fillers and additives to nanocomposites [2–10]. Nanocellulose-based poly-
mer composites have potential applications as adsorptive, filtering, and decontaminating
materials (including for water treatment, air purification, or microbe and viral decontami-
nation), as well as materials in binders, separators, and electrodes of energy conservation
devices and energy capture devices, e.g., as CO2 separators [8,11–15]. The wide application
of nanocellulose is connected with its unique properties, such as its high surface area,
light weight, low density, biodegradability, biocompatibility, and outstanding strength
properties [16–18].
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Numerous methods are applied to produce cellulose with nanometric dimensions
from different lignocellulose materials, including chemical (e.g., with the use of acids
and bases) and physical (e.g., grinding, grating, or with the use of high-power lasers)
methods [19–21]. A common method of nanocellulose production is acid hydrolysis,
along with its modifications, whereby sulfuric, hydrobromic, and hydrochloride acids are
usually used in the process of cellulose hydrolysis [8,22,23]. However, acid hydrolysis is
not considered an environmentally friendly method due to the use of large amounts of
solvents, which generate a considerable volume of sewage that requires treatment and
contributes to the corrosion of reactors. Moreover, acid hydrolysis is characterized by the
low efficiency of the nanocellulose production and the formation of cellulose nanocrystals
with reduced thermal stability [24–26].

An eco-friendly alternative method of nanocellulose production is the application of
ionic liquids or enzymes, since these methods do not generate hazardous waste, as is the
case with acid hydrolysis. Different classes of enzymes have been applied in nanocellu-
lose preparations, including cellulases, xylanases, and lytic polysaccharide monooxyge-
nases [27]. However, cellulases, which are produced by cellulolytic organisms, including
fungal species such as Aspergillus, Trichoderma, or Clostridium, are the most commonly
used in preparation of nanocellulose [27,28]. It is generally recognized that complete
hydrolysis of cellulose to glucose requires a synergistic action of at least two of the three
groups into which cellulases are divided, namely endoglucanases, exoglucanases, and
cellobiohydrolases [1,29]. However, for the production of nanocellulose, endoglucanases
are of greatest interest due to their action on amorphous cellulose [30]. It should also
be emphasized that the efficiency of the enzymatic hydrolysis process depends on the
types of cellulolytic enzymes that determine the sizes of nanometric particles, as well as
their polydispersion [28]. According to data from the literature, enzymes are used in the
extraction of nanometric cellulose, both alone or combined with chemical or mechanical
methods [22,27,31–38]. Moreover, the efficiency of enzymatic cellulose hydrolysis depends
on many other factors, such as the crystallinity, average molecular weight, polymorphism,
and lignin or hemicellulose contamination [39–41].

Ionic liquids, often referred to as green solvents, have been used in the production
of nanocellulose [42–45]. Ionic liquids (ILs) are generally defined as salts that melt below
100 ◦C and are completely composed of ions. Interestingly, ILs have many attractive
properties such as chemical and thermal stability, low melting points, non-volatility and
non-flammability, low vapor pressures, and recyclability [46,47]. Various types of ionic
liquids are used in nanocellulose hydrolysis, including 1-butyl-3-methylimidazolium hy-
drogen sulfate, 1-butyl-3-methylimidazolium chloride, and 1-ethyl-3-methylimidazole
chloride [23,48–53]. The production of nanocellulose using ionic liquids has numerous
benefits, including the potential to use atmospheric pressure, small amounts of solvents,
the potential for regeneration of ionic liquids, and working with an odorless and relatively
safe solvent. On the other hand, this method also has disadvantages, which include the
relatively high costs of ionic liquids and the unsatisfactory efficiency of the extraction
process [51,54–59].

Combinations of methods have been used to increase the efficiency of the nanocellu-
lose production process. The aim of pretreatment is to bring the cellulose polymers to an
appropriate form that will increase the efficiency of the subsequent process of nanocellu-
lose production itself. Pretreatment can be a physical or chemical process; most often it
is associated with reducing the particle size of the cellulose, increasing the porosity and
surface area, or reducing the crystallinity [60,61]. Prior to enzymatic hydrolysis reactions,
lignocellulosic materials are pretreated using various methods, including milling, swelling
treatment, steam explosion, sonification, or treatment with a aqueous sodium hydroxide
solution and ionic liquids [22,31,37,62,63].

In our paper, we use enzymatic hydrolysis of cellulosic materials as a preliminary stage
of nanocellulose preparation with the application of ionic liquids. To our knowledge, this is
the first time that enzymatic hydrolysis has been combined with treatment with ionic liquids
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to obtain nanocellulose, where enzymatic hydrolysis is the pretreatment step. Therefore,
the aim of the study is to produce nanometric cellulose by pretreatment with the cellulolytic
enzyme from Trichoderma reesei, followed by treatment with two ionic liquids: 1-ethyl-3-
methylimidazole acetate (EmimOAc) and 1-allyl-3-methylimidazolium chloride (AmimCl).
The obtained material is characterized using Fourier transform infrared spectroscopy
(FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis
(TG), and scanning electron microscope (SEM).

2. Materials and Methods
2.1. Materials

Microcrystalline cellulose: Avicel PH-101 and Whatman cellulose filter paper No. 1
were purchased from Sigma Aldrich Chemie GmbH (Darmstadt, Germany). The cellulolytic
enzyme from the microscopic fungus Trichoderma reesei ATCC 26921 with an activity of
700 units/g and the ionic liquids 1-allyl-3-methylimidazolium chloride (≥97.0%) and 1-
ethyl-3-methylimidazolium acetate (≥95.0%) were also purchased from Sigma Aldrich
Chemie GmbH (Darmstadt, Germany).

2.2. Pretreatment of Cellulose with Cellulolytic Enzyme

The cellulose material (Avicel and Whatman) was added to a citrate buffer (50 mM,
pH = 4.8) at a ratio of 50:1 (mg/mL) and was incubated for 30 min at 50 ◦C with a shaking
speed of 150 rpm/min (Incubated Shaker, Lab Companion, JeioTech, Korea). Afterwards,
the cellulolytic enzyme diluted in the citrate buffer (1:50 by volume) was added to the
cellulose material at a ratio of 1:2 by volume. The mixture was incubated at 50 ◦C with a
shaking speed of 150 rpm for 30 min. The reaction was stopped by boiling the sample for
5 min. Next, the samples were centrifuged at 1000 rpm/min for 15 min (Universal 320,
Andreas Hettich GmbH and Co. KG, Tuttlingen, Germany) and washed with deionized
water. The solid cellulose residue was dried in a laboratory dryer (Pol-Eko-Aparatura,
Wodzisław Śląski, Poland) and used for further analysis.

2.3. Preparation of Nanocellulose by Ionic Liquids

The cellulose material (Avicel and Whatman) after pretreatment with the Trichoderma
reesei enzyme was mixed with ionic liquids ((EmimOAc) and (AmimCl)) at a ratio of 1:5 by
weight. The reactions were run until the material had a homogeneous mix (~15 min) at
80 ◦C, under intense stirring using a heating mantle with magnetic stirring (ChemLand,
Stargard, Poland). The reaction was carried out without solvent. The reaction was stopped
by adding 15 mL of an acetone and water mixture (1:1) to the reaction mixture. The products
of reactions were washed with the acetone and water mixture, filtered, and dried initially
at room temperature and finally over P2O5 (Sigma Aldrich Chemie GmbH, Darmstadt,
Germany).

2.4. Methods
2.4.1. FTIR Spectroscopy

Fourier transform infrared spectroscopy was used to characterize the obtained ma-
terials and determine their chemical structure. All samples (1 mg) were mixed with KBr
(200 mg) (Sigma Aldrich Chemie GmbH, Darmstadt, Germany) and analyzed in the pastille
form. Spectra were recorded in the range of 4000–500 cm−1, with a resolution of 2 cm−1,
and 16 scans were recorded on a Nicolet iS5 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA).

2.4.2. XRD Analysis

The supermolecular structures of cellulose samples after enzymatic hydrolysis and
enzyme-pretreated cellulose treated with ionic liquids were analyzed using the X-ray
diffraction (XRD) analysis. The samples were determined using a TUR M-62 X-ray diffrac-
tometer (Carl Zeiss AG, Jena, Germany) with a copper anode. The wavelength of the Cu
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Kα radiation source was 1.5418 Å and the spectra were obtained at 30 mA with an acceler-
ating voltage of 40 kV. The diffraction pattern was recorded between 5 and 30◦ (2θ-angle
range) in the step of 0.04◦/3 s. Deconvolution of peaks was performed using the method
proposed by Hindeleh and Johnson [64] and improved and programmed by Rabiej [65].
After separation of XRD lines, the degrees of crystallinity (Xc) of cellulose samples were
determined by comparing the areas under crystalline peaks and the amorphous curve.

2.4.3. DLS Analysis

The particle sizes (expressed as the hydrodynamic diameter) of cellulose samples were
determined using the DLS method, using a Zetasizer Nano ZS-90 instrument (Malvern,
UK). Before analysis, the tested materials were mixed (2 mg) with deionized water (5 mL)
and treated using an ultrasound bath (Polsonic, Warsaw, Poland) for 25 min.

2.4.4. SEM Analysis

The surface morphologies of micro- and nanocrystalline cellulose were examined
using the SEM method. Images were taken with the use of a JEOL JSM-7001F TTLS
scanning electron microscope (JEOL Ltd., Tokyo, Japan) by applying the accelerating
voltage of 5 kV and a secondary electron (SEI) detector. The samples were placed on a
carbon tape and investigated without coating.

2.4.5. TG Analysis

Thermogravimetric analysis was performed on the Netzsch STA 449 F5 Jupiter appa-
ratus (Erich NETZSCH GmbH and Co. Holding KG, Selb, Germany). The tested cellulose
samples (15 ± 1 mg) were heated at the rate of 10 ◦C/min to the assumed temperature
of 600 ◦C. The analyses were performed in an atmosphere of helium flowing through the
furnace space at a rate of 15 mL/min. Thermogravimetric curves (TG) and differential
thermogravimetric curves (DTG) were recorded on the thermograms. The former illustrate
the dependence of the change in mass (mass loss) on temperature, while the latter illustrate
the rate of this change.

3. Results and Discussion
3.1. FTIR Analysis

In the first stage of the research, the chemical structures of the cellulose samples were
determined using Fourier transform infrared spectroscopy (FTIR). The FTIR spectra of the
cellulose materials after enzymatic hydrolysis and the materials obtained after the two-step
nanocellulose production process (pretreatment with the enzyme and treatment with ionic
liquids) are shown in Figures 1 and 2.
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All cellulose samples (Avicel and Whatman), including those after enzyme hydrolysis
and enzyme-pretreated cellulose hydrolyzed with ionic liquids, presented a broad band in
the region of 3350–3480 cm−1, which can be attributed to the hydrogen bond O–H stretch-
ing vibrations and flexural vibration of intra- and intermolecular hydrogen bonds [47,66].
The changes in intensity of peaks in this region observed in the spectra of cellulose treated
with ionic liquids compared to the spectra of samples after enzyme hydrolysis may have
been connected to changes in the number and strength of hydrogen bonds. The band
at 2900 cm−1 attributed to C–H stretching vibrations was observed in the spectra of all
cellulose samples; however, the samples treated with ionic liquids show higher intensi-
ties [23,47]. The band at 1650 cm−1 visible in the spectra of cellulose treated with ionic
liquids was connected with –OH bending of absorbed water [23,47,67]. The intensity of
the band at 1650 cm−1 was higher for cellulose samples treated with ionic liquids than for
samples treated with the cellulosic enzyme. This was associated with the larger surface
area of cellulose particles with smaller dimensions (Figure 3), and thus the greater ability
to adsorb moisture. Moreover, significant changes were found within the vibration bands
of the amorphous region at 900 cm−1 and crystalline regions at 1405 cm−1. The changes
indicated a decrease in cellulose crystallinity after the applied material treatment. These
observations were confirmed by the XRD analysis (Table 1). The peaks at 1170 cm−1 and
900 cm−1 were connected with C–O stretching or O–H bending and the glycosidic C1–H
deformation mode, respectively [48]. In turn, the bands at 1405 cm−1 and 1115 cm−1 were
attributed to the C–H deformation (asymmetric) and O–H association band in cellulose,
respectively [68]. Moreover, in the spectra of treated cellulose samples, especially samples
hydrolyzed with ionic liquids, peaks ranging from 1100 to 550 cm−1 were observed, in-
dicating twisting, wagging, and deformation modes of anhydro-glucopyranose, which
represent the characteristic pattern of β-glucosidic linkages [23,47].

Table 1. The crystallinity index values for the cellulose samples.

Samples The Crystallinity Index (%) Samples The Crystallinity Index (%)

A 60 W 63
AA 24 WA 33
AE 36 WE 39
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Figure 3. The average particle sizes of (A) enzyme-pretreated Avicel cellulose, (AA) enzyme-
pretreated Avicel cellulose treated with AmimCl, (AE) enzyme-pretreated Avicel cellulose treated
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lose treated with AmimCl, and (WE) enzyme-pretreated Whatman cellulose treated with EmimOAc.

3.2. DLS Analysis

The average particle sizes (hydrodynamic diameter) of the enzyme-pretreated cellu-
lose and nanocellulose samples obtained after the two-step production process as assessed
by dynamic light scattering (DLS) are presented in Figure 3.

The enzymatic hydrolysis of cellulosic materials (Avicel and Whatman) resulted in a
decrease of the average particle size compared to the starting material, which was micro-
metric in size. The initial particle size range of Avicel cellulose was 1300–4800 nm, while
Whatman cellulose had a particle size range of 700–6400 nm. After enzyme pretreatment,
the average size of Avicel cellulose particles was below 200 nm, while the particle size of
Whatman cellulose was about 300 nm. However, both of the peaks were wide, indicating
high particle size dispersion. According to the data from the literature, the average particle
size for cellulose hydrolyzed with the cellulase enzyme was 0.526 µm; however, 50% of
the particles were smaller than this [66]. The average size range of cellulose nanocrystals
obtained via endoglucanase enzyme hydrolysis with two heating models (conventional and
microwave-coupled with ultrasonication) was 100 nm to 3.5 µm [69]. In turn, the particle
size of nanocellulose prepared through enzymatic hydrolysis with three different pretreat-
ments (ultrasonic treatment, treatment with NaOH, and treatment with DMSO) depended
on the pretreatment type. The average size of nanocellulose with ultrasonic pretreatment
was 5–6 nm, for nanocellulose prepared by DMSO pretreatment was about 250 nm, while
nanocellulose obtained with NaOH pretreatment contained two particle sizes—one type
measuring 25 nm and the other measuring 250 nm, which were the aggregates [67].

The results presented in Figure 3 indicate a notable shift in the cellulose particle size
after treatment with both ionic liquids (except for Avicel cellulose treated with EmimOAc)
as compared to the enzyme-pretreated cellulose. In addition, all nanocellulose samples
were characterized by much lower particle size dispersions than the samples after enzy-
matic hydrolysis, confirming the narrow and well-defined peaks presented in Figure 3. The
average particle size for enzyme-pretreated Avicel cellulose obtained after hydrolysis with
AmimCl (AA) and enzyme-pretreated Whatman cellulose obtained after hydrolysis with
EmimOAc (WE) was around 30 nm, while that of enzyme-pretreated Whatman cellulose
obtained after hydrolysis with AmimCl (WA) was around 40 nm. In turn, the nanocellulose
obtained by Avicel cellulose hydrolysis with EmimOAc (AE) was characterized by the
greater average size of particles (around 200 nm) compared to the other nanocellulose
samples obtained after hydrolysis with ionic liquids. To sum up, the results of the DLS
analysis confirmed that the efficiency of nanocellulose production with enzyme pretreat-
ment is influenced by the type of the initial cellulosic material, as well as the type of ionic
liquid used.
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3.3. SEM Analysis

The morphologies of the cellulosic materials after enzymatic pretreatment followed
by hydrolysis with ionic liquids were examined by SEM analysis. The SEM images are
shown in Figure 4.
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Figure 4. SEM images of (A) enzyme-pretreated Avicel cellulose, (AA) enzyme-pretreated Avicel
cellulose treated with AmimCl, (AE) enzyme-pretreated Avicel cellulose treated with EmimOAc,
(W) enzyme-pretreated Whatman cellulose, (WA) enzyme-pretreated Whatman cellulose treated
with AmimCl, and (WE) enzyme-pretreated Whatman cellulose treated with EmimOAc.

Figure 4 shows that hydrolysis of enzyme-pretreated cellulose (Avicel and Whatman)
with both ionic liquids caused changes in the material structure and a reduction of its
diameter. The cellulose material after treatment with ionic liquids had a more regular
and spherical structure than cellulose hydrolyzed with the Trichoderma reesei enzyme. The
spherical structure of obtained nanocellulose is in contrast to the results of other research,
where nanocelluloses produced by hydrolysis with an ionic liquid had needle- or rod-like
morphologies [23,44,47,70].
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3.4. XRD Analysis

The diffraction profiles of enzyme-pretreated cellulose and cellulose after treatment
with ionic liquids are shown in Figure 5.
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(W) enzyme-pretreated Whatman cellulose, (WA) enzyme-pretreated Whatman cellulose treated
with AmimCl, and (WE) enzyme-pretreated Whatman cellulose treated with EmimOAc.

The diffractograms of cellulose after enzymatic hydrolysis (Avicel and Whatman)
showed peaks characteristic of cellulose I at 2θ = 15◦ (plane 1–10), 17◦ (plane 110), and 22.7◦

(plane 200) [71]. Additionally, these maxima were observed for the enzyme-pretreated
cellulose samples treated with AmimCl, although the intensity was much lower.

Unexpectedly, in the case of enzyme-pretreated cellulose treated with EmimOAc,
disappearance of the maximum from cellulose I was observed, along with the formation
of two maxima at the diffraction angles of 20◦ and 22◦, the peaks of which came from the
lattice planes at (110) and (020), respectively. This indicates the formation of cellulose II
and proves that the use of the 1-ethyl-3-methylimidazolium acetate solution resulted in the
conversion of polymorphic cellulose I into cellulose II. Data from the literature indicated
that the conversion of cellulose I into cellulose II is the result of a mercerization process run
in the presence of alkali [72,73]. Additionally, Cheng et al. [74] noted that the use of 1-ethyl-
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3-methylimidazolium acetate for modification of cellulose, switchgrass (Panicum virgatum),
pine (Pinus radiata), and eucalyptus (Eucalyptus globulus) affects the formation of cellulose
II. The transformation of cellulose I into cellulose II was also noted by Li et al. [75] and by
Wang et al. [76] for another ionic liquid, namely 1-butyl-3-methylimidazolium chloride.

Table 1 presents the crystallinity index values for the cellulose samples.
The values of the crystallinity index indicated that enzymatic hydrolysis affected the

degree of crystallinity of the raw cellulose material. The crystallinity index values for
enzyme-pretreated cellulose were 60% for Avicel and 63% for Whatman types compared
to 61% and 75% for untreated raw Avicel and Whatman cellulose, respectively [44,77].
However, significant changes in the degree of crystallinity were noted for the cellulose
samples obtained after hydrolysis with ionic liquids. The calculated crystallinity index
values for Avicel cellulose after the reaction with ionic liquids were 24% (after hydrolysis
with AmimCl) and 36% (after hydrolysis with EmimOAc). The crystallinity values for
Whatman cellulose after the reaction with ionic liquids were 33% (after hydrolysis with
AmimCl) and 39% (after hydrolysis with EmimOAc). Among all of the cellulose samples,
the nanocellulose sample with the smallest particle size (AA) (Figure 3) had the lowest
crystallinity. This indicates that the cellulose chains were broken during the treatment
process with ionic liquids, with a consequent reduction in the degree of crystallinity. The
reaction of enzyme-pretreated cellulose with AmimCl caused decreases of the crystallinity
index by about 60% for Avicel cellulose and 48% for Whatman cellulose compared to the
enzyme-pretreated material. Such reductions in the degree of crystallinity for cellulose
treated with ionic liquids were previously reported by other authors [44,70,76]. The degree
of crystallinity of eucalyptus pulp amounting to 70% was reduced to 36% by treatment
with an ionic liquid, namely BmimCl [76]. The degrees of crystallinity for nanocelluloses
obtained from cotton and microcrystalline cellulose treated with BmimCl were 52% and
62% compared to the values of 77% and 80% for the native material, respectively [50]. The
degree of crystallinity for the nanocellulose obtained with EmimOAc (33%) was lower
than the degree of crystallinity for the nanocellulose obtained in our previous work, where
EmimCl (47%) was used [44].

According to the literature date, the anion of the ionic liquid plays an important
role in the dissolution and hydrolysis process of cellulose, which forms hydrogen bonds
with -OH groups of cellulose. The hydrogen bonds of the cations of ionic liquid are most
likely formed mainly between the H1 proton of the imidazolium ring and the C6 and C3
carbons of the cellulose chain [78,79]. The research indicated that the acetate anion forms
strong hydrogen bonds, as opposed to the weakly basic chloride anion, which forms weak
hydrogen bonds with cellulose [24,53,78].

3.5. TG Analysis

The thermogravimetric curve (TG) and its derivative curve (DTG) for enzyme-pretreated
celluloses (in Avicel and Whatman forms) hydrolyzed with ionic liquids are shown in
Figures 6 and 7, respectively.

Knowledge of the thermostability of nanocellulose is important, e.g., when this ma-
terial is used as a filler for a biopolymer, where elevated temperatures are required for
their production [27,63,80]. Raw cellulose is a material with moderate thermal proper-
ties, with decomposition temperature ranging between 315 and 400 ◦C [81]. The TG and
DTG curves for enzyme hydrolyzed cellulose differed from those for enzyme-pretreated
cellulose after the reaction with both ionic liquids, which indicated that hydrolysis with
ionic liquids results in changes in the characteristic degradation temperatures. All of
the tested samples initially showed slight losses of weight at temperatures below 100 ◦C,
which were related to water evaporation [47]. The presence of hydrogen bonds in the
tested cellulose materials was confirmed by FTIR analysis (Figure 1). In the curves for all
samples, except for the EmimOAc-treated cellulose, a single significant decomposition
process was observed, corresponding to the degradation processes, such as dehydration,
depolymerization, and degradation of the glycosyl rings, followed by the formation of a
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charred residue [66]. The DTG curve for the enzyme-pretreated Avicel cellulose hydrolyzed
with EmimOAc showed a different course of thermal decomposition (two peaks on the
DTG curve) and different thermal characteristics (thermal properties) compared to the
other cellulose samples. The thermal behavior of this cellulose sample can be explained by
the particle size (around 200 nm), which was greater than that of the other nanocellulose
samples. This may have caused thermal degradation to take place in multiple stages
(two peaks) and to be slower (the maximum rates of decomposition are lower compared
to the other tested samples, as shown on the y axes (%/min) for the DTG curves). The
onset temperature of degradation (Tonset) and the maximum decomposition temperature
(Tmax) for the enzyme-pretreated Avicel cellulose were 300 and 358 ◦C, respectively. In
turn, decomposition of the enzyme-pretreated Whatman cellulose took place within a
temperature range of 293–379 ◦C.
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(WA) enzyme-pretreated Whatman cellulose treated with AmimCl, and (WE) enzyme-pretreated Whatman cellulose treated
with EmimOAc.

The degradation behaviors of the enzyme-pretreated celluloses hydrolyzed with ionic
liquids presented differences from that of the cellulose treated only with the enzyme,
implying that the degradation started at lower temperatures of 211 ◦C (Avicel) and 188 ◦C
(Whatman) for the cellulose treated with AmimCl and 194 ◦C (Avicel) and 200 ◦C (What-
man) for the cellulose treated with EmimOAc. The beginning of the decomposition for
the enzyme-pretreated cellulose after the reaction with ionic liquids at lower tempera-
tures was connected with the lower crystallinity index values of celluloses treated with
AmimCl and EmimOAc. The high surface area of cellulose nanoparticles also reduces
their thermal properties because of the greater surface area exposed to high tempera-



Materials 2021, 14, 3264 11 of 14

tures [66]. The nanocelluloses obtained using different methods were characterized by
varying thermal stability. The onset temperatures for the enzyme-pretreated cellulose after
the reaction with both ionic liquids were lower than those for the nanocelluloses obtained
from wood (280 ◦C), maize husk (291 ◦C), and sugar cane (319 ◦C), as described in a paper
by Onkarappa et al. [68]. In turn, decomposition of cellulose nanocrystals obtained via
hydrolysis with sulfuric acid started at around 150 ◦C, as described by Lu and Hsieh [82].
The nanocellulose obtained by hydrolysis with BmimCl showed lower thermal stability
with a decomposition temperature of 238 ◦C as compared to 288 ◦C for raw cellulose [75].
Lower thermal stability was also exhibited by the nanocellulose produced by hydrolysis
with BmimHSO4 as compared to native microcrystalline cellulose [47].

4. Conclusions

The present study has demonstrated that nanocellulose could be produced through
hydrolysis with ionic liquids from enzyme-pretreated microcrystalline cellulose. In this study,
ionic liquids (1-ethyl-3-methylimidazole acetate (EmimOAc) and 1-allyl-3-methylimidazolium
chloride (AmimCl)) were used. The ionic liquid treatment of the cellulosic material (Avicel
and Whatman) obtained after hydrolysis with enzymes from Trichoderma reesei resulted in
a decrease of the average particle size compared to the material after enzymatic hydrolysis.
The nanocellulose samples were found to have a regular and spherical structure with
diameters of about 30–40 nm. The exception was cellulose obtained from the enzyme-
pretreated Avicel cellulose via hydrolysis with EmimOAc, which had a particle size of about
200 nm. The basic cellulose I structure was preserved in cellulose obtained after hydrolysis
with the Trichoderma reesei enzyme and nanocellulose obtained through AmimCl treatment.
In the case of enzyme-pretreated cellulose treated with EmimOAc, the transformation to
cellulose II occurred. All nanocellulose samples showed decreases in crystallinity index
values compared to the material after enzymatic hydrolysis. Moreover, treatment with
ionic liquids changed the thermal properties of nanocellulose, resulting in decreases in
their thermal stability.

Overall, the two-step process involving enzyme pretreatment and hydrolysis with
ionic liquids resulted in the production of nanocellulose. The presented results indicate
that the particle size of nanocellulose and its structure depend on the ionic liquid used.
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