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Abstract: This work aims to investigate different predictive models for estimating the unconfined 
compressive strength and the maximum peak strain of non-structural recycled concretes made up 
by ceramic and concrete wastes. The extensive experimental campaign carried out during this re-
search includes granulometric analysis, physical and chemical analysis, and compression tests 
along with the use of the 3D digital image correlation as a method to estimate the maximum peak 
strain. The results obtained show that it is possible to accurately estimate the unconfined compres-
sive strength for both types of concretes, as well as the maximum peak strain of concretes made up 
by ceramic waste. The peak strain for mixtures with concrete waste shows lower correlation values. 

Keywords: construction and demolition waste; recycled concrete aggregate; recycled ceramic  
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1. Introduction 
The construction industry is considered the largest consumer of non-renewable nat-

ural resources and it is also an important generator of waste [1]. The high consumption of 
resources is justified by the high demand for concrete in the sector, which is the most 
widely used artificial material in the world [2]. Although the raw materials and natural 
aggregates used for manufacture are abundant resources, their high exploitation and costs 
derived from their extraction entail a problem that can cause the shortage of this type of 
material in the medium to long term in many countries where its production is very high 
[3]. Construction is also considered a “dirty” industry due to the high generation of waste 
[4], both in its extraction phase and in the demolition of elements that have concluded 
their useful life. Most of these wastes are deposited in landfills, with the consequent neg-
ative visual, landscape and ecological impact that this entails. In this context, effective 
management is necessary in order to reduce both the amount of resources consumed and 
the amount of waste generated, taking advantage of its potential as secondary material in 
accordance with the concepts of sustainable development and circular economy. 

One of the main solutions that stimulate the reuse of construction and demolition 
waste (CDW) is its use in the manufacture of concrete. However, the main problem in the 
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use of this type of aggregate is focused on the high absorption capacity due to the presence 
of ceramic material and mortar adhered to the surface of the aggregates [5,6], especially 
in the fine ones [7]. This issue reduces the mechanical performance of the resulting con-
cretes. In this sense, the standards on recycled materials, such as the Spanish EHE [8], are 
quite demanding both in their physical and chemical properties, hindering the use of these 
materials for the manufacture of structural concrete due to the high requirements in waste 
treatment [9]. Consequently, it is necessary to establish alternative applications in which 
the concrete resulting from the use of recycled aggregates does not require high mechan-
ical performance, that is, non-structural concrete (NSC). Multiple studies have been fo-
cused on analysing the applicability of this type of concrete, among which are paving 
blocks [10], kerbstones [11], blocks [12,13] or even prefabricated urban furniture pieces 
[14]. 

These new concrete solutions made with recycled aggregates have very different be-
haviours and one of the main variables that most affects performance is the percentage of 
replacement of natural aggregates. In this sense, numerous studies have analysed the be-
haviour according to different mix proportions [11,15,16], suggesting a lower compressive 
strength for higher percentages of replacement of the natural aggregate, as well as greater 
strain and a lower modulus of elasticity. However, other studies suggest that the mechan-
ical performance of recycled concrete is similar to that made with natural aggregates, even 
superior in terms of its compressive strength [17] or tensile performance [18,19]. 

When the execution of these type of concretes is carried out, it is essential to have 
tools that allow us to predict their behaviour considering the different mix proportions 
and curing ages (i.e., hardening curves). However, the high variability of mix proportions 
based on the substitution of recycled aggregates and their typologies with the consequent 
diversity of results, increases the difficulty of establishing strength prediction models oc-
curing in conventional concretes [20,21]. Moreover, prediction models that incorporate 
variables, such as the substitution of natural aggregates for recycled aggregates [22,23], 
provide a useful design tool and promote the application of sustainable concretes. 

Together with the strength values, it is often very useful to know the maximum strain 
associated with concretes. In this sense, Eurocode 2 [24] provides an expression that al-
lows us to determine the peak strain as a function of the characteristic strength of concrete 
and that can be used to predict the strain based on the strengths estimated from the curves 
of hardening. This expression has been adjusted by González-Fonteboa et al. [25] for dif-
ferent substitution percentages of coarse recycled aggregates, but does not take into ac-
count the total substitution of coarse and fine aggregates. 

The use of CDW as a substitution for aggregates increases the heterogeneity of con-
crete solutions, showing very different behaviours, if adequate selection and treatment of 
waste is not carried out [26]. In this sense, the methods generally used to analyse the 
stress–strain curves and the maximum strain of recycled concrete adapt locally since they 
are based on point measurements of virtual extensometers [25,27,28]. In practice, concrete 
failure occurs promptly when the material reaches its maximum strength at the point a 
fracture begins. This means that the strain, prior to the concrete failure, can be very differ-
ent if measurements close to the cracks are considered or, on the contrary, the values are 
taken in very distant areas. 

In order to cope with the limitation previously shown, various full-field optical meth-
ods have been developed, among which, Digital Image Correlation (DIC) stands out. This 
method allows us to obtain a full field of displacements and strains through the use of 
correspondence procedures based on correlations and numerical differentiation algo-
rithms [29]. Thanks to this, DIC has been widely used for the analysis and characterization 
of various heterogeneous materials, such as wood [30], composites [31] and concrete [32]. 
In this last field, there are studies that cover both the measurement of strains [33] and the 
analysis of cracks [34,35], and even the characterization of the influence of aggregate size 
on drying contractions [36]. The variability of the technique allows carrying out analysis 
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in the plane of cubic specimens using 2D-DIC [34,35] and analysis in non-flat specimens 
using 3D-DIC [33,36,37], taking into account the variations outside the main plane. 

Considering the heterogeneous nature of these materials and the variability of their 
behaviour, it is worth highlighting the importance of carrying out the DIC approach to 
analyse the spatial distribution of the displacements and strains suffered throughout the 
specimen. The 3D-DIC approach allows us to obtain a large amount of data that facilitates 
statistical analysis and the estimation of properties [32]. In this way, the peak strain can 
be studied over a large surface of the specimen, thus analysing the failure zone and deter-
mining the peak strain more precisely as compared to other specific measurements that 
may be far from the actual behaviour of the material. As a result of this technique, it is 
possible to establish a more precise model to predict strains based on the maximum 
strength of concretes made with recycled aggregates. 

As a consequence, this paper aims to progress understanding in the mechanical char-
acterization of non-structural concretes manufactured with construction and demolition 
waste through generating predictive models of compressive strength and peak strain. For 
this, the tests of mechanical characterization of concrete with different mix proportions 
and curing ages will be integrated together with the 3D-DIC approach for the analysis of 
the strains suffered during the breaking tests. Within the Materials and Methods section, 
we describe the materials used in the mixture as well as the experimental and numerical 
strategies adopted. In Section 3, we show the experimental results obtained by the combi-
nation of DIC and the mechanical characterization tests. Then, in Section 4, predictive 
models are defined and discussed. Finally, in the Conclusion (Section 5), we summarize 
the findings and discuss future studies. 

2. Materials and Methods 
2.1. Materials and Mix Proportions 

Structural concretes are designed for structures and elements for building or for pub-
lic works, usually designed for compressive stresses of 25 MPa at 28 days [8]. It is made 
up by of natural siliceous aggregates, Portland cement and chemical additives such as 
fluidizers. Within the scope of this study, we focus on evaluating the use of wastes from 
crushing of this type of concrete in selective demolitions processed at the CDW treatment 
plant in Calvarrasa de Abajo (Salamanca, Spain) as recycled aggregates for the manufac-
ture of non-structural concrete. More specifically, this study evaluates two potential types 
of recycled concrete for non-structural applications (borders and sidewalks): (i) a concrete 
coming from Construction and Demolition Waste from Recycled Concrete (CDWRCon) 
and; (ii) a concrete made up by the Construction and Demolition Waste from Recycled 
Ceramic (CDWRCer). In both cases, cement, water and additive were mixed.  

On the one hand, CDWRCon is obtained from concrete, cement mortar and prefabri-
cated concrete parts, including untreated aggregates and natural stone aggregates treated 
with hydraulic binders and other fractions (content < 0.1%) of floating material, cohesive 
materials (clay and soil), metals (ferrous and non-ferrous), wood, gypsum and non-float-
ing plastics and rubber. Meanwhile CDWRCer is obtained from concrete, including con-
crete products, cement mortar, prefabricated concrete parts and ceramic materials, show-
ing a continuous granulometry with concrete and ceramic material aggregates. The 
CDWRCer components are the same as CDWRCon with the addition of other materials 
as parts of clay (bricks and tiles), calcium silicate masonry, non-floating aerated concrete 
and glass. 

According to the categories established in the UNE-EN 13242 standard [38], the 
CDWRCon aggregates are classified as Rc80, Rcu90, Rb10−, Ra10−, X1-, FL5− and the CDWRCer 
aggregates are classified as Rc40, Rcu50, Rb50−, Rg2−, FL5− (Table 1) (Figure 1), where: 
Rc = Concrete and mortar (natural aggregates with cement mortar attached). 
Ru = Unbound aggregates (natural aggregates without cement mortar attached). 
Rb = Ceramics (bricks, tiles, stoneware and sanitary ware). 
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Ra = Asphalt. 
Rg = Glass. 
FL = Floating materials. 
X = Other impurities (wood, paper, metals, plastic, etc.). 

Table 1. Proportions of the different aggregates. 

Components 
CDWRCon CDWRCer 

Contents (%) Categories Contents (%) Categories 
Rc 82.5 Rc80 42.4 RcDeclared 

Rc + Ru 90.7 Rcu90 55.0 Rcu50 
Rb 0.8 Rb10− 39.6 Rb50− 
Ra 8.3 Ra10− – – 
Rg – – 0.1 Rg2− 
X 0.1 X1− 5.2 – 
FL ≤0.1 FL5− ≤0.1 FL5− 

 
Figure 1. Visual appearance of the aggregates: (a) CDWRCon and (b) CDWRCer components. 

It is noteworthy that the UNE-EN 13242 [38] standard establishes a maximum of 1% 
for class X, which includes cohesive materials (clay and soil), metals (ferrous and non-
ferrous), wood, gypsum, non-floating plastics and rubber. The CDWRCer has an amount 
of gypsum that represents 5.2% in the general classification of the components, not corre-
sponding to the class established by the standard for this type of material. The gypsum is 
prejudicial to concrete due to its composition of sulphate and, therefore, it is necessary to 
consider a sulphate resistant cement. 

Table 2 shows the particle size distribution. In CDWRCon, values of uniformity co-
efficient, Cu = 75.0, and curvature coefficient, Cc = 2.1, were obtained. The high value of 
the uniformity coefficient shows the high size variation obtained in the unclassified crush-
ing. The curvature coefficient, 1.0 ≤ Cc ≤ 3.0, defines the CDWRCon and the CDWRCer as 
well-graded and with a low compressibility, a high compactness and correspondingly 
suitable for use on construction sites. 

Table 2. Aggregate type and particle size distribution characteristics of the CDWRCon and CDWRCer. 

Material D10 (mm) D30 (mm) D50 (mm) D60 (mm) Cu Cc % Fines % Sand Size % (4.75–9.5) mm % (9.5–40.0) mm 
CDWRCon 0.08 1.0 2.5 6.0 75.0 2.1 11.1 56.1 1.2 32.0 
CDWRCer 0.08 1.2 7.0 11.0 137.5 1.6 10.4 43.5 12.9 38.6 
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Additionally, a granulometric study was carried out. In this case it was compared the 
granulometric curves of both concretes (CDWRCon and CDWRCer) with respect to the 
Bolomey dosing (reference curve) in accordance to the standard UNE EN 933-1 [39]. This 
reference curve, which is considered as an improvement of the Fuller law, is adequate for 
mass concrete (i.e., non-structural concrete), where the resistance is not the determining 
characteristic. 

The results of this comparison are shown in Figure 2. It is worth mentioning that the 
granulometric curve of the CDWRCon concrete includes the cement used as an aggregate 
(20% of the total volume of aggregates). The Bolomey curve was estimated by considering 
a wet mix macadam with the following proportions [40]: (i) ±2% for the 0.063 mm; and (ii) 
± 6% for the rest. As this research aims to investigate the manufacture of a sustainable 
concrete, promoting the use of recycled aggregates replacing natural aggregates in con-
crete, the continuous granulometry obtained in the crushing of the CDWs has been used 
in the production of the concrete. Thus, better particle size adjustments have been avoided 
by classifying it into different fractions, as this would be a commercial disadvantage for 
its implementation in practice. In the CDWRCon the biggest deviations are in the 20 mm 
sieve with 13.6% above and 14.7% on the 2.5 mm sieve. There is a little standard error of 
2.5% below the medium curve. This curve has the typical form of crushing siliceous ag-
gregates, with a deficit of intermediate sizes in the sand fraction, between the #5–2.5 mm 
sieves. Even with the logical limitations associated with the heterogeneity of the recycled 
aggregates, the theoretical dosage curve was close to the bottom of the sieve stack for sizes 
larger than 6 mm in the case of CDWRCon, while the smaller sizes are above the average 
stack. It can be seen how the areas between the medium spindle and the particle size curve 
of the CDWRCon are partially compensated, below the medium spindle in the larger 
sieves and above in the smaller ones (Figure 2). 

 
Figure 2. CDWRCon versus Bolomey granulometric curves. 

Identically, the granulometric curves of the CDWRCer and Bolomey dosing are 
shown in Figure 3. In this case, the biggest deviations are in the 10 mm sieve with 18.9% 
above and 9.0% on the 0.08 mm sieve. There is a small standard error of 3.1% above the 
medium curve. Even with the logical limitations associated with the heterogeneity of the 
recycled aggregates, the theoretical dosage curve was close to the bottom of the sieve stack 
for sizes larger than 2.5 mm in the case of CDWRCon, while the smaller sizes are above 
the average stack. It can be seen how the areas between the medium spindle and the par-
ticle size curve of the CDWRCon are partially compensated, below the medium spindle 
in the larger sieves and above in the smaller ones. 
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Figure 3. CDWRCer versus Bolomey granulometric curves. 

From the results obtained it is possible to conclude that both groups have the right 
proportions of sand and gravel to make the necessary concrete for non-structural applica-
tions. Table 3 shows the main physical and chemical parameters of CDWRCon and 
CDWRCer. 

Table 3. Physical and chemical parameters for CDWRCon and CDWRCer. 

Material SE4 LA OM SS WAc (%) WAf (%) 
CDWRCon 55.9 43.0 0.14 1.1 6.2 4.0 
CDWRCer 45.3 52.0 - - 10.7 4.3 

where: 
SE4 = Sand Equivalent, UNE-EN 933-8 [41]. 
LA = Los Angeles coefficient, UNE-EN 1097-2 [42]. 
AM = Methylene blue (UNE EN 933-9) [43]. 
OM = Organic Matter content, UNE 103204 [44]. 
SS = Soluble Salt content, UNE 103205 [45]. 
WAf = Water Absorption Fine aggregate, UNE-EN 1097-6 [46]. 
WAc = Water Absorption Coarse aggregate, UNE-EN 1097-6 [46]. 
SO3 = acid soluble sulphate content, UNE-EN 1744-1 [47]. 
S = sulfur compounds total content, UNE-EN 1744-1 [47]. 
mlpc = light contaminant content, UNE-EN 1744-1 [47]. 
Humus = light organic contaminant in humus content, UNE-EN 1744-1 [47]. 

The quality of the fines, expressed as SE4 sand equivalent, gives a value of 55.9 in 
CDWRCon. This value is lower than the common values of natural aggregates. The sand 
equivalent for CDWRCer is even lower than the CDWRCon with a value of 45.3. This 
difference is motivated by the existence of parts of clays (bricks and tiles), as well as cal-
cium silicate masonry elements that reduce the sand lecture and SE4 value. Since non-
structural recycled concretes (NSRC) are not subjected to any specific exposure class, the 
aggregates shall be accepted if satisfy the requirement AM ≤ 0.3 f/100. 

Fragmentation resistance offers an LA coefficient of 43.0 for CDWRCon. The re-
sistance to fragmentation in CDWRCer, with LA = 52.0, is lower than CDWRCon. This 
difference is motivated by the presence of bricks, tiles and calcium silicate masonry. So, 
the coarse aggregates have an abrasion resistance between 40 and 55, being possible to 
make non-structural concrete with a minimum characteristic strength of 15 N/mm2. 

The organic matter test provided a 0.14% value in CDWRCon. The content of soluble 
salts dissolved in distilled water for CDWRCon was 1.1%. The CDW has a high-water 
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absorption coefficient, higher than natural aggregates. In the CDWRCon, the high absorp-
tion was associated with the porosity of the concrete. The water absorption coefficients 
are bigger in CDWRCer. In the coarse fraction, the absorption coefficient was 6.2% for 
CDWRCon and 10.7% for CDWRCer. This difference is associated with the absorption of 
clay materials, bricks and tiles. The fine fractions have absorption coefficients similar for 
both materials. 

According to UNE-EN 13242 standard [38], the CDWRCon corresponds to the AS0.8 

class of acid soluble sulphate. The CDWRCer presents a greater content of these parame-
ters, relating to the declared classes (ASDeclared and SDeclared), with a content of 2.1 and 1.2 to 
acid soluble sulphate and of sulphur compounds, respectively. 

The blinder used for manufacturing the concrete was a cement type BL II/B-LL 42,5 
R. This cement has the following components: (i) a Clinker content comprised between 
65–79%; (ii) a Limestone content of 21–35%; (iii) a Chloride content: ≤0.10; (iv) a Sulphate 
content: ≤4.0; and (v) a soluble toilet chromium VI content ≤ 0.0002%. It has a beginning 
setting of: ≥60 min and an end setting of: ≤720 min. The expansion is less than 10 mm. 
Resistance at 2 days: ≥20 MPa and resistance at 28 days in the interval 42.5 ≤ R ≤ 62.5 MPa. 
As an additional feature looking for the best termination, a white cement has been chosen, 
with a whiteness content ≥85%. 

2.2. Mechanical Characterization of the Concrete: The 3D Digital Image Correlation Method 
This section shows the 3D digital image correlation (3D DIC) strategy used for ob-

taining a full field of displacements in the different concrete samples tested. Figure 4 
shows the methodology followed.  



Materials 2021, 14, 3177 8 of 27 
 

 

 
Figure 4. Graphical representation of the 3D-DIC approach. 

2.2.1. Data Acquisition Prototype and Specimen Preparation 
The concrete solutions were evaluated by means of compression tests according to 

guideline UNE-EN 12390-3 [48]. In order to carry out these tests, an electromechanical test 
machine Servosis ME-405/50/5 (Servosis, Madrid, Spain) was used with a load cell of 500 
kN and the corresponding compression plates. 

In order to capture the displacements and strains suffered by the concrete solutions 
during compression tests, a 3D-DIC approach was used. The acquisition of these images 
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was carried out using a low-cost 3D-DIC prototype similar to the developed by Garcia-
Martin et al. [49] (Figure 5). This prototype is made up of (Table 4) (Figure 5): (i) two high 
resolution cameras Canon EOS 700D equipped with a 60 mm prime macro-lens; (ii) a pro-
grammable logic controller (PLC); and (iii) two neutral LED lights. 

Table 4. Canon 700D with macrolens technical specifications. 

Sensor Type CMOS APS-C 
Sensor size 22.3 × 14.9 mm2 
Crop factor 1.61 
Pixel size 4.3 μm 

Image size 5184 × 3456 px 
Total pixels 18.5 Mpx 
Focal length 60 mm 

Closer focused distance 254 mm 
Lens magnification 1:1 (life size) 

Dimensions 133.1 × 99.8 × 78.8 mm 

 
Figure 5. Data acquisition prototype: (a) platform of cameras and lighting units; (b) PLC and Quantum connections; and 
(c) single-line connection diagram. 

The synchronization of both cameras was carried out by means of a PLC that allowed 
us the programming of simultaneous shots. Furthermore, it was connected to a Quantum 
data acquisition platform (Figure 5b,c), allowing for the association the images to be cap-
tured with the load applied by the press. 

The application of the DIC approach requires the presence of a speckle pattern that 
provides random intensity variations on the surface of the samples. In this sense, the aer-
osol technique allows us to create speckle patterns with millimetre or submillimetre spot 
size on the surface of the specimens [29]. The procedure to obtain this pattern consists of 
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the following steps: (i) application of a white paint on the surface of the specimen; (ii) 
creation of black dots over the white surface by means of a spray; and (iii) quality evalu-
ation according to the Mean Intensity Gradient (MIG) parameter [50]. 

2.2.2. Camera Orientation 
An orientation phase was carried out ahead of the data acquisition. This phase al-

lowed us to pass from the 2D images to a 3D point cloud. From the present case study, the 
Solav et al. [51] strategy was used. This approach integrates the Bundle Adjustment (BA) 
algorithm with the Direct Liner Transformation (DLT) algorithm to obtain the distortion, 
and internal and external parameters of the cameras.  

Firstly, the inner calibration of the cameras was obtained by using the BA method. 
This method allowed us to minimize the overall re-projection error of the control points 
(corners of squares) extracted from a calibration pattern. Therefore, lens distortion can be 
corrected by using a non-linear distortion model, replacing the idealized coordinates with 
those corrected, according to a Gaussian radial distortion model (Equation (1)). In order 
to guarantee the accuracy and quality of this process, it is necessary to capture a set of 
images, generally between 50 and 100 [51], of a flat calibration target so that different po-
sitions and orientations are captured throughout the FOV. 

�
𝑥𝑥𝑑𝑑
𝑦𝑦𝑑𝑑�  =  (1 + 𝑘𝑘1𝑟𝑟2  +  𝑘𝑘2𝑟𝑟4  +  𝑘𝑘3𝑟𝑟6) ∙ �

𝑥𝑥
𝑦𝑦�  +  �2𝑝𝑝1𝑥𝑥𝑥𝑥 +  𝑝𝑝2(𝑟𝑟2  +  2𝑥𝑥2)

𝑝𝑝1(𝑟𝑟2  +  2𝑦𝑦2)  +  2𝑝𝑝2𝑥𝑥𝑥𝑥
� (1) 

where 𝑟𝑟2  =  𝑥𝑥2  +  𝑦𝑦2 represents the radial distance, r, computed from the images’ coor-
dinates (x,y); (xd, yd) are the image coordinates corrected from lens distortion; k1, k2, k3 are 
the radial distortion parameters; and p1, p2 are the decentering distortion parameters. 

Once the lens distortion has been corrected, the DLT algorithm allows us to relate the 
image coordinates (xd, yd) and the object coordinates (X’, Y´, Z´). This algorithm provides 
a linear solution of 11 mathematical parameters equivalent to the non-linear model of 9 
geometric parameters. The system can be solved knowing at least six points (Equation 
(2)). In this case a non-planar calibration object is used in which there are control points 
with their known 3D coordinates. Furthermore, the DLT algorithm allows us to obtain the 
3D coordinates of a specific point by using the 2D coordinates of this point in at least two 
images.  

𝑥𝑥𝑝𝑝  =  
𝐿𝐿1𝑋𝑋 +  𝐿𝐿2𝑌𝑌 + 𝐿𝐿3𝑍𝑍 +  𝐿𝐿4
𝐿𝐿9𝑋𝑋 +  𝐿𝐿10𝑌𝑌𝐿𝐿11𝑍𝑍 +  1

 

𝑦𝑦𝑝𝑝  =  
𝐿𝐿5𝑋𝑋 +  𝐿𝐿6𝑌𝑌 + 𝐿𝐿7𝑍𝑍 +  𝐿𝐿8
𝐿𝐿9𝑋𝑋 +  𝐿𝐿10𝑌𝑌𝐿𝐿11𝑍𝑍 +  1

 
(2) 

where xp and yp are the image point coordinates and L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11 

correspond to the 11 mathematical parameters of the DLT. 

2.2.3. Correlation 
As previously stated, the proper orientation of the cameras allowed us to reconstruct 

the common pixels between cameras in a common 3D space. Prior to this 3D reconstruc-
tion, it was required  to use a correlation algorithm that allows matching homologous 
pixels captured at the time i and its homologous at the time i + 1 (Figure 6) in order to 
obtain the displacement vector (Figure 4).  
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Figure 6. Image registration in 3D-DIC approach. 

In order to carry out the matching procedure, it is necessary to divide the Region of 
Interest (ROI) into smaller areas called subsets (Figure 4). The degree of similarity between 
the subsets of each image is evaluated using the Zero mean Normalized Cross-Correlation 
(ZNCC) criterion [52]. This correlation criterion is insensitive to the offset and linear scale 
in illumination lighting, offering the most robust noise-proof performance (Equation (3)). 

𝐶𝐶𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍  =  
∑𝑓𝑓𝑖̅𝑖𝑔̅𝑔𝑖𝑖

�∑𝑓𝑓𝑖̅𝑖
2 ∑ 𝑔̅𝑔𝑖𝑖2

 (3) 

where 𝑓𝑓̅  =  1
𝑛𝑛

 ∑ 𝑓𝑓𝑖𝑖𝑛𝑛
𝑖𝑖 = 1 , 𝑔̅𝑔  =  1

𝑛𝑛
 ∑ 𝑔𝑔𝑖𝑖𝑛𝑛

𝑖𝑖 = 1 , 𝑓𝑓𝑖̅𝑖  =  𝑓𝑓𝑖𝑖 −  𝑓𝑓̅, 𝑔̅𝑔𝑖𝑖  =  𝑔𝑔𝑖𝑖 −  𝑔̅𝑔  with 𝑓𝑓𝑖𝑖 ,𝑔𝑔𝑖𝑖  represent-
ing the intensity value of the ith pixel point within reference subset and deformed subset, 
respectively. 

The use of the ZNCC correlation allows for matching homologous points with pixel 
accuracy. In order to obtain a sub-pixel accuracy, the use of the following two-fold ap-
proach is required [53]: (i) a b-spline b-quantum interpolation scheme to pass from the 
discrete values of the images (0–255) to a continuous space [54]; and (ii) the Inverse Com-
positional Gauss–Newton method (IC-GN) for the minimization of the cost function that 
relates the reference subset to the deformed one. With the aim of minimizing the error 
accumulation due to the matching process, the Reliability-Guided Digital Image Correla-
tion (RG-DIC) algorithm was used [55]. This algorithm starts from an initial point or seed 
and processes the rest of the subsets following an error minimization process. 

Once the correlation process has been carried out, it is possible to perform the three-
dimensional reconstruction of the corresponding points, thus obtaining a point cloud as-
sociated with the centres of the subsets placed within the ROI. To this end, the DLT pa-
rameters (L1–L11) obtained in the orientation process were used along with image coordi-
nates (xp, yp) of the points obtained from DIC. In this way, the real coordinates of each of 
the points (X, Y, Z) can be calculated by means of Equation (4), following a least-square 
strategy. Since the external orientation was performed with a calibration object with 
known 3D coordinates, the X, Y, Z coordinates are obtained in the global coordinate sys-
tem for all cameras. 

𝑃𝑃 =  [𝐴𝐴𝑇𝑇𝐴𝐴]−1𝐴𝐴𝑇𝑇𝑈𝑈 (4) 

where: 
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with CR and CL corresponding to the right and left cameras, respectively. 
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Once the three-dimensional coordinates of the homologous points for the entire ROI 
were obtained, these are used to calculate the displacements in 3D. In this way, it was 
possible to obtain a full field of displacements for each of the stereoscopic pairs. 

2.3. Predictive Modelling Strategy 
This section describes the strategy used for fitting both predictive models: (i) the pre-

dictive model for the unconfined compressive strength (UCS); and (ii) the predictive 
model for the maximum strain. As stated in the Introduction, the DIC approach is an 
added value in terms of the possibility of analysing the heterogeneous behaviour of the 
material and studying the maximum strains in the closest area to failure. This advantage 
allows us to establish a model to predict peak strain more precisely from the compressive 
strength of the concrete studied. 

On the one hand, different models have been proposed for predicting the compres-
sive strength [21–23] for different types and mix proportions of conventional and recycled 
concrete. However, the total replacement of coarse and fine aggregates represents a chal-
lenge that has not been addressed in the extensive bibliography and that aims to be solved 
with the predictive models proposed in this work 

Concerning the strain predictions, some design codes assumed a constant value of 
0.002, meanwhile other models directly relate compressive strength with peak strain, such 
as the one provided by González-Fonteboa et al. [25] (Equation (5)), which has been es-
tablished based on Eurocode 2 [24], considering the percentage of substitution of coarse 
aggregates for recycled aggregates: 

𝜀𝜀𝑐𝑐1  =  0.7 ∙ (𝑓𝑓𝑐𝑐𝑐𝑐)0.31 ∙ (0.0021 ∙ %𝑅𝑅𝑅𝑅𝑅𝑅 +  1) (5) 

where εc1 is the peak strain; fcm is the compressive strength at 28 days; and %RCA is the 
percentage of replacement with recycled coarse aggregates. 

However, the strain at compressive strength depends on other variables that do not 
take into account models, such as mix composition, shape and size of specimen or age of 
curing [56]. The difference in the properties of the aggregates can be decisive in the final 
behaviour of the recycled concretes, so there are prediction models that incorporate other 
variables related to the properties of the aggregates, such as the mortar content, volume, 
density crushing strength and shape index [23]. In this sense, the properties with the great-
est influence on the final result will be studied to incorporate them into the models. 

2.3.1. Model Fitting 
The model fitting strategy used was the Multiple Linear Regression (MLR) [57]. This 

fitting strategy allows us to predict the UCS and the maximum strain of the concretes by 
means of different inputs, such as the mix proportions and the specific characteristics of 
the concrete. This regression model was complemented by a variable transformation, 
which allows us to study the input–output relation from a non-linear perspective.  
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Complementary to both regression strategies, several statistical analyses were carried 
out with the aim of evaluating the statistical significance of the inputs. These tests were: 
(i) the analysis of variance (ANOVA) test, (ii) the Levene´s test; and (iii) t-Student test.  

2.3.2. Sensitivity Analysis 
The mathematical model can be finally expressed as a relationship in which there are 

three inputs bounded by the experimental data, which allows us to obtain a prediction of 
the final output value. According to this, a good practice compromises the analysis of the 
influence of each input in the final output. From the present study, it was decided to carry 
out a sensitivity analysis based on the Monte Carlo simulation (MCS). This method allows 
us to generate equiprobable situations, which could be considered as suitable sampling 
points for a subsequent sensitivity analysis. Within this context, one of the most used strat-
egies to carry out sensitivity analysis is the estimation of the Sobol’indices [58]. These in-
dices assume that the variance of the model (output) can be described as a sum of the 
variances of the inputs (Equation (6)). The normalized version of each variance with re-
spect to the total one allows us to obtain de Sobol’indices with different orders (from 1 to 
2n−1) (Equation (7)). The sum of these indices is the total Sobol’ index whose value is equal 
to 1. 

𝑉𝑉(𝑌𝑌)  =  �𝑉𝑉𝑖𝑖
𝑖𝑖

 +  ��𝑉𝑉𝑖𝑖𝑖𝑖
𝑗𝑗>𝑖𝑖

 +  ���𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘>𝑗𝑗𝑗𝑗>𝑖𝑖

 + 
𝑖𝑖𝑖𝑖

…𝑉𝑉123..𝑁𝑁 (6) 

where V(Y) is the variance of the model; Vi = V(E(Y|Xi)) is the first order partial variance; 
Vij = V(E(Y|Xi,Xj)) is the second order partial variance, etc. 

𝑆𝑆𝑖𝑖  =  
𝑉𝑉𝑖𝑖

𝑉𝑉(𝑌𝑌)
, 𝑆𝑆𝑖𝑖𝑖𝑖  =  

𝑉𝑉𝑖𝑖𝑖𝑖
𝑉𝑉(𝑌𝑌)

, (7) 

where Si is the first order Sobol’ index and Sij is the second-order Sobol’indices. 

3. Experimental Results 
3.1. Test Setup 

A total of 38 tests were carried out following the guideline UNE-EN 12390-3 [48], 19 
of which correspond to specimens with concrete aggregates (CDWRCon) and another 19 
which correspond to specimens with ceramic aggregates (CDWRCer). For each type of 
concrete, four different mix proportions were used, and for each of these two different 
curing times were analysed (Table 5). Additionally, for dosages 2, 3 and 4, a specimen was 
reserved for testing with a longer curing age. It is worth mentioning the need to employ 
high water–cement ratios (w/c) in order to achieve good concrete workability. In addition, 
the variability in these values allows us to extend the validation range in modelling. 

Table 5. Typology and characteristics of the tested specimens. 

Dosage Specimen w/c Ratio Curing Days 

CDWRCon 1 

CDWRCon 1-1 

1.38 

7 
CDWRCon 1-2 7 
CDWRCon 1-3 28 
CDWRCon 1-4 28 

CDWRCer 1 

CDWRCer 1-1 

1.38 

7 
CDWRCer 1-2 7 
CDWRCer 1-3 28 
CDWRCer 1-4 28 

CDWRCon 2 
CDWRCon 2-1 

0.67 
8 

CDWRCon 2-2 8 
CDWRCon 2-3 29 
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CDWRCon 2-4 29 
CDWRCon 2-5 90 

CDWRCer 2 

CDWRCer 2-1 

0.60 

7 
CDWRCer 2-2 7 
CDWRCer 2-3 28 
CDWRCer 2-4 28 
CDWRCer 2-5 90 

CDWRCon 3 

CDWRCon 3-1 

0.67 

12 
CDWRCon 3-2 12 
CDWRCon 3-3 28 
CDWRCon 3-4 28 
CDWRCon 3-4 90 

CDWRCer 3 

CDWRCer 3-1 

0.67 

14 
CDWRCer 3-2 14 
CDWRCer 3-3 28 
CDWRCer 3-4 28 
CDWRCer 3-5 90 

CDWRCon 4 

CDWRCon 4-1 

0.60 

21 
CDWRCon 4-2 21 
CDWRCon 4-3 28 
CDWRCon 4-4 28 
CDWRCon 4-5 90 

CDWRCer 4 

CDWRCer 4-1 

0.67 

21 
CDWRCer 4-2 21 
CDWRCer 4-3 28 
CDWRCer 4-4 28 
CDWRCer 4-5 90 

In order to optimize the configuration to be used during the 3D-DIC test, a prepara-
tion stage was carried out. The steps followed in this process were as follows: (i) applica-
tion of the speckle pattern; (ii) definition of the Ground Sampling Distance (GSD), lens 
aperture and stereo angle; and (iii) geometric calibration and orientation of the cameras. 

Firstly, a speckle pattern was applied using the aerosol technique (Figure 7b). The 
quality of the pattern was evaluated through the covering factor [31] as well as the Mean 
Intensity Gradient (MIG) index [50]. For the first variable, an average value between 45–
50% was obtained. Meanwhile the MIG values were comprised between 30–35, which was 
considered acceptable taking into account the method used [50]. 
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Figure 7. Digital Image Correlation campaign: (a) set-up used at the calibration stage; (b) detail of the speckle pattern 
applied; and (c) cylindrical calibration object. 

The success of the 3D-DIC approach depends strongly on the GSD of the images and 
the stereo angle of the cameras. In this sense, an angle that is too high allows for a better 
precision in depth, but a lower precision in the plane, and an angle too small allows a 
better precision in the plane at the cost of a higher uncertainty in depth. Under this basis, 
the acquisition system was placed at 1.25 m with respect to the specimen (Figure 7a), 
achieving a GSD of 0.09 mm/px. The aperture of both lenses was established in f10, ob-
taining a good compromise between depth of field (which was of 180 mm) and sharpness. 
Additionally, a stereo angle of 10° was configured in order to avoid possible depth of field 
problems [59]. Taking into account that the loading speed was 0.4 MPa/s, the images were 
acquired each 0.6 MPa with a shutter speed of 1/100 sec, capturing the first image without 
load in order to obtain the reference image. 

Taking into account that the tests were performed on different days, the camera ori-
entation procedure described in Section 2.2.2 was repeated for each of these days before 
carrying out the tests. The geometrical calibration of the camera was carried out by using 
a high-quality checkerboard target (Figure 7a). This target is made up of a matrix of 18×29 
squares of 10 mm. Approximately 100 images were captured at different positions and 
angles, so that the BA algorithm allowed us to obtain the control points and calculate the 
lens distortion parameters, with an average re-projection error of 0.15 px for each camera. 

The external orientation was carried out applying the DLT procedure, for which an 
image of a 125 mm diameter cylindrical object was captured (Figure 7c). The calibration 
object contains several control points. These points are placed on a 18 × 25 matrix with a 
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spacing of 10 mm. It is worth mentioning that the re-projection of the control points al-
lowed us to calculate the error associated with the reconstruction, obtaining a mean value 
between 0.010–0.015 mm and a Root Mean Square Error (RMSE) value between 0.155–
0.179. 

3.2. Mechanical Properties of the Concrete Evaluated 
In order to obtain the displacement and strain on each test specimen, the 3D-DIC 

approach defined in Section 2.2 was carried out by using the open-source software Multi-
DIC [51]. This software integrates the open-source software Ncorr (Version 1.2, J. Blaber, 
Atlanta, GA, USA) [53]. Regarding DIC parameters, a subset size of 20 × 20 pixels and a 
65% overlap (step of 7 pixels) were considered to ensure a proper DIC configuration [29]. 
The interpolation between points was carried out by considering a linear shape function. 
Finally, the 3D reconstruction of the sample was obtained by applying the DLT algorithm, 
allowing us to obtain a full field of displacements (Figure 8a). 

 
Figure 8. Results obtained during the 3D-DIC: (a) displacements obtained along the longitudinal 
axis; and (b) extraction of the maximum longitudinal strain by means of the virtual extensometer. 

The strains suffered by the specimen were captured at different locations. To this end 
the following strategy was used: (i) creation of several virtual extensometers to evaluate 
the longitudinal strains (Figure 8b); (ii) extraction the peak longitudinal strain in the state 
of load prior to failure; and (iii) selection of the virtual extensometer with the maximum 
peak strain, corresponding to the failure zone. 

With the aim of obtaining a wide population, 22 virtual extensometers were placed 
in each specimen with a separation of 5 mm. In this sense, it is worth mentioning the high 
differences found between the values of the different virtual extensometers, which indi-
cate the high heterogeneous behaviour of these materials. This heterogeneity can be seen 
in the high CoV corresponding to the virtual extensometers of some sample specimens 
shown in the Table 6. In order to establish a more precise model to predict strains, the 
virtual extensometers were analysed and those that corresponded to the failure zone were 
selected, such as peak strain. 

Table 6. Results obtained from the mechanical characterization of some specimens analysed by the 
3D-DIC approach. 

Specimen Mean Lower Bound Upper Bound CoV (%) 
CDWRCon 1-1 0.0017 0.0014 0.0020 9.90 
CDWRCon 2-3 0.0025 0.0022 0.0031 7.19 
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CDWRCon 3-2 0.0020 0.0018 0.0025 10.16 
CDWRCer 1-1 0.0019 0.0013 0.0024 16.76 
CDWRCer 2-3 0.0028 0.0025 0.0030 5.44 
CDWRCer 3-2 0.0024 0.0020 0.0026 6.37 

4. Strength and Strain Models 
4.1. Concrete Strength Model 

The concrete strength model was obtained by using the MLR approach. This analysis 
was carried out with the assistance of the IBM SPSS Statistics software (Version 26.0, IBM 
Corp., Armonk, NY, USA). The input variables considered during this stage were: (i) the 
time (t); (ii) the water–cement ratio (w/c); and (iii) the percentage of material belonging to 
the class Rc + Ru (RcRu) established by UNE-EN 13242 standard [38], where Rc corre-
sponds to concrete, concrete products, mortar and concrete masonry parts, and Ru corre-
spond to untreated aggregates and natural stone aggregates treated with hydraulic bind-
ers. 

A total of 38 points were used to carry out the adjustment. Scatterplots with a trend 
line are showed in Figures 9–11, which express the correlation between each independent 
variable and the compressive strength. A positive correlation between the rupture time 
and Rc + Ru with the maximum strength was observed. The water–cement ratio shows an 
inverse correlation with respect to the maximum strength.  

 
Figure 9. Relationship between rupture time and unconfined compressive strength. 
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Figure 10. Relationship between water-cement ratio and unconfined compressive strength. 

 
Figure 11. Relationship between Rc + Ru and unconfined compressive strength. 

It is worth mentioning the low correlation between the individual inputs considered 
and the final output. Furthermore, in Figures 9–11 it can be seen how outliers can generate 
a correlation and a linear relationship between the variables that does not exist, according 
to the fourth case of Anscombe’s quartet. As a result, a multilinear regression model was 
applied in order to consider all these variables in the same prediction model. In order to 
improve this regression, a transformation of the variables was carried out. In this case, the 
most satisfactory results correspond to the use of UCS as a cubic root and rupture time as 
a fifth root. The adjustment with the transformed variables resulted in a Pearson’s corre-
lation coefficient value of 0.921, representing a high correlation, and the determination 
coefficient is 0.848, with a standard error of 0.137, as is shown in Table 7. 

Table 7. Determination coefficients for UCS model. 

Summary Model 
R R2 Adjusted R2 Standard Error 

0.921 a 0.848 0.834 0.137 
a predictors: constant, √𝑡𝑡5  (days), w/c, Rc + Ru (%). 
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Table 8 shows the results obtained after applying the ANOVA strategy as well as 
Levene´s test. This test revealed a homoscedasticity with an F = 63.009 and a significance 
of 0.000 for 37 degrees of freedom. In this case, variances are significantly different and 
factors such as the rupture time, water–cement ratio and Rc + Ru have a statistical signifi-
cance with the UCS.  

Table 8. Analysis of variance for UCS model. 

ANOVA a 
Model Squares Sum Degrees of Freedom Average F sig. 

regression 3.531 3 1.177 63.009 0.000 b 
remainder 0.635 34 0.019   

Total 4.166 37    
a dependent variable: √UCS3  (MPa); b predictors: constant, √𝑡𝑡 5 (days), w/c, Rc + Ru (%). 

The increase in the quality of the adjustment with the transformed variables, based 
on the value of the correlation coefficient, was not significantly high. However, it is con-
sidered advantageous to use the transformations in order to achieve the best possible ap-
proximation.  

The obtained coefficients and the Student’s t-test results are shown in Table 9 with a 
high value of the t statistic, between 4.211–10.069. All the variables are significant (sig. < 
0.050). 

Table 9. Determination coefficients for UCS model. Dependent variable: √UCS3 . 

Model 
No Standard Coefficients Standard Coefficients 

t sig. 
B Standard Error β 

Constant 1.983 0.197  10.069 0.000 
t (days) 0.385 0.076 0.354 5.040 0.000 

w/c −0.774 0.077 −0.702 −9.991 0.000 
RcRu (%) 0.005 0.001 0.282 4.211 0.000 

Therefore, the equation that represents the best fit is Equation (8). 

√UCS3  =  0.385 × √𝑡𝑡5 − 0.774 × 𝑤𝑤/𝑐𝑐 +  0.005 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 +  1.983 (8) 

where, UCS is unconfined compressive strength (MPa), t is rupture time (days), w/c is 
water–cement ratio and RcRu is material belonging to the class Rc + Ru. There is a validity 
range to the significance of the model that is shown in Table 9. UCS has a range between 
5.13 and 25.27 MPa. Rupture time is from 7 until 90 days. The water–cement ratio is from 
0.60 until 1.38 and Rc + Ru is between 54.99 and 90.74.  

In order to understand which variables are the most relevant in the strength predic-
tion model of the recycled concrete, a Sobol sensitivity analysis was carried out. A total of 
500,000 simulations were performed in order to carry out this analysis through a Monte 
Carlo Simulation. For each of the simulations, the input variables were modified within 
the ranges obtained from the experimental results. 

Figure 12 indicates that the water/cement ratio is the most relevant parameter in the 
compressive strength prediction model. This property explains 71% of the total variance, 
agreeing with the Student’s t-coefficients previously analysed. The rupture time has a 
greater influence in the final output with a Sobol index of 0.22 (22%), while Rc + Ru per-
centage is the variable that least affects the prediction. The great similarity between the 
first and the total Sobol’indices highlights the absence of a second-order effect. 
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Figure 12. Results obtained during the sensitivity analysis of the strength model: (a) Total Sobol’indices and; (b) First-
order Sobol’indices. 

4.2. Concrete Strain Model 
The inputs evaluated for predicting the maximum strain of the concretes were the 

compressive strength, the curing age and the water–cement ratio. Scatterplots with a lin-
ear trend are shown in Figures 13–15, which express the correlation between each inde-
pendent variable and the peak strain. 

 
Figure 13. Relationship between rupture time and peak strain. 
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Figure 14. Relationship between unconfined compressive strength and peak strain. 

 
Figure 15. Relationship between water–cement ratio and peak strain. 

The results in this case, for the simple regressions, also show a low correlation and 
outliers in Figure 15. Taking into consideration the values previously obtained, several 
multiple linear regressions with variable transformation were carried out. It is worth men-
tioning that a total of two maximum strain equations were obtained due to the dissimilar-
ity of the data for the CDWRCon and CDWRCer. For this adjustment, a total of 32 samples 
were used. 

The following transformations were used during the adjustment: (i) a square root for 
the peak strain; (ii) a cubic root for the UCS; and (iii) a fifth root for the rupture time. As a 
result of the transformations carried out, it was possible to obtain an adjustment for the 
concrete manufactured with CDWRCon with a Pearson’s correlation coefficient value of 
0.859, with the determination coefficient as 0.738 and a standard error of 0.090 (Table 10). 
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Table 10. Determination coefficients for strain model of CDWRCon. 

Summary Model 
R R2 Adjusted R2 Standard Error 

0.859 a 0.738 0.673 0.090 
a predictors: constant, √𝑡𝑡5  (days), √𝑈𝑈𝑈𝑈𝑈𝑈3  (MPa), w/c. 

The analysis of variance (ANOVA) (Table 11) showed that the variables have vari-
ances significantly different and the predictors have a statistical significance on the peak 
strain prediction. The result in the Levene’s test yielded a F = 11.272 with 0.001 of signifi-
cance for 15 degrees of freedom. 

Table 11. Analysis of variance for strain model of CDWRCon. 

ANOVA a 
Model Squares Sum Degrees of Freedom Average F sig. 

regression 0.271 3 0.090 11.272 0.001 b 
remainder 0.096 12 0.008   

Total 0.368 15    
a dependent variable: �𝜀𝜀𝑝𝑝 (‰); b predictors: constant, √𝑡𝑡5  (days), √UCS3  (MPa), w/c. 

The obtained coefficients and the Student’s t-test results are shown in Table 12. They 
show low values, especially for the UCS and w/c ratio. The results show that these varia-
bles are not significant (sig. > 0.050). These values indicate the presence of anomalies that 
prevent obtaining an accurate prediction model for this type of concrete. 

Table 12. Determination coefficients for strain model of CDWRCon. Dependent variable: �𝜀𝜀𝑝𝑝. 

Model 
No Standard Coefficients Standard Coefficients 

t sig. 
B Standard Error β 

Constant 1.323 0.715  1.849 0.089 
t (days) 0.692 0.181 0.885 3.816 0.002 

UCS (MPa) −0.213 0.271 −0.537 −0.787 0.447 
w/c −0.353 0.296 −0.740 −1.192 0.256 

In order to determine what happens in the CDWRCon model, the data used to calcu-
late the model were analysed individually and compared with the CDWRCer data. A 
greater data dispersion was found for the concretes made up by concrete waste, while 
ceramics have a more uniform distribution with no empty ranges (Figure 13). This issue 
could be attributed to an insufficient population. Thus, although the R2 coefficient can be 
considered as acceptable, the parameters are not correct and the predictions for values of 
the inputs differ from those used to generate the model, which may result in erroneous 
predictions.  

On the other hand, the model for the concrete manufactured with CDWRCer yielded 
a better adjustment with a Pearson’s correlation coefficient value of 0.917, while the deter-
mination coefficient is 0.840 with a standard error of 0.085 (Table 13). 

Table 13. Determination coefficients for strain model of CDWRCer. 

Summary Model 
R R2 Adjusted R2 Standard Error 

0.917 a 0.840 0.775 0.085 
a predictors: constant, √𝑡𝑡5  (days), √UCS3  (MPa), w/c. 
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The analysis of variance (ANOVA) (Table 14) is similar to the previous case, with a 
result in the Levene’s test of F = 11.402 with 0.001 of significance for 15 degrees of freedom. 
This analysis shows that the variables have variances significantly different and the pre-
dictors have a statistical significance on the peak strain prediction.  

Table 14. Analysis of variance for strain model of CDWRCer. 

ANOVA a 
Model Squares Sum Degrees of Freedom Average F sig. 

regression 0.244 3 0.081 11.402 0.001 b 
remainder 0.086 12 0.007   

Total 0.330 15    
a dependent variable: �𝜀𝜀𝑝𝑝 (‰); b predictors: constant, √𝑡𝑡5  (days), √UCS3  (MPa), w/c. 

The Student’s t-test results (Table 15) show a good value of the t statistic, between 
2.442–5.036. These results indicate that all the variables are significant (sig. < 0.050) and 
the model seems to have a correct behaviour in this case. 

Table 15. Determination coefficients for strain model of CDWRCer. Dependent variable: �𝜀𝜀𝑝𝑝. 

Model 
No Standard Coefficients Standard Coefficients 

t sig. 
B Standard Error β 

Constant 1.963 0.485  4.044 0.002 
t (days) 0.740 0.147 1.010 5.036 0.000 

UCS (MPa) −0.550 0.225 −0.803 −2.442 0.031 
w/c −0.386 0.127 −0.853 −3.030 0.010 

Therefore, the peak strain prediction model can be represented by the Equation (9). 

�𝜀𝜀𝑝𝑝  =  1.963 +  0.740 ∙ √𝑡𝑡5 − 0.550 ∙ √UCS3 − 0.386 ∙ 𝑤𝑤/𝑐𝑐 (9) 

where 𝜀𝜀𝑝𝑝 is the peak strain (‰); t is rupture time (days); UCS represents the unconfined 
compressive strength (MPa); and w/c is the water–cement ratio. 

Further, the data obtained from the strain prediction model were subjected to a vali-
dation analysis. Thus, the predictions for the experimental data were simulated and com-
pared with the results obtained during the campaign. A mean discrepancy of 6.1% was 
obtained for the CDWRCer model. These results were considered acceptable taking into 
account the low peak strain values as well as the precision required in this type of predic-
tion. 

In order to understand which variables are the most relevant in the strain prediction 
model of the recycled concrete, a Sobol sensitivity analysis was carried out. A total of 
500,000 simulations were performed to carry out this analysis through a Monte Carlo Sim-
ulation. For each of the simulations, the input variables were modified within the ranges 
obtained from the experimental results (curing days [7–30 days]; strength [5–25 MPa]; and 
water–cement ratio [0.60–1.38]). 

Figure 16 indicates that in the case of CDWRCer, the compressive strength of the 
concrete is the most relevant parameter in the peak strain prediction model. This mechan-
ical property explains 58% of the total variance, which agrees with other studies in which 
it is stated that strength is the main variable in this type of model [23,56]. The other two 
input parameters have a similar influence in the results, 24% corresponding to the curing 
age and 18% corresponding to water–cement ratio. The great similarity between the first 
and the total Sobol’indices highlights the absence of a second-order effect. 
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Figure 16. Results obtained during the sensitivity analysis of CDWRCer: (a) Total Sobol’indices and; (b) First-order 
Sobol’indices. 

5. Conclusions 
This work aimed at investigating a predictive model for the determination of the UCS 

and the maximum strain in non-structural concretes made up by two types of recycled 
waste: concrete and ceramic wastes. The inputs required for fitting these models have 
been obtained by means of an extensive experimental campaign, which include granulo-
metric analysis, physical and chemical analysis, and compression test among others. It is 
worth mentioning the use of the 3D-DIC as a remote sensing approach able to obtain a 
full-field of strains. This property allows us to accurately determine the peak strain of the 
concrete, which showed a high heterogeneity depending on the area considered.  

Within the predictive model strategy, the simple regressions yielded low correlation 
values for the individual variables, so finally an MLR model was adjusted and showed 
that there is a good correlation between all the variables considered together. In addition, 
the transformations of variables made it possible to minimize errors. This highlights the 
need to incorporate different variables to obtain a correct predictive model. 

On the one hand, the adjustment obtained using MLR demonstrates that the varia-
bles’ rupture time, water–cement ratio and Rc + Ru are able to predict the UCS with a 
determination coefficient of 0.848 within the validity range, with a standard error of 0.137. 
The coefficients showed that the w/c ratio has the greatest influence on compressive 
strength.  

On the other hand, the strain prediction model allows for estimating the peak strain 
as a function of three input variables: rupture time, unconfined compressive strength and 
water/cement ratio. The sensibility analysis showed that the UCS has the greatest influ-
ence on peak strain. Thus, the strength value obtained from the previous model can be 
employed to estimate the peak strain. 

The results obtained for the concrete manufactured with ceramic waste can be con-
sidered satisfactory, since the R2 coefficient of 0.840 is supported by several statistical anal-
yses that verified the statistical significance of the inputs, as well as the low discrepancy 
in the verification with the experimental data. However, the results obtained for the con-
crete manufactured with concrete waste model show more anomalous values with a low 
R2 coefficient and less satisfactory results during statistical analysis. These results show 
the complexity of establishing a prediction model for this type of concrete, making a larger 
population necessary to carry out the adjustment, which will try to be integrated into fu-
ture research. 

One of the main future works will focus on scaling up the data from experimental 
campaigns in order to achieve a database that allows us to contrast and scale the results 
of the modelling and check the error. Along with this, one of the main interests focuses on 
the use of the full-field data provided by the 3D-DIC approach to evaluate other properties 
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that could be of great interest in this type of concrete, such as elasticity, shrinkage or be-
haviour at the aggregate-cement interface. For this purpose, other types of tests, such as 
bending tests, could give rise to greater possibilities regarding the analysis of these prop-
erties under a 3D-DIC approach. Additionally, further dosages will be carried out in order 
to improve the influence of the w/c in the compressive strength and maximum strain. To 
this end, the use of superplasticizers will be planned. 

Additionally, the proposed methodology will be implemented in concrete with other 
types of recycled aggregates that allow for higher performance for structural uses and 
thus be possible to carry out numerical simulations with the properties obtained. 
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