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Abstract: This work presents a simple and flexible method for theoretical calculation of the main
structural parameter of weft-knitted fabrics’—the loop length and one of the main characteristics of
textile fabrics—area density, which combines physical and economical aspects. It helps to predict many
physical properties and the mechanical behaviour, which is especially important for protective textiles,
and allows predicting potential yarn consumption for knitting of one square meter of the fabric. The
main idea of the proposed method, based on Čiukas geometrical model, is to calculate different parts of
the knitted loop separately, which gives a great flexibility of such modelling. The proposed theoretical
formulas can be used for various weft-knitted structures, give very low errors to empirical calculations,
and are easy to use. It is a big advantage because known geometric models only allow a loop length of
some particular pattern to be calculated, usually of single jersey or rib 1 × 1.

Keywords: loop length; area density; weft-knitted structure; geometrical model

1. Introduction

The aim of theoretical designing of knitted fabrics—having certain a knitting machine
and a vision to produce a high-quality, aesthetic and economical knit—is to select yarns of
appropriate fibre composition, structure and properties, knitting pattern and theoretically
to calculate the loop length and area density of the fabric by mathematical formulas. It is
especially important for knitted fabrics that are going to be used for protective garments
in order to predict their physical properties and mechanical behaviour during external
hazardous factors [1]. In almost 100 years, many attempts have been made and various
models have been proposed by Dalidovich [2], Pierce [3], Chamberlain [4], Doyle [5],
Leaf [6,7], Munden and Postle [8–10], Čiukas [11,12], Kurbak and others [13–16] to obtain
relationships between dimensions of weft-knitted fabrics, properties of the constituent
yarns as well as variable factors in knitting, and to describe the knitted structure by
mathematical formulas in order to predict the structural and physical properties of the
knitted fabric before knitting. The physical and mechanical properties of the weft-knitted
fabrics, such as breaking characteristics, dimensional stability, air permeability, etc., are
highly dependent on the average loop length in the pattern repeat of the fabric, i.e., on the
length of the yarn in one unit of knitted structure [1,17]. While yarn properties, such as
raw material, spinning system, linear density and twist [18], and relaxation state [19,20]
have significant influence on the geometry of the knitted loop.

In general, there are three types of models used for theoretical designing: geometrical,
based on the loop geometry; mechanical, based not only on the geometry but also on
forces acting in the yarn bent into the loop and derived from equilibrium considerations
of the forces and couples applied to one loop by its neighbours; and energetic, based on
the minimum of energy required to obtain particular form of the loop. It is suggested
that the natural shape of the knitted loop is determined by minimum energy conditions,

Materials 2021, 14, 3059. https://doi.org/10.3390/ma14113059 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma14113059
https://doi.org/10.3390/ma14113059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14113059
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14113059?type=check_update&version=2


Materials 2021, 14, 3059 2 of 9

meaning that the loop tends to its relaxed state [10,21–23]. Usually, in order to simplify
the modelling and mechanical models themselves, an assumption is made that the knitted
loop is in fact flat (two-dimensional) and its shape is a function of the forces acting in the
plane of the fabric [7]. However, for practical purposes in theoretical designing of various
weft-knitted patterns, the geometrical models are more suitable than the mechanical or
energetic models as it does not require to know beforehand exact values of mechanical
forces acting in the loop and between the adjacent loops.

Geometrical models of the weft-knitted structure are used to establish interdependence
of the loop length, density of stitches and the yarn diameter. The geometrical description
of a yarn bent into a knitted loop includes the option to describe the axial line of the yarn
and changes in the shape and diameter of the yarn along this axial line [24–26]. In order to
simplify geometry of the loop and calculation of the loop length, geometrical models are
based on the following assumptions:

• The plane projection (two-dimensional form) of the yarn, bent into the loop, coincides
with its three-dimensional form;

• The yarn bent into the loop has a cylindrical shape; its diameter over the entire length
is circular and constant;

• The yarn elasticity over the entire length is constant;
• The loop length is equal to the length of the yarn axis.

There are several variants of the plain knitted loop geometry proposed for the math-
ematical calculation of the loop length, on which further investigations were based. In
Chamberlain’s model (1926), the loop consists of parts of circles joined by straight lines [4];
in Pierce’s model (1947), it is embraced that the top arc (loop head) and the bottom half-arcs
(loop feet) of the loop are composed of arcs and straight segments [3]; in Dalidovitch’s
model (1928) [2] and the Kurbak model (1970) [13,15], which are the closest to the real
geometry of the plain-knitted loop, the loop is composed of the top arc (loop head), two
straight segments (loop legs) and two bottom half-arcs (loop feet). However, the presented
models generally can be used only for modelling of a single jersey knitted loop, usually
made from a woollen yarn. Kurbak [13,15,16,23] developed geometrical models for various
weft-knitted structures, such as rib 1 × 1, purl 1 × 1, Milano rib; however, for each pattern,
different formulas are used, which require initial geometrical data.

After deep investigations into the possible real geometry of the weft-knitted loop, in
the new interpretation of the loop geometry proposed by Čiukas [11,12], it was established
that the top arc of the loop has an elliptical shape instead of a circle (as in the most cases of
geometrical models) (Figure 1), and the loop length comprises of the needle loop length
(the sum of lengths of the head and legs of the loop) and the length of float, that joins
two adjacent loops in one course and can be of different length (depending on how many
needles are missed between two stitches and if the stitches are made on the same needle
bar or not [11,26]).
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Figure 1. Geometrical model of the loop head by Čiukas (here d—yarn diameter; A—wale spacing;
a—large radius of ellipse; b—small radius of ellipse), (mm).

According to Figure 1, the perimeter of the ellipse PE is:

PE = π(a + b) (1)

where a is the large radius of ellipse; b is the small radius of ellipse.
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According to the given geometry of the loop head, the radius a and b can be expressed
by Formulas (2) and (3), accordingly:

a =
1
2
(A− d); (2)

b = d + 0.5d = 1.5d; (3)

where A is the wale spacing, in mm; d is the yarn diameter, in mm.
In such case the length of the loop head llh, which coincide with the half of perimeter

of the ellipsis PE, can be expressed by Formula (4) [26]:

llh = 0.5π(0.5(A− d) + 1.5d) = 0.5π(0.5A + d); (4)

The aim of this research was to adapt theory of Čiukas’ geometrical modelling to
basic weft-knitted patterns, such as rib structures with four different pattern repeats and
two variants of purl knit structures, and to propose experimentally proven mathematical
formulas which can be flexibly applied for theoretical calculation of the loop length and
area density.

2. Materials and Methods

According to the theory of Čiukas [11,12,26], the weft-knitted loop is comprised of the
needle loop (the loop head plus two legs) and a float, which connects two adjacent needle
loops and can be analysed separately for every different pattern. The weft-knitted float
can be characterized as the horizontal float, if it joins two adjacent needle loops formed
on the same needle bar, or the rib float, if it joins two adjacent needle loops formed on the
opposite needle bars (see in Figure 2).
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The length of the needle loop formed on one-needle bar knitting machine is calculated
according to the Formula (5) [11,12], while the length of the needle loop formed on two-
needle bar knitting machine is calculated according to the Formula (6) [26]:

ls = 0.5π(0.5A + d) + 2B; (5)

ld = 0.5π
√

0.25A2 + Ad + 2d2 + 2
√

B + 2d; (6)

where ls is the length of the needle loop made on a single needle bar, in mm; ld is the length
of the needle loop made on a double needle bar, in mm; A is the wale spacing, in mm; B is
the course spacing, in mm; d is the yarn diameter, in mm.

According to Formula (5), projection of the loop, knitted on one-needle bar knitting
machine, in the plain, in fact, is equal to the factual loop length. Although further in-
vestigation showed that this assumption is not correct in the case of loops formed on
two needle-bar knitting machines. It led to the conclusion that for the rib needle loop
length calculations spatial position and shape of the loop must be considered and taken
into account.

The length of the horizontal float of any length is calculated according to the Formula
(7), and the length of the rib float of any length is calculated according to the Formula (8) [26]:

lh = 0.5π(0.25iA + d); (7)
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where i is the dimensionless index describing the length of the horizontal float and it
can have only even values: 2—for the shortest float, which joins two needle loops on the
adjacent needles, 4—for the float when one needle is missed between two needle loops,
6—for the float when two needles are missed, etc.; A is the wale spacing, in mm; d is the
yarn diameter, in mm.

lr = 0.5π

(
0.5
√
(0.5iA− d)2 + 9d2 + 1.5d

)
; (8)

where i is the dimensionless index describing the length of the rib float and it can have only
uneven values: 1—for the shortest rib float, which joins two needle loops on the adjacent
needles in two needle bars, 3—for the float when one needle is missed in both needle bars,
5—for the float when two needles are missed in both needle bars, etc.; A is the wale spacing,
in mm; d is the yarn diameter, in mm.

In general case, area density of a weft-knitted fabric is calculated by Formula (9) [12]:

M =
LY·T

A·B·R·H ; (9)

where LY is the total length of the yarn in the pattern repeat (in mm), which is the sum of
the lengths of all elements, i.e., all needle loops and floats in the pattern repeat; T is linear
density of the yarn, in tex; A is the wale spacing, in mm; B is the course spacing, in mm;
R and H is the size of the pattern repeat in horizontal and vertical directions, respectively.

To find the average value of the loop length l in a pattern repeat, the total length of
the yarn in the pattern repeat LY is divided by the number of loops in the pattern repeat.

Experimental samples were produced in four variants of rib structure and two variants
of purl knit structure (presented in Figure 3) on an electronic flat weft knitting machine
Shima Seiki SES 122 (Japan), gauge E12. The samples were knitted from original yarn
packages and no additional lubrication during knitting was used. All samples were knitted
from two ply blended 50% wool/50% acrylic yarns with linear density 40 tex × 2.
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Structural parameters of the experimental knits were measured according to Standard
BS 5441:1998 and are presented in Table 1. All knitted fabrics were investigated in a
“grey” state, i.e., without finishing, but after 1-week relaxation in a free state in standard
atmospheric conditions at 20 ± 2 ◦C temperature and 65 ± 4% humidity according to
Standard EN ISO 139:2005.
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Table 1. Structural parameters of the knits.

Pattern.
Yarn

Diameter d,
mm

Wale
Density Pw,

cm−1

Course
Density Pc,

cm−1

Wale
Spacing A,

mm

Course
Spacing B,

mm

Loop Length
l, mm

Area
Density M,

g/m2

Rib 1 × 1

0.4

11.3 ± 0.2 8.0 ± 0.1 0.88 1.25 6.1 ± 0.2 449.8 ± 4
Rib 1 × 2 11.0 ± 0.2 8.2 ± 0.2 0.91 1.22 6.2 ± 0.2 424.6 ± 4
Rib 2 × 2 12.8 ± 0.2 8.4 ± 0.1 0.78 1.19 5.7 ± 0.2 491.2 ± 4
Rib 3 × 3 16.7 ± 0.2 8.5 ± 0.2 0.60 1.18 5.5 ± 0.3 618.0 ± 5
Purl 1 × 1 5.1 ± 0.1 5.3 ± 0.3 1.96 1.89 7.8 ± 0.3 292.0 ± 6

Moss-stitch
purl 5.3 ± 0.2 10.2 ± 0.2 1.89 0.98 6.7 ± 0.2 287.1 ± 5

3. Results and Discussions
3.1. Theoretical Calculation of Weft-Knitted Loop Length

To apply the model to a specific pattern and calculate lengths of specific structural
elements, firstly, type and number of the elements in the specific knitting pattern repeat
must be determined. According to the graphical notation of investigated knitted structures
(see in Figure 3), structural elements and their number in knitting pattern repeat are
presented in Table 2.

Table 2. Number of structural elements in pattern repeat.

Pattern

Number of
One-Needle Bar

Needle Loops
Nls

Number of
Two-Needle Bar

Needle Loops
Nld

Number of
Horizontal
Floats Nlh

Number of Rib
Floats Nlr

Rib 1 × 1 - 2 - 2
Rib 1 × 2 - 3 1 2
Rib 2 × 2 - 4 2 2
Rib 3 × 3 2 4 4 2
Purl 1 × 1 2 - 2 -

Moss-stitch purl - 4 - 4

Needle loops in Rib 1× 1, Rib 1× 2 and Rib 2× 2 patterns are the same in size, as all of
them are formed on two-needle bars and have at least one adjacent rib float (see in Figure 3).
In order to calculate the average loop length of these knits, lengths of individual elements,
i.e., needle loops and connecting floats, have to be calculated according to Formulas (6)–(8),
depending on the type of the element.

In Rib 3 × 3 structure, there is an extra plain loop inserted between two segments of
rib 1 × 1 (see in Figure 3). The loop geometry and length of an extra plain loop differ from
a rib 1 × 1 segment because this loop is connected to the adjacent loops by horizontal floats.
Therefore, the wale spacing and needle loop length of the rib 1 × 1 and plain knit segments
are different. It was also stated by Čiukas in [26] that if several loops are formed on a front
needle bar and several loops on a back needle bar consecutively, it will change the wale
spacing and the width of the knitted fabric. The wider needle loop is the one that connects
at least on one side to the needle loop in the opposite needle bar via rib float. In such a case,
the new wale spacing A’ for wider loops can be calculated by Formula (10) [26]:

A′ = A
2K + 1
K + 1

; (10)

where A is the wale spacing, in mm; K is the number of reverse loops in the pattern repeat.
In this case, for Rib 3 × 3: A′ = 1.05 mm.

From this point, calculations are continued according to the proposed geometrical
model: the length of one-bar needle loop and the horizontal float is calculated by Formu-
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las (5) and (7) accordingly, using original wale spacing A. The length of two-bars needle
loop and the rib float are calculated by Formulas (6) and (8) accordingly, using newly
calculated wale spacing A’ instead of A. The results of calculations are presented in Table 3.

Table 3. Theoretically calculated lengths of structure elements.

Pattern One-Bar Needle
Loop ls, mm

Two-Bars
Needle Loop ld,

mm

Horizontal
Float lh, mm Rib Float lr, mm

Rib 1 × 1 - 4.33 - 1.88
Rib 1 × 2 - 4.34 1.36 1.89
Rib 2 × 2 - 4.21 1.24 1.88
Rib 3 × 3 3.45 4.39 1.10 1.89
Purl 1 × 1 5.94 - 2.17 -

Moss-stitch purl - 4.87 - 1.98

To calculate the average loop length l in a pattern repeat, the total length of the yarn
in the pattern repeat LY is divided by the number of loops in the pattern repeat. General
expression for the total yarn length consumed in a pattern repeat can be expressed by
Formula (11):

LY = Nls·ls + Nld·ld + Nlh·lh + Nlr·lr; (11)

where Nls is the number of one-needle bar needle loops; ls is the length of one-needle bar
needle loop in mm; Nld is the number of two-needle bar needle loops; ld is the length of
two-needle bar needle loop in mm; Nlh is the number of horizontal floats; lh is the length of
horizontal float in mm; Nlr is the number of rib floats; lr is the length of rib float in mm.

In the case of patterns Rib 1 × 1, Rib 1 × 2, Rib 2 × 2 and Rib 3 × 3, following
expressions will be used for calculation of the total yarn length in the pattern repeat and
the average loop length in the pattern repeat:

LYRib1×1 = 2ld + 2lr; (12)

lRib1×1 =
LYRib1×1

2ld
; (13)

LYRib1×2 = 3ld + 1lh + 2lr; (14)

lRib1×2 =
LYRib1×2

3ld
; (15)

LYRib2×2 = 4ld + 2lh + 2lr; (16)

lRib2×2 =
LYRib2×2

4ld
; (17)

LYRib3×3 = 2ls + 4ld + 4lh + 2lr; (18)

lRib3×3 =
LYRib3×3
2ls + 4ld

. (19)

In the case of Purl 1 × 1 and Moss-stitch purl knits the calculations of the length of
the structural elements are based on the same theory as for single jersey and rib structures
accordingly. Each knit is comprised of identical but opposite to each other courses of
loops. Purl 1 × 1 knit is comprised of two single jersey courses, one of which is being
formed on the front needle bar and the second one on the back needle bar (see in Figure 3).
In Moss-stitch purl knit pattern repeat, two courses of rib 1 × 1 are used as opposite to
each other in turn (see in Figure 3).

For Purl 1× 1, the length of one-bar needle loop and the horizontal float is calculated
by Formulas (5) and (7) accordingly. The lengths of the Moss-stitch purl knit structural
elements can be calculated by Formulas (6) and (8). Total length of the yarn in the
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pattern repeats and the average length of loop in a pattern repeat are calculated by
following expressions:

LYPurl1×1 = 2ls + 2lh; (20)

lPurl1×1 =
LYPurl1×1

2ls
; (21)

LYMoss−stitch = 4ld + 4lr; (22)

lMoss−stitch =
LYMoss−stitch

4ld
; (23)

Results of the total yarn length in the pattern repeat and the average loop length in
the pattern repeat for all knits are presented in Table 4.

Table 4. Theoretically calculated yarn length in the pattern repeat, average loop length and relative
error between the theoretically calculated and experimentally measured values.

Pattern
Yarn Length in the
Pattern Repeat LY,

mm

Average Loop
Length in the Pattern

Repeat
¯
l , mm

Relative Error
between Theoretical

and Experimental
Values, %

Rib 1 × 1 12.42 6.21 1.80
Rib 1 × 2 18.16 6.05 2.42
Rib 2 × 2 23.10 5.78 1.40
Rib 3 × 3 32.64 5.44 1.09
Purl 1 × 1 16.22 8.11 3.97

Moss-stitch purl 27.38 6.85 2.24

In order to analyse the accuracy of the theoretical calculations, the relative error values
between the theoretically calculated and experimentally measured (see in Table 1) results
were calculated. As it can be seen from the results presented in Table 4, the accuracy of
theoretical calculations of the average loop length in comparison to the experimentally
measured data is very high in all cases, as the error did not exceed 4% for all analysed
rib structures and purl knits. Thus, it demonstrates that presented model and theoretical
Formulas can be used for modelling of the loop length of rib and purl structures of various
pattern repeats, as it gives very high accuracy.

3.2. Theoretical Calculation of Weft-Knitted Fabric Area Density

The next step of the application of the geometrical model is theoretical calculation
of the area density. For all analysed rib structures and Moss-stitch purl knit the given
Formula (9) was used. While investigating Purl 1 × 1 knit, it was noticed that the loop
shape changes its form. All loops of the entire row are formed either on front or back
needle bar. Each next row is being formed on the opposite needle bar than the previous
one. This force loops to bend over each other and overlap. Only top arcs of the needle loop
(loop heads) and bottom arcs of the sinker loops (loop feet) are visible on the surface of
the knitted fabric. This overlapping of the loops must be considered. According to the
geometrical model proposed in [11,12], the height of the needle loop top arc is the same
as of the sinker arc and is equal to 1.5 d. Visual investigation of the fabric showed that
two rows are covered by only one needle arc and one sinker arc. Therefore, the following
expression can be used to calculate the area density of the Purl 1 × 1 knit:

MPurl1×1 =
LY·T

A·B·R·H·1.5·d ; (24)

where LY is the total length of the yarn in the pattern repeat, in mm; T is the linear density
of the yarn, in tex; A is the wale spacing, in mm; B is the course spacing, in mm; R and H
is the size of the pattern repeat in horizontal and vertical directions, respectively; d is the
yarn diameter, in mm.
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Vertical H and horizontal R pattern repeats can be determined from the graphic
representation of knits (Figure 3). Vertical and horizontal repeats are: for Rib 1 × 1: H = 1
and R = 2; for Rib 1 × 2: H = 1 and R = 3; for Rib 2 × 2: H = 1 and R = 4; for Rib 3 × 3: H = 1
and R = 6; for Purl 1 × 1: H = 2 and R = 1; for Moss-stitch purl: H = 2 and R = 2.

Results of the area density calculations are presented in Table 5.

Table 5. Area density and relative error between the theoretically calculated and experimentally
measured values.

Pattern
Theoretically

Calculated Area
Density M, g/m2

Experimentally
Measured Area
Density, g/m2

Relative Error
between Theoretical

and Experimental
Values, %

Rib 1 × 1 449.28 449.8 ± 4 0.12
Rib 1 × 2 424.84 424.6 ± 4 0.06
Rib 2 × 2 496.78 491.2 ± 4 1.14
Rib 3 × 3 617.81 618.0 ± 5 0.03
Purl 1 × 1 292.21 292.0 ± 6 0.07

Moss-stitch purl 296.05 287.1 ± 5 3.12

The relative error between the theoretically calculated and experimentally measured
values (presented in Table 5) demonstrate very good accuracy of the presented formula for
area density calculation, as the relative error is very low, in almost all cases lower than 3%.
Thus, it can be recommended for various rib and purl structured knitted fabrics.

4. Conclusions

The presented work demonstrates that mathematical formulas for the loop length and
area density theoretical calculation, developed according to Čiukas geometrical model,
give very good accuracy for various rib and purl structured knits. The relative error of
theoretical calculation of the loop length of rib and purl structured knits with different
pattern repeats did not exceed 4% and in most cases was lower than 3%. The relative error
of theoretical calculation of the area density of investigated knits did not exceed 3%. It is
very important that presented formulas for theoretical calculation of the loop length and
area density are simple to use and can be applied for different pattern repeats of the rib and
purl structures. It helps to predict many physical properties and the mechanical behaviour,
which is especially important for protective textile, and allows to predict the possible
consumption of yarns for knitting of one square meter of the fabric. It is a big advantage in
comparison to other known geometrical models that are developed for specific structures,
generally for single jersey or rib 1 × 1.

Based on the findings of this study, future work will focus on experimental approve-
ment of this model to complex fancy and combined weft-knitted structures with tucks and
tuck-stitches in a pattern to show the flexibility of the model.
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