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Abstract: We investigate the magneto-optical transport properties and Landau levels of type-II nodal
line semimetals. The tilted liner dispersion in type-II nodal line semimetals makes the conduction
band and valence band asymmetric, and Landau levels are coupling in the presence of a magnetic
field. We find the background of absorption peaks is curved. The oscillation peaks are tailless with
the change of magnetic field. Through tuning tilt term, we find the absorption peaks of optical
conductivity change from incomplete degenerate structure to splitting double peaks structure. We
also find interband absorption peaks is no longer zero in the imaginary part of Hall conductivity.
With the change of the tilt term, the contribution of the absorption peak has two forms, one is
that the negative peak only appears at high frequencies, and the other is two adjacent peaks with
opposite signs. In addition, the resistivity, circularly polarized light and magnetic oscillation of Hall
conductivity are studied.

Keywords: magneto-optical response; landau levels; type-II nodal line semimetals

1. Introduction

Recently, as new type of topological semimetals, nodal line semimetals (NLSs) have at-
tracted extensive attention due to their unique band structure and potential applications in
nanoelectronics [1–6]. Unlike Dirac semimetals [7–9] and Weyl semimetals [2,10–14], where
the valence and conduction bands intersect at discrete points in the Brillouin zone, the NLSs
have extended energy band touching points, forming a protected one-dimensional line
or closed loop [15–19]. Many exotic physical properties caused by this special topological
structure have been studied, including magnetic susceptibility [20], Landau levels (LLs)
quantization [21–23], quantum oscillations [24–26], and optical conductivities [27,28].

According to the band dispersion slope around the band crossing points, NLSs can
be classified as type-I, type-II, and type-III [29–31]. For type-I NLS with opposite slope
sign in conduction and valence bands, its magneto-optical conductivity have studied in
Physica B: Condensed Matter, 2020, 599, 412478. In the type-II NLS, the nodal ring is
formed by two bands which are tilted dispersion along the same direction. Compared with
other type NLSs, there are significant differences in magnetic, transport and topological
properties [30]. In recent years, the theoretical and experimental research on type-II NLSs
have made some progress. The compound K4P3 was theoretically verified to be the first
type-II NLS with a pair of type-II node loops [30]. Mg3Bi2 as a type-II NLS has been
confirmed theoretically and experimentally [31,32]. A new type-II NLS model based on a
two-band cubic lattice was pointed out, and it was discovered that the landau energy level
collapsed under the influence of a magnetic field [33]. Based on first-principles calculations,
the pure titanium and pure zirconium metal have also been confirmed to have type-II nodal
line state [34,35]. Through these studies, the type-II nodal line phase has been realized in
many materials, and the related topological characteristics have been studied. However,
there are relatively few studies on the magneto-optical transport of type-II NLSs. In the
presence of a uniform magnetic field, the electron continuous energy spectrum will be

Materials 2021, 14, 3035. https://doi.org/10.3390/ma14113035 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9555-2526
https://doi.org/10.3390/ma14113035
https://doi.org/10.3390/ma14113035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14113035
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14113035?type=check_update&version=1


Materials 2021, 14, 3035 2 of 12

transformed into discrete Landau levels, and the optical transition between the Landau
energy levels will produce magneto-optical conductivity resonance peaks. In experiments,
these resonance peaks can reflect the basic band structure [36–38], and the magneto-optical
properties as a response function are also a particular experimental measure for topological
materials [39,40]. Recent studies on magneto-optical properties have provided very useful
information for topological semimetals [41–48]. Therefore, this work based on Kubo
formula to study the magneto-optical transport properties of type-II NLS is valuable. We
find that the resonance peaks of the magneto-optical conductivity exhibit some unique
characteristics. These features are very closely related to the tilted linear dispersion, which
makes the conduction band and valence band asymmetric. When the magnetic field exists,
the Landau levels are coupled and asymmetric. We find that these asymmetrical LLs make
the transitions from −(n− 1) to n and −n to (n− 1) require different energy. This result
that absorption peaks of longitudinal conductivity are incomplete degenerate structure.
The incomplete degenerate structure change into splitting double peaks structure by tuning
tilt term. We observe non-linear background for absorption peaks. However, the long tail
vanishes when the chemical potential falls in the coupled LLs. Moreover, we find that
intreband peaks are no longer zero in Hall conductivity. With the change of tilt term, the
energies of the absorption peaks from that the negative are at higher frequency relative
to positive change into two adjacent peaks with opposite signs. And the longitudinal
resistivity tensor and Hall resistivity are calculated. We also study the effect of tilt term and
chemical potential on absorption peak of circularly polarized light. Besides, the magnetic
oscillation of Hall conductivity versus temperature and tilt terms are presented.

Our paper is organized as following. In Section 2, a low energy effective model of type-
II NLS is introduced and the band structure is derived when the perpendicular magnetic
field is applied to the plane of the ring. The expressions of longitudinal conductivity
and Hall conductivity are calculated according to the Kubo formula. In Section 3, we
provide numerical results for longitudinal conductivity, Hall conductivity, resistivity and
circularly polarized lights. We also show the magnetic oscillation of Hall conductivity
versus temperature and tilt terms. Finally, we give our conclusion and summarize our
results in Section 4.

2. Model Hamiltonian

We use k·p model at Γ about k-quadratic terms, which is obtained by the low-energy
model of type-II NLS [29] as follows:

H(p) =

[
p2

x + p2
y ipz

−ipz ∆ + γ(p2
x + p2

y)

]
. (1)

The ∆ is the gap. The γ (0 ≤ γ < 1) stands for the tilt of the valence band. The low
energy dispersion in momentum space with kz = 0 is shown in Figure 1a. Two cones cross
at E = ∆

e(1−γ)
and form a ring. The linear dispersion of each point in nodal ring is tilted

and the slope signs are the same. Considering magnetic filed B = Bẑ in type-II NLS, the
gauge is Az = 0, Ax = −By/2 and Ay = Bx/2.

By replacing the standard Peierls and the ladder operator representation [40,49], the
annihilation a = lB√

2
(kx − iky) and creation operators a† = lB√

2
(kx + iky) are used, where

lB = 1/
√

eB, and kx = px +
eBy

2 , ky = py − eBx
2 , kz = pz. The Hamiltonian of type-II NLS is

written as (h̄ = c = kB = 1):

H(k) =

 1
l2
B
(a†a + aa†) ikz

−ikz ∆ + γ

l2
B
(a†a + aa†)

. (2)

For solutions to eigenvalueHΨ = EΨ, taking
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Ψ =

(
An|n〉
Bn|n〉

)
, (3)

we gain

En,λ,kz =
1
2
[EB(1 + γ) + ∆]

+
1
2

λ
√
[EB(1 + γ) + ∆]2 + 4[k2

z − EB(γEB + ∆)],

(4)

and

An,λ =
1√

1 + bn,λb∗n,λ

Bn,λ =
bn,λ√

1 + bn,λb∗n,λ

, (5)

where λ = ±1, EB = 2n+1
l2
B

and bn = − l2
B(∆+En,λ,kz )+γEB

il2
Bkz

.
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Figure 1. (a) The low energy dispersion of type-II NLS at kz = 0. Two cones with different slopes
form type-II NLS. (b) is LLs structure along kz at B = 0.8 T. (c) The LLs as a function of B at kz = 0
by Equation (4). Allowable optical transitions are indicated by black arrows. (d) Only intraband
transition are marked in LLs for B = 0.1 T. (e) is for B = 0.8 T and µ = 12.8 eV. The red (blue) LLs
represent positive (negative) branch, denoted by n ≥ (≤)0 index. The dotted pink line represents the
position of the chemical potential. The parameters N = 20, γ = 0.5, ∆ = 4 eV, and e = 1.

We get En,λ = 1
2 [EB(1 + γ) + ∆]± 1

2 |EB(1− γ)− ∆| at kz = 0. En,+(−) = γEB + ∆
and En,−(+) = EB, with B < (>) ∆

e(2n+1)(1−γ)
. The characteristics of LLs dependent on

magnetic field B at kz = 0 are displayed in Figure 1c. We define the positive (negative)
branch is represented by red (blue) line. For LLs, a specific LL is represented by the n, and
the maximum value about LLs uses the sign the N. We find that LLs not only have the
phenomenon of slope changing, but the most interesting feature is asymmetry. Before the
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slope changing, the spans of the positive and negative branches of LL are 2γeB and 2eB,
respectively. When the slopes of the positive and negative branches are interchanged, the
spans of LLs will also change. When B is within a certain range, the maximum energy of
the negative branch is less than or equal to the energy of the positive branch zero LL, so
that the negative branch and the positive branch are not mixed. When B is outside this
range, the positive and negative branches are coupled. In this case, the LLs dispersion
along kz is presented fixed B shown in Figure 1b. We find that, when the Fermi level
falls in the mixed LLs, both the conduction band and the valence band pass through
the Fermi level. These rich characteristics of LLs make the type-II NLS have interesting
magneto-optical conductivity.

The magneto-optical conductivity can be obtained by the Kubo formula, that is:

σαβ = − ie2

2πl2
B

∑
nn′

∑
λλ
′

∫ dkz

2π

f (En,λ)− f (En′ ,λ′ )

En,λ − En′ ,λ′

×
〈Ψn,λ,kz |jα|Ψn′ ,λ′ ,kz

〉〈Ψn′ ,λ′ ,kz |jβ|Ψn,λ,kz〉
ω + En,λ − En′ ,λ′ + iΓ

, (6)

where the Fermi Dirac distribution function is f (x) = 1/(1 + e(x−µ)/T), with the chemical
potential µ and the temperature T. The Γ denotes impurity scattering rate. The current
operator is expressed in jα = ∂H�

∂kα
.

With

〈Ψn,λ,kz |jx|Ψn′ ,λ′ ,kz
〉〈Ψn′ ,λ′ ,kz |jx|Ψn,λ,kz〉 =

2n(1 + γb∗n,λbn−1,λ′)
2

l2
B(1 + bn,λb∗n,λ)(1 + bn−1,λ′b∗n−1,λ′)

, (7)

〈Ψn,λ,kz |jx|Ψn′ ,λ′ ,kz
〉〈Ψn′ ,λ′ ,kz |jy|Ψn,λ,kz〉 =

2in(1 + γb∗n,λbn−1,λ′)
2

l2
B(1 + bn,λb∗n,λ)(1 + bn−1,λ′b∗n−1,λ′)

, (8)

the magneto-optical conductivity Re(σxx) and Im(σxy) are achieved by

Re(σxx)n = − e2

2πl2
B

∑n ∑λλ
′
∫ dkz

2π

f (En,λ)− f (E
n−1,λ′

)

En,λ−E
n−1,λ′

× ηn−1,λ′
n,λ;kz

× [ Γ
(ω+En,λ−E

n−1,λ′
)2+Γ2 +

Γ
(ω−En,λ+E

n−1,λ′
)2+Γ2 ],

(9)

Im(σxy)n = − e2

2πl2
B

∑n ∑λλ
′
∫ dkz

2π

f (En,λ)− f (E
n−1,λ′

)

En,λ−E
n−1,λ′

× ηn−1,λ′
n,λ;kz

× [ Γ
(ω+En,λ−E

n−1,λ′
)2+Γ2 − Γ

(ω−En,λ+E
n−1,λ′

)2+Γ2 ],
(10)

where ηn−1,λ′
n,λ;kz

=
2n(1+γb∗n,λbn−1,λ′ )

2

l2
B(1+bn,λb∗n,λ)(1+bn−1,λ′ b

∗
n−1,λ′ )

. The Re(σxx) and Im(σxy) are real part of longi-

tudinal and imaginary part of Hall conductivity, respectively.
The positions of the transition peaks in different B ranges are different due to the

asymmetric LLs. For B < ∆
e(2n+1)(1−γ)

, the positions of the peaks are:

ω =


2γeB, (n− 1) → (n),
2eB, −(n) → −(n− 1),
∆ + 2eBn(γ− 1) + eB(γ + 1), −(n− 1) → (n),
∆ + 2eBn(γ− 1)− eB(γ + 1), −(n) → (n− 1).

(11)

For B > ∆
e(2n+1)(1−γ)

, the positions of the peaks are:
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ω =


2eB, (n− 1) → (n),
2γeB, −(n) → −(n− 1),
2eBn(1− γ) + eB(1 + γ)− ∆, −(n− 1) → (n),
2eBn(1− γ)− eB(1 + γ)− ∆, −(n) → (n− 1).

(12)

3. Magneto-Optical Response

The longitudinal conductivity σxx has significant characteristics affected by asymmet-
rical LLs. The energy required to excite electronic transition from −(n − 1)th to nth is
different from the energy required from −nth to (n− 1)th. However, because the slopes
of the positive and negative branches are different, the energy required from −(n− 1)th
to nth and −n′th to (n′ − 1)th are the same in some cases. According to the positions
of the interband peaks in Equations (11) and (12), we can calculate that, at |n− n′|= 1+γ

1−γ ,
the transition from −(n − 1)th to nth requires the same energy as the transition from
−n′th to (n′ − 1)th. With γ = 0.5, the difference is |n− n′| = 3. Which is to say, the first
three peaks only come from −nth to (n− 1)th transition, and the last three peaks only are
from −(n′ − 1)th to n′th transition. The other oscillation peaks are composed of −nth to
(n− 1)th transitions and −(n′ − 1)th to n′ transitions. Therefore, the amplitudes of the
first three peaks and the last three peaks in Figure 2a are lower. There may be two low
amplitude peaks, which are studied detailedly in the following.

Figure 2a shows the real part of the longitudinal conductivity at B < ∆
e(2n+1−γ)

. From
the position of the peak Equation (11), we can see that the position of the peak moves to
the low frequency with the increase of n. We study the influence of the chemical potential
between different LLs on the oscillation peaks. When the chemical potential is above the
negative branch and below the zero energy level of the positive branch, seen as µ between
n = −19 and n = 0 in Figure 1d, taking µ = 4 eV, only the amplitude of the first two
interband peaks of the optical conductivity is lower, as shown in Figure 2a. Because the
chemical potential is below the n = −20 of the negative branch, the interband transition
from n = −20 to n = 19 is Pauli blocked. The amplitude of the first peak is lower than the
original peak because the transition from n = −19 to n = 18 is decorated and redistributed
to the intraband transition. The position of intraband peak is ω = 2eB. When the chemical
potential is between n = 1 and n = 2 of the positive branch, i.e., µ = 4.2 eV, an intraband
peak appears at ω = 2γeB. Low frequency peaks are not affected, and the corresponding
high frequency peak disappears, as shown in Figure 2b.

There are two intraband transitions when the chemical potential falls between n = 0
(positive branch) and n = −20 (negative branch), taking µ = 4.07 eV. This is different from
a typical one intraband transition as the µ is between the LLs. According to the transition
rules, one transition occurs between the positive branches, i.e., from n = 0 to n = 1 and the
other between the negative branches, i.e., from n = −19 to n = −20, which can be seen
from the two close black arrows in Figure 1d. The positions of two intraband peaks are
ω = 2γeB and ω = 2eB, respectively, shown in Figure 2a. When µ is between n = −20 and
n = 1, taking µ = 4.12 eV, optical transitions from n = 0 to n = 1 and from n = −19 to
n = −20 are possible. Because we consider optical transitions at a finite temperature, the
transition from n = −19 to n = −20 is possible. This optical transition disappears when
the temperature approaches zero. With the decrease of temperature, the possibility of this
optical transition becomes smaller and smaller, and finally disappears, which can be clearly
observed in Figure 2b.

Furthermore, the most prominent feature is that the oscillation peaks have a non-
linear background shown in Figure 2a. This can be explained according to the formula

Equation (9), the weights of the peaks are |Re(σxx)| ∝ nγ2B
ω . A more physical explanation

is that tilted cone can make the background no longer linear [50]. This is different from
the typical background of longitudinal conductivity of type-I NLS, which is linear at first
and then flat [27,28]. The effect of the tilt term on the background has also been studied
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in type-II weyl semimetal, which makes its background no longer linear compared with
type-I weyl semimetal [50].

R
e(
σ
xx
)

ħω(eV)
2 40

0

1

0

1

μ=4.07(eV)

μ=4.2(eV)

μ=4(eV)

T=0.005K

T=0.001K

T=0.01K

(a)

(b)

Figure 2. The real part of the longitudinal conductivity as a function of frequency (in units of e2

2πlB
).

(a) is plotted in several values of µ with B = 0.1 T and T = 0.01 K. (b) The effect of temperature
on the optical conductivity is plotted in several values of T with B = 0.1 T and µ = 4.12 eV. The
parameters N = 20, ∆ = 4 eV, γ = 0.5, Γ = 0.01 eV and e = 1.

When B > ∆
e(2n+1)(1−γ)

, the slopes of the positive and negative nth LL are inter-
changed. At this time, the oscillation peaks are tailless. When the chemical potential lies
between the mixed LL, taking µ = 12.8 eV, there are also two intraband transitions and
several rather than a series of interband transitions shown in Figure 3a. The two intraband
transitions are from n = 7 to n = 8 of the positive branch and from n = −10 to n = −11
of the negative branch near the chemical potential, seen in Figure 1e. The locations of the
oscillation peaks can be seen from Equation (12). Because some LLs of positive branches
are below the chemical potential, the interband transition from negative branches to these
positive branches disappears. In the same way, because some LLs of the negative branch
are above the chemical potential, the transition from these LLs to LLs of the positive branch
disappears. Hence, for coupled LLs, the peaks are tailless, which is obviously different
from the typical characteristics of peaks with a long tail. When µ = 12.8 eV, it is above
n = 7 and below n = −11. Because n can only be changed by 1 according to the optical
selection rule, the number of LLs that can transition between interband is limited, that is,
the LLs of the negative branch are −10 ≤ n ≤ −7, and the LLs of the positive branch are
8 ≤ n ≤ 11. Therefore, the number of transitions that can occur is 6, and the number of
corresponding peaks is 6, shown in Figure 3a. When moving µ gradually leaves the mixed
LLs, the number of peaks increases, but it is still tailless. Longitudinal absorption peaks
can be clearly seen from Figure 3b, taking µ = 20.2 eV. Tailless optical conductivity also
exists in coupled LLs region ∆/e(2N + 1− γ) < B < ∆/e(2N + 1)(1− γ). The reason is
that the mixed LLs depending on B have a unusual dispersion relation with kz. In a finite
kz, both positive and negative branches pass through the Fermi level, which is similar to
that of type-II Weyl Semimetal [51].
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Figure 3. (a,b) The Re(σxx) (solid curve) (in units of e2

2πlB
) compared with Im(σxy) (dotted curve)

(in units of e2

2πlB
) are plotted for µ = 12.8 eV and µ = 20.2 eV. The effect of tilt term on the optical

conductivity in units of e2

2πlB
. (c) Re(σxx) and Im(σxy) are plotted in γ = 0.3 and µ = 13.7 eV. The

parameters B = 0.8 T, and T = 0.01 K. Other parameters are the same as in Figure 2.

The influence of asymmetry energy level of positive and negative branches is even
more striking for the Hall conductivity than for longitudinal conductivity. We find that
absorption peak of Hall conductivity (Im(σxy)) has some positive oscillations within a
certain frequency and then negative at high frequencies displayed in Figure 3b. Physically,
the Hall conductivity is derived from the contribution of the four transitions: (i) the
interband transition from particle-branch LLs −(n− 1)th to hole-branch LLs n, (ii) the
interband transition from particle-branch LLs −nth to hole-branch LLs (n− 1), (iii) the
intraband transition in hole-branch LLs from (n− 1) to n, and (iv) the intraband transition
in particle-branch LLs from (n− 1) to n. On the basis of Equation (10), the contributions of
(i) and (ii) are opposite sign, and contributions of (iii) and (iv) are same in sign. Since the LLs
below the chemical potential are unoccupied states, the transition of the particle and hole
branchs from n to (n− 1) does not occur. Therefore, in Figure 3a,b, there is two intraband
transition at low frequency, which is opposite to the sign of Re(σxx). Moreover, asymmetric
particle-hole and coupled LLs make the interband peaks in Im(σxy) nonzero. The first three
interband peaks of Hall conductivity are positive and the last three interband peaks are
negative, according to (i) and (ii), shown in Figure 3a,b. Due to the above-mentioned, the
positions of the intreband transition peaks from −(n− 1)th to nth and −n′th to (n′ − 1)th
are the same with n′ − n = 1+γ

1−γ . However, the weights of the intreband transition peaks are

different with |Im(σxy)| ∝ nγ2B
ω according to Equation (10). Therefore, some weak positive

oscillations are found in Figure 3b.
The asymmetry of particle and hole branches is mainly affected by tilt term γ. When

the value of γ cannot satisfy that 1+γ
1−γ is a positive integer, the characteristics of Hall

conductivity and longitudinal conductivity are obviously different from the above. When
the difference between n and n′ is close to 1+γ

1−γ , the peaks from −(n − 1)th to nth and
−n′th to (n′ − 1)th are close, shown in Figure 3c. Moreover, the oscillation intensity from
−(n− 1)th to nth is lower than that from −n′th to (n′ − 1)th complying with |Im(σxy)| ∝
nγ2B

ω . According to the above theoretical analysis, Hall conductivity shows two adjacent
peaks with opposite signs, as we can see from Figure 3c.
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Experimentally, elements of the longitudinal resistivity tensor ρxx and Hall resistivity
tensor ρxy can be obtained with formulas Equations (9) and (10) via expressions ρxx = σxx/S
and ρxy = σxy/S, where S = σxxσyy − σxyσyx [52–54]. The component σyy = σxx and
σyx = −σxy. Thus, ρxx = σxx/[σ2

xx + σ2
xy] and ρxy = σxy/[σ2

xx + σ2
xy]. Figure 4 presents

longitudinal resistivity ρxx and Hall resistivity ρxy as a function of photon energy for
different chemical potentials and tilt terms, fixed B = 0.8 T, T = 0.01 K. Intraband
transitions at low frequencies have a large resistivity displayed in the enlarged image in
Figure 4. The oscillating peak related to interband transition of the resistivity is just the
opposite of the oscillating peak of the conductivity.

4 8 12

ρ
(ω

)

(b)

3

0

-3

ρxy

ρxx

-5
10 20

5

ħω(eV)

2 4

0

0

0 6 8

2

0

(a)

(c)

0

10

30

-30
30

50

50

220

-100

600

-200

Figure 4. Resistivity in units of 2πlB. (a–c) corresponds to (a–c) in Figure 3. The parameters are the
same as in Figure 3.

Then, we study the circularly polarized light in type-II NLS that can be detected in
experimentally, just as the Faraday and Kerr effects, which is quantified as σ± = σxx ± iσxy.
The left- and right-handed polarized lights are represented by σ− and σ+, respectively.
The absorptive part of the conductivity is Re(σ±) = Re(σxx) ∓ Im(σxy). With Equations (9)
and (10), the absorptive parts for left- and right-handed polarized lights are plotted as a
function of ω in Figure 5a. In graphene, Weyl semimetal, and other materials, the most
typical characteristic of circularly polarized light is that the amplitudes of the peaks for
left-handed (right-handed) circularly polarized light at low frequency are twice that of
optical conductivity (disappear), and other peaks are consistent with the longitudinal
conductivity [41,55–58]. For type-II NLS, there are several important differences. The
closed peaks are absent in left- and right-handed polarized lights compared with optical
conductivity. In addition, not only the positions of σ− and σ+ peaks are different, but
also the amplitudes of σ− peaks are stronger than that of σ+. The σ− (σ+) peaks are from
the transition between −n and (n− 1) (between −(n− 1) and n). And the doubling and
disappearance of peaks not only occur at low frequencies, but similar situations also occur
in high frequency intreband transitions. These interesting phenomena are attributed to
asymmetry of particle and hole branches.
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Figure 5. (a) The absorption part of the optical conductivity (in units of e2

2πlB
) for circularly polarized

light. The parameters are the same as in Figure 3c. (b) Power spectrum (in units of e2

2πlB
) versus

energy. The parameters are the same as (a).

The difference between σ− and σ+ can also be displayed in the power absorption
spectrum given by [59]

P(ω) =
E
2
[σxx(ω) + σyy(ω)− iσyx(ω) + iσxy(ω)]. (13)

The spectrum P(ω) as a function of energy is shown in Figure 5b. Since the negative
part of σxy is the positive part of σxx (see Equations (9) and (10)), its peak is basically
the same as the peak of longitudinal optical conductivity, instead of alternating positive
and negative.

For further understand Hall conductivity of type-II NLS. The magnetic oscillation is
studied in σxy, which can be obtained from the standard formula in the linear response
theory [60–62].

σxy = − ih̄e2

V ∑
ζ 6=ζ ′

fζ(1− fζ ′)〈ζ|jx|ζ ′〉〈ζ ′|jy|ζ〉
1− eβ(Eζ−Eζ′ )

(Eζ − Eζ ′)2 . (14)

Due to fζ(1− fζ ′)(1− eβ(Eζ−Eζ′ )) = fζ ′(1− fζ), one can arrive

σxy = − ih̄e2

V ∑
ζ 6=ζ ′

( fζ − fζ ′)
〈ζ|jx|ζ ′〉〈ζ ′|jy|ζ〉

(Eζ − Eζ ′)2 , (15)

where V is volume, and |ζ〉 ≡ Ψn,λ,kz ,

1
V ∑

k
=

1
(2π)3

∫
dkz. (16)

According to Equation (8), we know

〈ζ|jx|ζ ′〉〈ζ ′|jy|ζ〉 = iηn−1,λ′
n,λ;kz

. (17)

Substituting Equations (16) and (17) into Equation (15), we obtain the Hall conductivity as

σxy =
h̄e2

(2π)3

∫
dkz ∑

ζ 6=ζ ′
(ηn−1,λ′

n,λ;kz
)

fζ − fζ ′

(Eζ − Eζ ′)2 . (18)
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The amplitude of oscillations is hardly affected by temperature, but it is sensitive to
the tilt term seen from Figure 6. The amplitude of oscillations is reduced considerably at
relatively large tilt term. As B increases, the oscillation is greatly reduced. At the same
time, the influence of the tilt term is gradually weakened and no longer have an impact in
the end.

T=0.1K, γ=0.5

0.5 10
B(T)

20

15

5

0

10

σ
xy

(1
0

4
) 

T=0.5K, γ=0.3

T=0.1K, γ=0.3

Figure 6. Hall conductivity(in units of e2

(2π)2 ) as function of magnetic field at different temperatures
and tilt terms. The parameters µ = 20.2 eV for γ = 0.5 and µ = 13.7 eV for γ = 0.3. Similar to the
above, we take e = 1 and h̄ = 1.

4. Discussion and Summary

In this work, we study the magneto-optical transport properties of type-II NLS. The
characteristics of the magneto-optical conductivity are closely related to the tilted linear
dispersion. Two Dirac cones with different slop make the conduction band and valence
band asymmetric. When the magnetic field is perpendicular to the plane of the ring, the
positive and negative branches of LLs are also asymmetric. This means that the energy
required for the intreband transition from −(n− 1) in particle branch to n in hole branch
is not the same as from −n to (n − 1). However, the peaks for interband transitions
are the same in position or very close, each carrying a different optical spectral weight,
when |n − n′| = (≈) 1+γ

1−γ . Additionally, the interband transitions depend on relative

magnitude of B to ∆
e(1−γ)

. The oscillation background of the peak is curved affected by tilt
term γ. Moreover, the LLs of the particle and hole branches are partially coupled when
B ≥ ∆

e(2N+1−γ)
. In this case, the peak does not have a long tail because the particle and

hole LLs pass through the Fermi level in a finite kz. Hall conductivity is affected by tilt
term γ, which shows two adjacent peaks with opposite signs, or negative peaks are at
higher frequency relative to positive peaks. In addition, we find the magnetic oscillation of
Hall conductivity is insensitive to temperature and sensitive to γ. The absorption peaks of
circularly polarized light are also studied. The peaks of the left and right polarized light
are not only different in position, but the oscillation intensity is also different. In particular,
the unique circularly polarized light and resistivity of type-II NLS can be used to detect
whether the material is type-II NLS in the experiment.
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