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Abstract: MXenes, such as Ti3C2Tx, are promising materials for electrodes of supercapacitors (SCs).
Colloidal techniques have potential for the fabrication of advanced Ti3C2Tx composites with high
areal capacitance (CS). This paper reports the fabrication of Ti3C2TX-Fe3O4-multiwalled carbon
nanotube (CNT) electrodes, which show CS of 5.52 F cm−2 in the negative potential range in 0.5 M
Na2SO4 electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm−2

due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms
of CB adsorption on Ti3C2TX, Fe3O4, and CNTs and their electrostatic co-dispersion are discussed.
The comparison of the capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT
and Fe3O4-CNT electrodes for the same active mass, electrode thickness and CNT content reveals
a synergistic effect of the individual capacitive materials, which is observed due to the use of CB.
The high CS of Ti3C2TX-Fe3O4-CNT composites makes them promising materials for application in
negative electrodes of asymmetric SC devices.
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1. Introduction

Ti3C2Tx belongs to the family of MXene-type materials, which are of great technologi-
cal interest for applications in electrodes of SCs [1–3]. The interest in Ti3C2Tx is attributed to
the high capacitance and low electrical resistivity of this material. The promising capacitive
properties of Ti3C2Tx result from its high surface area and the redox active nature of surface
functional groups. Enhanced capacitive properties were obtained for Ti3C2Tx compos-
ites, containing different conductive additives, such as graphene [4], acetylene black [5],
and carbon black [6] and for nitrogen-doped Ti3C2Tx [7–9]. Moreover, advanced Ti3C2Tx
composites were developed, containing other components, such as ZnO [10], MnO2 [11],
TiO2 [12], and Mn3O4 [13]. Investigations revealed the stable cycling behavior of Ti3C2Tx
composites [14–19].

High specific capacitance (Cm) normalized by active mass (AM) was reported for
composite electrodes [9,12,14,20–28] with relatively low AMs, typically below 8 mg·cm−2.
The CS of such electrodes was below 1 F·cm−2. Capacitive properties of Ti3C2Tx compos-
ites were tested in various electrolytes, such as HCl [29], H2SO4 [27,30,31], KOH [12,32],
KCl [33], K2SO4 [34], Na2SO4 [34], Li2SO4 [34], and other electrolytes [35,36]. Ti3C2Tx-
based electrodes were utilized for the fabrication of symmetric SCs, containing two
similar Ti3C2Tx-based electrodes, with maximum operation voltages in the range of
0.4–1.2 V [9,31,37,38].

The progress in applications of SC devices will depend on the ability to fabricate
efficient electrodes and devices with high CS, which can be achieved at high AM loadings.
Another important benefit of high AM electrodes is their low ratio of the mass of elec-
trochemically inactive components to the AMs. With the goal to increase energy–power
characteristics, there is a growing trend in devices that operate in enlarged voltage win-
dows. Of particular importance are environmentally friendly neutral electrolytes, such as
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Na2SO4, which facilitate the design of asymmetric aqueous cells with voltage windows
above 1.2 V.

Ti3C2Tx-based electrodes with AMs of 1–3 mg cm−2 were analyzed in Na2SO4 elec-
trolyte [34,39,40] and relatively high Cm were obtained at such low AM loadings. Therefore,
the development of electrodes with higher AMs can potentially result in high CS. However,
it is challenging [41] to achieve high CS owing to the electrolyte diffusion limitations and
high electrical resistance at high AMs. The increase in AM to the level of 20 mg·cm−2

allowed the design of composites [42] with CS of 1.087 F·cm−2 at the galvanostatic charging
conditions of 1 mA·cm−2 and 0.783 F·cm−2 at potential sweep conditions of 1 mV·s−1.
Such electrodes [42] were utilized for symmetric Ti3C2Tx SC.

The objective of this study was to form Fe3O4-Ti3C2Tx-CNT electrodes for SCs. The
use of CB as a co-dispersant allowed the fabrication of electrodes, which showed good
electrochemical performance at AM of 35 mg·cm−2. CB allowed adsorption on individual
materials and their dispersion due its polyaromatic structure, containing a chelating catechol
ligand and electric charge. The experimental data of this investigation showed that CS of
5.52 F·cm−2 can be achieved in the negative potential range in 0.5 M Na2SO4 electrolyte due
to the use of advanced co-dispersant and a synergistic effect of the individual components.

2. Materials and Methods

Celestine blue (CB), FeCl3·6H2O, FeCl2·4H2O, NH4OH, Na2SO4, co-polymer of vinyl
butyral, vinyl acetate and vinyl alcohol (PVBAA, 65 kDa) were purchased from Millipore
Sigma, Burlington, MA, USA. The diameter and length of CNT (multiwalled, Bayer Corp.
Whippany, NJ, USA) were 13 nm and 1–2 µm, respectively. Ti3C2Tx was purchased from
Laizhou Kai Kai Ceramic Materials Co., Ltd., Laizhou, China. Fe3O4 was prepared as
described in by a chemical precipitation method [43] from solutions of FeCl2 and FeCl3,
containing dispersed CNT or co-dispersed CNT and Ti3C2Tx. In contrast to the previous
investigation [43], pristine CNT were used. In this approach, CNT and Ti3C2Tx were
dispersed or co-dispersed using CB as a surfactant. For the fabrication of Fe3O4-CNT
electrodes, the synthesis of Fe3O4 was performed in the presence of CNT, dispersed using
CB. For the fabrication of Ti3C2Tx-CNT electrodes, Ti3C2Tx was co-dispersed with CNT
in water using CB as a co-dispersant. Active materials (AM) for Ti3C2Tx-Fe3O4-CNT
electrodes were prepared by precipitating Fe3O4 in the presence of co-dispersed Ti3C2Tx
and CNT. The amount of the CB dispersant in the suspension was 15% of the total mass
of Ti3C2Tx, Fe3O4 and CNT. After filtration, obtained AM were washed with water and
ethanol in order to remove non-adsorbed dispersant and dried in air. In order to analyze
the effect of CB, AM for Ti3C2Tx-(Fe3O4-CNT) electrodes were prepared by fabrication of
Fe3O4-CNT powder, as described above, and its mixing with Ti3C2Tx. The Ti3C2Tx/Fe3O4
mass ratio was 5:3 in the Ti3C2Tx-(Fe3O4-CNT) and Ti3C2Tx-Fe3O4-CNT electrodes. The
mass ratio of CNT to the mass of active materials, such as Fe3O4 in Fe3O4-CNT, Ti3C2Tx in
Ti3C2Tx-CNT, Fe3O4 and Ti3C2Tx (total) in Ti3C2Tx-(Fe3O4-CNT) and Ti3C2Tx-Fe3O4-CNT
was 1:4.

Obtained powders were used for the fabrication of slurries in ethanol for the impreg-
nation of commercial Ni foam current collectors (95% porosity, Vale, Rio de Janeiro, Brazil).
The slurries contained dissolved PVBAA binder. The mass of the binder was 3% of the
total mass of the active material (AM). The total AM of impregnated material after drying
was 35 mg cm−2, which included 3% PVBAA binder. All of the impregnated Ni foams
were pressed using a calendering machine in order to obtain a final electrode thickness of
0.38 mm.

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies
were performed using a potentiostat (PARSTAT 2273, AMETEK, Berwyn, PA, USA). Gal-
vanostatic charge discharge (GCD) was conducted using a Biologic AMP 300 potentiostat.
The capacitive behavior of the electrodes was tested in an aqueous 0.5 M Na2SO4 solution.
Pt gauze was utilized as a counter electrode, and a saturated calomel electrode (SCE) was
used as a reference. The area of the working electrode was 1 cm2. Capacitances CS and Cm,
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normalized by the electrode area or mass of the active material, respectively, were obtained
from the CV or GCD data, and complex CS* components (CS’ and CS”) were calculated
from the EIS testing results obtained at a signal of 5 mV, as described in [41]. JSM-7000F
microscope (JEOL, Peabody, MA, USA) was used for SEM investigations.

3. Results and Discussion

Figure 1A,B shows SEM images of Ti3C2Tx particles used in this investigation. The
particles exhibit an accordion-like structure, which is beneficial for electrolyte access to the
material. However, some small pores may not be accessible by the electrolyte. It is in this
regard that the investigations of other pseudocapacitive materials did not show correlation
between BET surface area and capacitance [44–47]. The SEM images of Ti3C2TX-Fe3O4-CNT
composites (Figure 1C,D) show that Ti3C2TX particles were covered with Fe3O4 and CNT.
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Figure 1. SEM images at different magnifications of (A,B) as-received Ti3C2Tx and (C,D) Ti3C2TX-Fe3O4-CNT.

Ti3C2Tx particles were used for the fabrication of composite Ti3C2Tx-Fe3O4-CNT elec-
trodes. Pure Ti3C2Tx-CNT and Fe3O4-CNT electrodes were also fabricated and tested for
comparison. The X-ray diffraction patterns of the composite Ti3C2Tx-CNT, Fe3O4-CNT,
and Ti3C2Tx-Fe3O4-CNT materials presented in the Supplementary Information (Figure S1)
show diffraction peaks of the individual components. All the electrodes contained 20%
CNTs as conductive additives. In this investigation, CNTs were used as conductive ad-
ditives for capacitive Fe3O4 [48–50] and Ti3C2Tx [1–3] materials. Previous investigations
highlighted the need for the fabrication of electrodes with high AMs and enhanced ratio of
the AM to the mass of current collector and other passive components [41]. Commonly
used so far are activated carbon (AC) commercial supercapacitors with high AM [41,51] of
about 10 mg·cm−2. Another important parameter is electrode thickness [52]. It has been
demonstrated that significant uncertainty in supercapacitor metrics stems from reporting
gravimetric capacitance of thick electrodes with low packing density [51]. In such elec-
trodes, empty space is filled by an electrolyte, thereby increasing the weight of the device
without adding capacitance. However, such electrodes show enhanced AM normalized
capacitance due to enhanced access of the electrolyte to the active materials [51]. Inves-
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tigations showed that electrodes must be of comparable thickness for the comparison of
their performance [53]. It is important to note that AC has a relatively low density and
typical thickness of AC electrodes with active mass of 10 mg·cm−2 is about 0.6 mm [54].
In our investigation, the thickness of all the investigated electrodes was 0.38 mm and AM
loading was 35 mg·cm−2. The higher AM of the fabricated electrodes, compared to that of
AC electrodes, resulted from higher density of Ti3C2Tx and Fe3O4 materials used in this
investigation. The high AM loading was beneficial for increasing the ratio of AM - to the
total mass, which includes not only AM, but also mass of current collectors, electrolyte and
other components.The ability to achieve high capacitance using electrodes with high AM
and low impedance is critical for the development of advanced electrodes.

In this investigation, CB was used as a dispersant for Ti3C2Tx, Fe3O4 and CNTs.
CB has generated significant interest as an advanced dispersant for the fabrication of
composites for supercapacitors and other applications [55–57]. Sedimentation tests showed
good colloidal stability of the Ti3C2Tx, Fe3O4 and CNT suspensions, prepared using CB. It
is important to note that the chemical structure of CB contains a catechol ligand, which
facilitates CB adsorption on inorganic materials by complexation of metal atoms on the
material surface [58]. Such interactions of CB with Ti atoms on the Ti3C2Tx surface or
Fe atoms on the Fe3O4 surface facilitated CB adsorption. The polyaromatic structure of
CB allowed for its adsorption on CNTs and the adsorption mechanism of CB involved
π-π interactions with side walls of CNTs [59]. The adsorbed cationic CB allowed for
electrostatic dispersion of Ti3C2Tx, Fe3O4 and CNT and facilitated their enhanced mixing.
Co-dispersion of Ti3C2Tx with CNTs and Fe3O4 with CNTs allowed for good performance
of Ti3C2Tx-CNT and Fe3O4-CNT electrodes at high AM loadings.

Figure 2 shows capacitive performances of Ti3C2Tx-CNT and Fe3O4-CNT electrodes.
Cyclic voltammetry (CV) studies showed nearly rectangular shape CVs for Ti3C2Tx-CNT
electrodes and CS = 1.96 F·cm−2 at 2 mV s−1. The obtained CS was significantly higher
than literature data for Ti3C2Tx based electrodes, discussed in the Introduction. The capaci-
tance retention at 100 mV·s−1 was 23.5%. Relatively high capacitances were also achieved
using Fe3O4-CNT electrodes. The highest CS = 4.42 F·cm−2 was attained at 2 mV·s−1.
The use of CB as a co-dispersant allowed for higher capacitance of the Fe3O4-CNT elec-
trodes compared to the previous results [43] for the Fe3O4-CNT electrodes, containing
functionalized CNTs. The capacitance retention at 100 mV s−1 was 14.9%. The capacitive
properties of Fe3O4-CNT composites resulted from the double layer charging mechanism
of Fe3O4 and CNTs and pseudocapacitive mechanism of Fe3O4, attributed to Fe2+/Fe3+

redox couple [48–50].
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Figure 2. (A,B) Cyclic voltammetry data at (a) 2, (b) 5 and (c) 10 mV s−1, (C) capacitances for ((A,C) (a)) Ti3C2TX-CNT and
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Figure 3 shows EIS data for the Ti3C2Tx-CNT and Fe3O4-CNT electrodes. The Nyquist
plot of complex impedance revealed lower resistance, R = Z’, compared to the literature
data [42]. The low electrical resistance is an important factor controlling capacitive perfor-
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mance of electrodes. The differential capacitance CS’ derived from the EIS data at 5 mV
signal amplitude was inferior to the integral CS calculated for potential span of 0.8 V. The
discrepancy can be attributed to different parameters, such as charge–discharge time, elec-
trode potential and limited accessibility of some redox sites at low voltages. The electrodes
showed relatively high relaxation frequencies [60,61], corresponding to CS” maxima.
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Figure 4A,B shows charge-discharge behavior of the Ti3C2TX-CNT and Fe3O4-CNT
electrodes. The electrodes showed nearly triangular symmetric GCD profile. The capac-
itances were calculated from the GCD data and are presented in Figure 4C. CS reduced
from 2.05 to 1.40 F·cm−2 and from 3.41 to 2.5 F·cm−2, for Ti3C2TX-CNT and Fe3O4-CNT
electrodes, respectively, in the current range 3–35 mA·cm−2. The GCD data showed good
capacitance retention with increasing current density.
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35 mA·cm−2, (C) capacitances derived from GCD tests for (a) Ti3C2TX-CNT and (b) Fe3O4-CNT electrodes.

This investigation revealed a synergistic effect of Ti3C2TX, CNT and Fe3O4, which
allowed for enhanced capacitance of the composite Ti3C2TX-Fe3O4-CNT electrodes, com-
pared to the capacitances of Ti3C2TX-CNT and Fe3O4-CNT electrodes at the same AM,
electrode thickness and CNT content. The use of CB as a dispersant was critical to achieve
enhanced capacitance. The effect of CB is evident from the comparison of testing results
for two composites, prepared at different experimental conditions, as was described in
the Materials and Methods section. Ti3C2TX-(Fe3O4-CNT) electrodes were prepared by
precipitation of Fe3O4 in the presence of CNTs dispersed with CB, followed by washing
drying and mixing with Ti3C2TX. In contrast Ti3C2TX-Fe3O4-CNT electrodes were prepared
by precipitation of Fe3O4 in the presence of co-dispersed Ti3C2TX and CNTs.
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CV testing results showed significantly larger CV areas for Ti3C2TX-Fe3O4-CNT, com-
pared to Ti3C2TX-(Fe3O4-CNT) electrodes (Figure 5A,B). This resulted in higher capacitance
of the Ti3C2TX-Fe3O4-CNT and indicated the influence of CB dispersant used for the prepa-
ration of the composites on the properties of the electrodes. The highest capacitances of
5.52 and 3.90 F·cm−2 were obtained for Ti3C2TX-Fe3O4-CNT and Ti3C2TX-(Fe3O4-CNT)
electrodes, respectively, at 2 mV·s−1. In order to analyze the charge storage properties of
the electrodes, a parameter b was calculated from the following equation [62,63].

i = aνb (1)

where i is a current, ν—scan rate and a is a parameter. Parameter b was found to be 0.68 for
the Ti3C2TX-Fe3O4-CNT electrodes (Supplementary Information, Figure S2). It is known that
b = 1 for purely double-layer capacitive mechanism and b = 0.5 for battery-type materials. The
electrodes with 0.5 < b < 1 combine capacitive and battery properties. According to [62], the
battery-type charge storage mechanism is dominant for electrodes with 0.5 < b < 0.8. There-
fore, the Ti3C2TX-Fe3O4-CNT electrodes show mixed double-layer capacitive and battery-type
properties with a dominant battery-type charge storage mechanism.
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Figure 5. (A,B) Cyclic voltammetry data at (a) 2, (b) 5 and (c) 10 mV·s−1, (C) capacitances for ((A,C) (a)) Ti3C2TX-(Fe3O4-
CNT) and ((B,C) (b)) Ti3C2TX-Fe3O4-CNT electrodes.

EIS studies (Figure 6) revealed lower resistance, higher capacitance and higher relax-
ation frequency of Ti3C2TX-Fe3O4-CNT electrodes, compared to Ti3C2TX-(Fe3O4-CNT)
electrodes. GCD data showed nearly triangular symmetric charge–discharge curves,
with longer charge and discharge times for Ti3C2TX-Fe3O4-CNT electrodes, compared to
Ti3C2TX-(Fe3O4-CNT) at the same current densities (Figure 7A,B). The longer
charge/discharge times indicated higher capacitances. The capacitances were calculated
from the GCD data and presented in Figure 7C at different current densities. CS reduced
from 4.35 to 3.33 F·cm−2 and from 3.46 to 2.58 F·cm−2 for Ti3C2TX-Fe3O4-CNT and Ti3C2TX-
(Fe3O4-CNT) composites, respectively, with current increase from 3 to 35 mA·cm−2.
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Figure 7. GCD curves for (A) Ti3C2TX-Fe3O4-CNT), (B) Ti3C2TX-Fe3O4-CNT at (a) 3, (b) 5 (c) 7, (d) 10 (e) 20 and (f)
35 mA·cm−2, (C) capacitances versus current density, calculated from GCD data for (a) Ti3C2TX-(Fe3O4-CNT) and (b)
Ti3C2TX-Fe3O4-CNT.

The analysis of capacitances, measured using CV, EIS and GCD techniques showed
that the capacitances of the Ti3C2TX-Fe3O4-CNT electrodes are higher than the capacitances
of the Ti3C2Tx-CNT and Fe3O4-CNT electrodes. Therefore, the experimental results of this
work showed a synergistic effect of the individual capacitive materials. The comparison of
the data for Ti3C2TX-Fe3O4-CNT and Ti3C2TX-(Fe3O4-CNT) electrodes and literature data
of the previous investigations for Ti3C2TX [42] and Fe3O4 electrodes [43] showed the benefi-
cial effect of co-dispersion of the individual components, which was achieved using CB as a
dispersant. The ability to achieve high CS of 5.52 F·cm−2 in the negative potential range in
Na2SO4 is beneficial for the preparation of asymmetric SC. Ti3C2TX-Fe3O4-CNT electrodes
showed relatively high CS, compared to other anode materials [41]. The comparison with
CS for other Ti3C2TX-based electrodes in Na2SO4 electrolyte (Supplementary Information,
Table S1) showed significant improvement in CS. The capacitance of the negative electrodes
is usually lower than that of positive electrodes. Advanced positive electrodes, based on
MnO2, Mn3O4, and BiMn2O5 have been developed with capacitance of about 5–8 F cm−2

in the positive potential range [41]. Therefore, the capacitance of Ti3C2TX-Fe3O4-CNTs is
comparable with capacitances of advanced positive electrodes. The Ti3C2TX-Fe3O4-CNT
electrodes showed a slight CS increase for the first 400 cycles and remained nearly constant
after this initial increase (Figure 8). A similar increase was observed in the literature for
other materials and was attributed to microstructure changes during initial cycling [64,65].
In contrast, the capacitance of the Ti3C2TX- CNT and Fe3O4-CNT electrodes decreased after
cycling (Figure 8).
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4. Conclusions

Ti3C2TX-Fe3O4-CNT electrodes have been developed, which showed CS of 5.52 F·cm−2

in the negative potential range in 0.5 M Na2SO4 electrolyte. Such electrodes are promising
for applications in asymmetric supercapacitor devices due to the high capacitance, which
is comparable with the capacitance of advanced positive electrodes. The use of CB as
an advanced co-dispersant allowed for the fabrication of Ti3C2TX-Fe3O4-CNT electrodes,
which showed good capacitive performance at high AM loadings. The comparison of
capacitive behavior of Ti3C2TX-Fe3O4-CNT electrodes with Ti3C2TX-CNT and Fe3O4-CNT
electrodes with the same AM, thickness and CNT content revealed a synergistic effect of
the individual capacitive materials.
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