
materials

Article

A Stochastic FE2 Data-Driven Method for Nonlinear
Multiscale Modeling

Xiaoxin Lu 1, Julien Yvonnet 2,*, Leonidas Papadopoulos 3 , Ioannis Kalogeris 3 and Vissarion Papadopoulos 3

����������
�������

Citation: Lu, X.; Yvonnet, J.;

Papadopoulos, L.; Kalogeris, I.,

Papadopoulos, V. A Stochastic FE2

Data-Driven Method for Nonlinear

Multiscale Modeling. Materials 2021,

14, 2875. https://doi.org/10.3390/

ma14112875

Received: 30 March 2021

Accepted: 21 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shenzhen Institute of advanced electronic materials, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518103, China; luxiaoxin.cassie@gmail.com

2 MSME, University Gustave Eiffel, CNRS UMR 8208, F-77454 Marne-la-Vallée, France
3 Department of Civil Engineering, National Technical University of Athens, 15780 Athens, Greece;

lew.papado@hotmail.com (L.P.); yianniskalogeris@gmail.com (I.K.);
vissarion.papadopoulos@gmail.com (V.P.)

* Correspondence: julien.yvonnet@univ-eiffel.fr

Abstract: A stochastic data-driven multilevel finite-element (FE2) method is introduced for random
nonlinear multiscale calculations. A hybrid neural-network–interpolation (NN–I) scheme is proposed
to construct a surrogate model of the macroscopic nonlinear constitutive law from representative-
volume-element calculations, whose results are used as input data. Then, a FE2 method replacing
the nonlinear multiscale calculations by the NN–I is developed. The NN–I scheme improved the
accuracy of the neural-network surrogate model when insufficient data were available. Due to
the achieved reduction in computational time, which was several orders of magnitude less than
that to direct FE2, the use of such a machine-learning method is demonstrated for performing
Monte Carlo simulations in nonlinear heterogeneous structures and propagating uncertainties in this
context, and the identification of probabilistic models at the macroscale on some quantities of interest.
Applications to nonlinear electric conduction in graphene–polymer composites are presented.

Keywords: data-driven; multiscale; nonlinear; stochastics; neural networks

1. Introduction

Predicting the nonlinear behavior of materials from knowledge of their microstructure
is a critical topic in engineering. For example, the development of 3D-printed micromateri-
als [1–3] or of nanomaterials [4,5] with nonlinear behaviors opens exciting opportunities
for designing innovative functionalized and enhanced engineering systems. While linear
effective properties of heterogeneous materials can be accurately estimated though either
analytical [6,7] or numerical techniques [8], predicting the effective behavior of nonlinear
materials requires more advanced techniques.

A direct but limited approach is the use of the representative volume element (RVE)
to calibrate an empirical nonlinear model. A limitation of such techniques is the number
of parameters to be calibrated for complex, nonlinear, or multiphysics problems. To more
accurately describe the behavior of general nonlinear materials, the so-called multilevel
finite-element (FE2) method [9–16] or computational homogenization has been developed
in recent years. In this approach, an RVE is associated to each Gaussian point of a finite-
element macrostructure, and a nonlinear problem must be solved in each integration
point and for each iteration of the macrosolving procedure. The drawback of this method,
however, is that it induces unaffordable computational times in practical applications.

Several strategies were developed recently to alleviate FE2 calculations. First, the
strategy relies on reducing micro-RVE computations through efficient techniques such
as model-order reduction [17,18], fast Fourier transform [19,20], wavelet transforms [21],
NTFA [22], self-clustering analysis (SCA) [23,24], or GPU acceleration [25]. In [26], He et al.
developed an adaptive strategy to reduce microcalculations by constructing the reduced
basis on the fly during the macroscale calculation.
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Another idea, initiated in [27,28], is the use of so-called data-driven approaches in
which microscale calculations are performed offline, and are then used as data in an online
stage to reconstruct the macroscopic (effective) behavior. For this purpose, several tech-
niques were proposed, including interpolation methods [27,29], neural networks [28,30–35],
Bayesian inference [36], Fourier series expansions [37], or Gaussian process regression [38].
In the related techniques, offline data collection is used in a regression process to con-
struct an accurate surrogate model whose evaluation is several orders of magnitude
lower than that performing one RVE nonlinear calculation. A critical comparison of
several regression techniques used in data-driven multiscale approaches can be found
in [39]. In [40], Avery et al. investigated and discussed several regression methods with
ANN in homogenization problems of hyperelastic woven composites, and demonstrate
its use in advanced dynamic or fluid structure applications. Recent advances of data-
driven techniques, including handling history-dependent behaviors such as plasticity, can
be found in [35,41,42]. On-the-fly construction of the surrogate model by probabilistic
machine learning was proposed in [38]. Developments of neural-network techniques
in FE2, including feed-forward and recurrent neural networks, can be found in [31,41].
In [43,44], a manifold-based nonlinear reduced-order model in tandem with a digital
database was developed for the nonlinear multiscale analysis of hyperelastic structures
involving neural networks, a kernel inverse/reconstruction map, and dimension reduction
through an isomap.

Stochastic extensions of data-driven methods in multiscale applications are relatively
new and unexplored. One of the first analyses in this context can be found in [45,46],
where the NEXP method [27] was extended to stochastic problems. In these studies,
stochastic parameters were introduced within the surrogate model using a separated
representation-interpolation technique. Probability density functions related to the non-
linear macroscale problem were identified. In [47], a machine-learning strategy based on
a three-dimensional convolutional neural network was introduced to evaluate the linear
effective properties of random materials from geometrical descriptions of RVE. In [24], a
framework for uncertainty quantification in a data-driven approach was proposed where
self-consistent clustering analysis (SCA) [23,24] was used to reduce computational times in
the learning step.

In this paper, the use of data-driven methods for heterogeneous nonlinear materials
with uncertainties at both the micro- and the macroscale is addressed. Taking into account
uncertainties in nonlinear multiscale methods implies (a) constructing a probabilistic
surrogate macromodel from microcalculations, allowing for generating realizations of the
macroresponse for a given macroloading; and (b) performing Monte Carlo simulations
of the model at the macroscale to quantify uncertainties on the quantities of interest in
the structure. In view of its immense computational requirements, direct use of FE2

for stochastic nonlinear two-scale analysis is not possible. However, data-driven FE2

approaches have comparable computational costs as compared to classical (one-scale)
FEM calculations, and they open the route to developing stochastic two-scale nonlinear
approaches. To the best of our knowledge, this problem remains relatively unexplored
in the literature. A new stochastic data-driven approach based on RVE calculations was
developed for taking into account random effects in nonlinear heterogeneous structures.
First, preliminary RVE calculations were performed. These calculations include several
microstructural features that varied, such as the distribution of heterogeneities and its
volume fraction. Then, for each realization of the random microstructure, the space of
macroscopic loading was sampled, and boundary conditions were prescribed on the RVE.
Subsequently, the nonlinear problem was solved by FEM. This large database was used
to construct a surrogate model whose inputs were the macroloading and the volume
fraction, and its output was the macroscopic (homogenized) response. A new hybrid
neural-network–interpolation (NN–I) surrogate model is proposed to provide an accurate
response with a limited number of realizations. Once constructed, this model can be used
within stochastic analysis of two-scale nonlinear structure calculations. At the macroscale,
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the volume fraction of heterogeneities is considered to be random here, and it was modeled
as a stochastic field with given probabilistic characteristics. Then, during the macro-non-
linear resolution, solving the full nonlinear RVE was replaced by the proposed fast surrogate
model, which allowed for performing hundreds of macro-non-linear calculations at the
cost of classical FEM problems. As a result, statistical postprocessing can be performed on
the macroquantities of interest, and probabilistic models could be identified.

The novelties of this paper are twofold. The first is the proposed neural-network–
Interpolation FE2 method, which is an extension of our previous neural-network FE2
method, developed in [28,30]. The NN–I scheme allows for modeling the stochastic spatial
variability of the volume fraction in the frame of the FE2 procedure, leading to the improved
accuracy of the surrogate model when limited data are available. The second novelty
is the application of this machine-learning method to nonlinear multiscale stochastic
problems. Using the proposed approach, FE2 calculations can be reduced by several orders
of magnitude, allowing for Monte Carlo simulation on stochastic nonlinear multiscale
structures. It is demonstrated for the first time that uncertainties can be propagated in this
context, and probabilistic models can be identified.

The paper is organized as follows. Section 3 presents the equations of the nonlinear
RVE problem, and the definitions of the input (macroelectric load) and output (homog-
enized electric flux) in the nonlinear composite. Section 4 introduces the hybrid neural
network/interpolation scheme, and its construction using offline data on RVE is described.
In Section 5, the present stochastic data-driven strategy is proposed. Lastly, numerical
examples are presented in Section 6.

2. Brief Review of FE2 Method for Nonlinear Conduction

The multilevel finite-element method [9,10], also called FE2 in the literature, as it
involves two levels of finite-element simulations, and independently proposed by several
other authors and groups [11–16], was introduced as a general multiscale method for
solving nonlinear heterogeneous structural problems. The basic underlying idea is that two
levels of finite elements must be concurrently solved, one for each scale. At the macroscale,
each integration point of the finite-element mesh is associated with a representative volume
element (RVE). Boundary conditions depending on the macroscopic state (strain, electric
field, etc.) are prescribed on the boundary of each RVE. After solving each nonlinear
problem at each integration point, the appropriate macroscopic response (stress, electric
flux), is averaged over the RVE and provided at the macrointegration point. Then, the
macroscopic constitutive law is available only through solving a nonlinear problem. These
operations are repeated until convergence is reached at both scales (see Figure 1).

For the sake of simplicity, a brief review of the method in a context of nonlinear
conduction is presented. We consider a macroscopic structure associated with a domain
Ω ⊂ R3, with a boundary ∂Ω. The assumption of scale separation is adopted (an extension
of the method to second-order homogenization can be found in [14]). The microstructure
was assumed to be characterized by an RVE associated with a domain Ω ⊂ R3, with
boundary ∂Ω.

In the context of nonlinear electric conduction, electric field E(x) is related to the
electric flux, or electric displacement j(x) by a nonlinear local constitutive relationship.
Electric field E is defined by E(x) = −∇φ(x), where φ is the electric potential, ∇(.) is the
gradient operator, and x is a material point within Ω. In the following, (.) notations denote
macroscale quantities. For a given macroscopic electric field E, the RVE problem is to find
φ(x), such that

∇ · j(x) = 0 ∀x ∈ Ω, (1)

where ∇ · (.) is the divergence operator. The constitutive law is given by

j(x) = Fnl(E(x)). (2)
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where Fnl is a local nonlinear operator (specified in Section 3). The equilibrated electric
field should satisfy

E =
1
V

∫
Ω

E(x)dΩ, (3)

where V is the volume of Ω. Equation (3) can be verified, e.g., by the following bound-
ary condition:

φ(x) = −E · x + φ̃(x) on ∂Ω, (4)

where φ̃(x) is a periodic function over Ω.

Figure 1. Schematic of classical FE2 method for nonlinear heterogeneous conduction problem (adapted from [8]).

In the presence of imperfect interfaces and surface electric flux along interfaces
(see [48]), the effective electric current J is defined according to

J =
1
V

(∫
Ω

j(x)dΩ +
∫

Γ
js(x)dΓ

)
, (5)

where js is a surface electric flux (see Section 3). In the so-called FE2 method, the constitutive
law J - E is unknown, but can be numerically obtained by solving a nonlinear problem over
the RVE, detailed as follows (see Figure 1):

Given E:

1. Prescribe boundary conditions (4) on ∂Ω.
2. Use a numerical method such as FEM with an iterative solver such as the Newton

method to solve nonlinear Problems (1), (2), and (4) (see details in the following).
3. Compute the spatial average of the electric flux over the RVE to obtain J.

In what follows, a detailed numerical implementation of a FE2 problem in a context
of nonlinear electric conduction is presented to better understand where Problems (1), (2),
and (4) must be solved within finite-element calculation at the macroscopic scale. The
macroscopic problem at the macroscale is given by

∇ · J = 0 in Ω, (6)
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with boundary conditions:

φ = φ
∗ on ∂Ωφ, J · n = J∗n on ∂ΩJ , (7)

where and Ωφ and ∂ΩJ denote the Dirichlet and Neumann complementary boundaries,
respectively.

In what follows, we assume J∗n = 0. Then, the weak form corresponding to (6) is
given by: ∫

Ω
J(φ) · ∇(δφ)dΩ = R(φ) = 0. (8)

Problem (8) is nonlinear. Then, a Newton method is employed to solve it. A first-order
Taylor expansion of R(φ) gives

R(φk
+ ∆φ) ' R(φk

) + D∆φR(φk
), (9)

where φ
k is a solution provided at a previous iteration, and D∆φR(φ) is the Gateaux

derivative, expressed by

D∆φR(φk
) =

[
d

dα

(
R(φ + α∆φ)

)]
α=0

. (10)

The corresponding linearized problem is given by

D∆φR(φk
) = −R(φk

), (11)

with
D∆φR(φk

) = −
∫

Ω
k(φk)∇(∆φ) · ∇(δφ)dΩ. (12)

More details can be found in [48]. Classical FEM discretizing of (11) leads to lin-
ear system

KT(φ
k
)∆φ = −R(φ

k
). (13)

Then, the macroelectric potential is updated according to

φ
k+1

= φ
k
+ ∆φ (14)

and (13) is solved until a convergence criterion is reached. In FE2, the main source of
computational cost is the numerical evaluation of J and k, obtained by solving nonlinear
RVE Problems (1), (2), and (4) at each Gaussian point. To address this issue, we introduce
a data-driven approach where the estimation of J is provided by a neural-network-based
surrogate model. Tangent matrix k can be computed by a perturbation approach as

(
kT

)
ij
(E) =

∂J
∂E
' Ji(E + δE(j)

)− Ji(E)
α

(15)

with
δE(j)

= αej, (16)

where ej is a unitary vector basis, and α << 1 a perturbation parameter.

Then, to compute macro-FEM nonlinear calculations, relationship J = Fnl
(E) is

missing. In [30], we proposed a surrogate model to construct such a relationship using
neural networks. In the present paper, this idea is extended to random microstructures, as
detailed in the next section.
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3. Micro-Non-Linear Conduction Model for Graphene-Reinforced Composites

In this section, the nonlinear conduction model in graphene-reinforced polymer com-
posites is defined. The nonlinear RVE problem is described as follows. The microstructure
was assumed to be characterized by an RVE defined in a domain Ω ⊂ R3 that contained
N randomly distributed planar multilayer graphene sheets (see Figure 2). The graphene
sheets were assumed to be aligned along the x − y plane. We chose this configuration
for two reasons: (i) when samples made of graphene-reinforced polymer are obtained
via injection molding, the graphene sheets can be aligned in the direction of the poly-
mer flow [49]. Then, this configuration is representative of samples manufactured by
the injection-molding process. Second, such an orientation induces strong anisotropy of
the effective nonlinear conductive behavior of the material. The potential of the present
approach to deal with such a challenging problem is then illustrated.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Realizations of microscopic RVE with various graphene volume fractions: (a) 0.53 vol%, (b) 0.66 vol%, (c) 0.79 vol%,
(d) 0.92 vol%, (e) 1.05 vol%, (f) 1.19 vol%, (g) 1.32 vol%, (h) 1.58 vol% [30].

To avoid meshing their thickness [48], the graphene sheets were modeled as highly
conducting imperfect surfaces here [50]. The graphene surfaces with zero thickness are
collectively denoted by Γ. The nonlinear behavior is related to the electric tunnelling
effect here, which may be an explanation for the observed nonlinear behavior and low
percolation thresholds in the nanocomposites (see [30,48]).

The energy of the system is defined by

W =
∫

Ω
ωb(x)dΩ +

∫
Γ

ωs(x)dΓ, (17)

where density functions ωb and ωs are the bulk and surface density functions, respectively,
expressed by

ωb(x) =
1
2

j(x) · E(x), ωs(x) =
1
2

js(x) · Es(x). (18)
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In (18), Es(x) and js(x) are the surface electric field and surface current density with
respect to the graphene sheets, where Es = PE = −P∇φ, where P = I− n⊗ n is a projector
operator characterizing the projection of a vector along the tangent plane to Γ at a point
x ∈ Γ, and n is the unit normal vector to Γ.

The nonlinear electric-conduction law including the tunneling effect in the polymer
matrix is given by

j =

{
kp

0 E if d(x) ≤ dcut,
G(E, d) E

|E| if d(x) > dcut,
(19)

where dcut is a cut-off parameter, and kp
0 is the electric-conductivity tensor of the polymer

matrix without tunneling effects. The distance function between graphene sheets d(x) is
defined here as the sum of the two smallest distances between a point x in the polymer
matrix and the two nearest-neighbor graphene sheets (see more details in [48]). Nonlinear
tunneling current G was proposed by Simmons [51] as

G(E, d) =
2.2e3E2

8πhpΦ0
exp(− 8π

2.96hpeE
(2m)

1
2 Φ

3
2
0 )

+ [3 · (2mΦ0)
1
2

2d
](e/hp)

2Ed exp[−(4πd
hp

)(2mΦ0)
1
2 ]. (20)

Above, Φ0 and d denote barrier height and barrier width, respectively, e and m are the
charge and the effective mass of electron, respectively, and hp is the Planck constant. Surface
current density js of graphene surface Γ is related to surface electric field Es [50] through

js(x) = ksEs, (21)

where ks denotes the the surface conductivity of the graphene. This tensor can be related
to the conductivity of the volume (multilayer) graphene as:

ks = hS∗, S∗ = kg − (kgn)⊗ (kgn)
kg : (n⊗ n)

. (22)

where h is the thickness of the graphene sheet.
Considering the constitutive equations above, and minimizing the electric power (17)

with respect to the electric potential field, the weak form is obtained as∫
Ω

j(φ) · ∇(δφ)dΩ−
∫

Γ
P∇φ · ksP∇(δφ)dΓ = 0, (23)

where φ ∈ H1(Ω), φ satisfying the Dirichlet boundary conditions over ∂Ω and δφ ∈ H1(Ω),
δφ = 0 over ∂Ω. The RVE is subjected to boundary conditions (4). The weak form (23) can
be solved by the finite-element method.

4. Stochastic Nonlinear Machine-Learning Model

The objective of the present work was to construct a surrogate model relating macro-
scopic electric field E and volume fraction of graphene inclusions f to nonlinear macro-
scopic electric flux response J (see Figure 3). At the microscale, the microstructure was
randomly distributed (see Figure 2). Here, due to the scale-separation assumption, it was
expected that, despite the random nature of the microstructure, deterministic effective
properties at the microscopic scale with respect to the microstructure would be obtained
for a given volume fraction.
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Figure 3. Local model: effective flux J depends nonlinearly on the macroscopic electric field E,
volume fraction, and local random distribution of phases.

At the macroscale, uncertainties where then only related to nonhomogeneous distri-
butions of volume fractions. Then, it was assumed that, at the macroscale, the volume
fraction was the only stochastic parameter.

4.1. Data Generation

We first define a set of K electric-field vectors, Ek
=
{

E1, E2, E3
}k, (k = 1, 2, . . . , K).

The values of Ek were generated using Latin hypercube sampling (LHS) [52]. Then, we
define a collection of microstructures as follows. A set of P volume fractions are defined, f α,
α = 1, 2, . . . , P. For each volume fraction f α, N random microstructures satisfying volume
fraction f α were generated and are denoted by Ωi

α, i = 1, 2, . . . , N.
Then, for each macroelectric field vector

{
E
}k, each volume fraction f α and each

realization of microstructure Ωi
α, nonlinear problem (23) is solved by finite elements to

obtain macroelectric displacement vector
{

J
}k

α,i.
As discussed above, the scale-separation assumption allows for removing the stochas-

tic nature of the microstructures at the macroscale. However, due to the RVE size and the
random distribution of the inclusions, the outcome intensity of a given electric field is also
stochastic. To this purpose, homogenization is performed using stochastic averaging, i.e.,
for each macroelectric field vector Ek and each volume fraction f α, we compute the average
over N microstructures realizations to obtain Jk

α = 1
N ∑N

i=1

(
Jk

α,i

)
.

4.2. Construction of Neural-Network Surrogate Model

An issue in NN models is that a large set of data may be required to obtain good
accuracy, especially for a large number of input parameters [28]. To overcome this limitation,
we propose here a hybrid NN/interpolation surrogate model as follows.

First, for each volume fraction f α, α = 1, 2, . . . , P, used in the training dataset, we
define a separate NN, denoted by N α, in order to construct the following relationship:

Jα(E) = N α(E). (24)

Then, given E and for an arbitrary volume fraction f ∈
[

f 1, f P] a Lagrangian interpo-
lation scheme is used to compute J(E, f ) as

J(E, f ) = ∑
j∈Nk( f )

lj( f )Jj(E), (25)

where Nk( f ) is the set of indices that includes only k out of P NNs, corresponding to the k
volume fractions of f nearest to those in training dataset

{
f 1, f 2, . . . , f P}.

In Equation (25), lj( f ) are the Lagrangian basis polynomials. Here, k = 3 was employed
where, as a result, polynomials lj( f ) were second-order.

With this approach, a notion of locality is introduced in the interpolation scheme
that leads to better overall predictions, especially in areas where relationship (E, f ) −
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J(E, f ) exhibits strong nonlinearity. A schematic of the surrogate-model construction is
summarized in Figure 4.

Interpolation
unit

Figure 4. Hybrid neural-network/interpolation surrogate model to describe macroscopic nonlin-
ear behavior.

5. Nonlinear Stochastic Macroscale Calculations

Here, stochastic macroscopic structural problem is described. At the macroscale, it
was assumed that there existed uncertainty in the local volume fraction f of the graphene
sheets in the general case described by a 3D homogeneous Gaussian stochastic field in the
x, y, and z axes. In particular, if x ≡ (x, y, z), then f (x) is considered to be of the form:

f (x, θ) = µ + σ f0(x, θ). (26)

In the above equation, µ and σ are the random field mean value and standard devia-
tion, respectively, θ denotes the random outcome, and f0(x, θ) is a zero-mean unit variance
Gaussian field with correlation structure R f0 given by

R f0(x1, x2) = exp[−( |x1 − x2|
âx

+
|y1 − y2|

ây
+
|z1 − z2|

âz
) ] (27)

where âx, ây and âz are correlation length parameters along the x, y, and z axes, respectively.
Next, an approximation of field f0 can be obtained using the Karhunen–Loeve series

expansion [53]. Specifically, let λn, φn denote the eigenvalues and eigenfunctions that
satisfy the eigenvalue problem

∫
R f0(x1, x2)φn(x2)dx2 = λnφn(x1), ∀n = 1, . . .. This is a

Fredholm integral equation and it is typically solved using the finite-element method [53].
Then, f0 can be written as

f0(x, θ) =
∞

∑
n=1

√
λnzn(θ)φn(x) (28)

with {zn}∞
n=1 being a series of uncorrelated Gaussian random variables with zero mean

and unit variance. In practice, the above series expansion is truncated after MKL terms,
giving the following approximation of f0.

f0(x, θ) ≈
MKL

∑
n=1

√
λnzn(θ)φn(x), (29)

which yields, by virtue of Equation (26),
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f (x, θ) ≈ µ + σ
MKL

∑
n=1

√
λnzn(θ)φn(x). (30)

Equation (30) allows for us to generate realizations of the field f (x, θ) by generating
MKL-tuples (z1, . . . , zKL) from their distribution. Subsequently, if we consider macrostruc-
ture Ω defined in Section 2 and the associated finite-element mesh, at each Gaussian point
of element Ωe, e = 1, 2, . . . , Ne with coordinate x, a random value of volume fraction f (x)
can be assigned using (30).

During the Newtonian procedure to solve the structural problem, for f and E given at
each Gaussian point of the macromesh structure, the corresponding value of J is provided
by the surrogate model (25) (see Figure 4). For one realization of the volume-fraction distri-
bution generated by Equation (30), the cost of one two-scale nonlinear structural problem is
drastically reduced with the present NN surrogate model, allowing for performing a large
number of macrocalculations at a low cost to conduct statistics on quantities of interest in
a structure.

Lastly, Monte Carlo simulations were performed on the macroscale problem by eval-
uating R realizations of macrostructures. For each realization r = 1, 2, . . . , R, the volume
fraction was randomly generated in each Gaussian point by using Equation (30); in total, R
nonlinear multiscale problems were solved using the above-described procedure. Lastly,
statistics can be computed on quantities of interest using the R nonlinear FEM solutions.
The overall procedure is summarized in Figure 5.

Number of realizations

Macroscopic quantity of interest

Figure 5. Stochastic nonlinear 2-scale procedure.
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6. Numerical Examples
6.1. Data Collection

The data were obtained by performing preliminary calculations on the RVE described
in Section 4.1. Eight different volume fractions were considered: f 1 = 0.53%, , f 2 = 0.66%,
f 3 = 0.79%, f 4 = 0.92%, f 5 = 1.05%, f 6 = 1.19%, f 7 = 1.32%, and f 8 = 1.58% (see
Figure 2). For each volume fraction, 15 realizations of random microstructures were gener-
ated except for the higher volume fraction, for which only 9 realizations were conducted.
For each volume fraction and for each realization, 500 realizations of macroscopic electric
field E were generated using Latin hypercube sampling. For each case, corresponding
electric flux J was numerically computed by solving nonlinear Problem (23) on the RVE.
The total number of solved nonlinear problems was then 57,000. All these calculations
could be performed in parallel.

6.2. Validation of Hybrid NN–Interpolation Surrogate Model

The accuracy of the proposed hybrid NN–interpolation surrogate model was first
validated by comparing its response with full-field simulations on microstructures for dif-
ferent volume fractions. Regarding the characteristics of the trained neural networks, in all
cases, one-hidden-layer architectures were considered with the optimal number of neurons
varying for each case, as shown in Table 1. Moreover, the hyperbolic tangent function
was employed as the activation function, and Levenberg–Marquardt as the optimizer in
all NNs.

Table 1. Characteristics of neural networks.

Case (Vol%) Number of Neurons MSE (Validation Set)

0.53 16 1.167 ×10−18

0.66 23 6.785 ×10−18

0.79 7 4.006 ×10−12

0.92 18 8.941 ×10−7

1.05 77 1.579 ×10−5

1.19 59 3.465 ×10−4

1.32 36 1.243 ×10−1

1.58 74 4.790 ×10−2

The plotted curves were obtained as the average over the different realizations of the
microstructure. Results are provided in Figure 6. For low volume fractions, the response
was linear, while for larger volume fractions, the response was strongly nonlinear. In all
cases, the surrogate model could accurately reproduce the effective nonlinear response of
the material.

A validation of the interpolation procedure described in Section 4.2 is provided in
Figure 7, where discrete data obtained by nonlinear FEM calculations on the RVEs are
compared to the corresponding model predictions, computed using Equation (25) under
various Ex scenarios, with Ey = Ez = 0. The discrete data points obtained by FEM are
denoted by marks, while the continuous interpolation with respect to the volume fraction
is denoted by solid lines, which confirmed the good accuracy of this scheme.
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Figure 6. Comparisons between direct simulations obtained by nonlinear FEM calculations on the RVE and the neural-
network–interpolation surrogate model: values of Jx as a function of a unidirectional effective electric field Ex , Ey = Ez = 0;
(a) 0.53 vol%, (b) 0.79 vol%, (c) 1.19 vol%,(d) 1.58 vol%.
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Figure 7. Comparisons between direct simulations obtained by nonlinear FEM calculations on the
RVE and NN–I model under various Ex ranging from 0.0050 to 0.0125 V/nm: values of Jx as a
function of the CNT volume fraction, Ey = Ez = 0.
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6.3. Stochastic 2-Scale Nonlinear Structure Analysis

In this example, macroscopic stochastic nonlinear computations were performed using
the procedure described in Section 5. In particular, 9 different Gaussian fields of volume
fractions are investigated at the macroscale, where the studied macrostructure, described
in Figure 8, was a plate with a central hole. The plate was subjected to potential boundary
conditions such as Φ = Φ1 on x = 0 and Φ = Φ2 on x = L. A 3D mesh of 1934 elements is
used to discretize the domain.

Slice A:
Z=1 μm  

Slice B:
X=6 μm  

Slice C:
Y=6 μm  

X

Y

Z

12 μm

1
2
 μ

m

2 
μ
m

Φ=Φ1

Φ=Φ2

Figure 8. Structural problem: geometry, boundary conditions, and mesh.

Due to the low thickness of the structure, we assumed that the volume fraction did not
vary in the z coordinate direction. Next, in order to define the aforementioned Gaussian
fields, three different settings were first initialized: for Setting A, we set µA = 0.9% and
σA = 0.11µA; for Setting B, we set µB = 1.05% and σB = 0.19µB; lastly, for Setting C,
µC = 1.05% and σC = 0.38µC. Then, for each aforementioned setting, we considered
âz = ây = â and assign three different values to â, namely, â1 = 6 µm, â2 = 12 µm
and â3 = 24 µm. A sample for each of these fields is illustrated in Figure 9. This figure
indicates that an increase in the field standard deviation led to larger variations of volume
fraction f along the spatial domain. Moreover, a small correlation-length parameter, such
as â = 6µm, produced more “wavy” realizations, while for larger values (â = 12 and
24µm) the realizations became smoother.
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(a) Field A: µA = 0.9%, σA = 0.1%,
α̂ = 6µm

(b) Field A: µA = 0.9%, σA = 0.1%,
α̂ = 12µm

(c) Field A: µA = 0.9%, σA = 0.1%,
α̂ = 24µm

(d) Field B: µB = 1.05%, σB = 0.2%,
α̂ = 6µm

(e) Field B: µB = 1.05%, σB = 0.2%,
α̂ = 12µm

(f) Field B: µB = 1.05%, σB = 0.2%,
α̂ = 24µm

(g) Field C: µC = 1.05%, σC = 0.4%,
α̂ = 6µm

(h) Field C: µC = 1.05%, σC = 0.4%,
α̂ = 12µm

(i) Field C: µC = 1.05%, σC = 0.4%,
α̂ = 24µm

Figure 9. Sample realizations of three Gaussian fields A, B, and C for different correlation lengths α̂ = 6, 12, 24µm.

For each of the 3 Gaussian distributions A, B, and C, we analyzed the 3 correlation
lengths â1, â2 and â3. For each case, we conducted 100 realizations. Then, in total, we
conducted 900 FE2-NN simulations using the procedure described in Section 5. For each
one, a stochastic distribution of volume fraction was generated in the elements using (30).
The macroscopic quantity of interest is defined here as the average macroscopic flux in the
domain Ω as

J∗ =
1
V

∫
Ω

JdΩ, (31)

where V is the volume of Ω. The convergence of the components of J∗ is depicted in
Figure 10. In all cases, statistical convergence could be achieved. For the lowest average
values f and standard deviation σ of the volume fractions (Cases 1–3 in Figure 10), corre-
lation length â did not have significant influence on the convergence rate. However, for
larger values of f and σ, convergence could be much slower (e.g., Case 9 in Figure 10 ),
where around 50 realizations are necessary to achieve convergence. This clearly illustrates
the interest of the proposed surrogate-based multiscale method, where each realization is
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performed at the cost of a classical FEM simulation. In contrast, using standard FE2 would
not allow performing this kind of statistical analysis with available computer resources.Version May 18, 2021 submitted to Journal Not Specified 19 of 23
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Figure 10. Averaged current density components as a function of the number of realizations under
various distributions of CNT volume fraction and different correlation lengths. (a) J∗x ; (b) J∗y ; (c) J∗z .

Figure 10. Averaged current-density components as a function of the number of realizations under
various distributions of CNT volume fraction and different correlation lengths. (a) J∗x ; (b) J∗y ; (c) J∗z .
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Average distributions of local current densities over 100 realization are plotted in
Figure 11 corresponding to distribution A and correlation length â=6 µm. Clear anisotropy
of the effective behavior induced by the aligned graphene sheets along the x− y plane can
be appreciated. Comparing Figure 11a,b, we can see a clear difference in the magnitude of
the Jx and Jz values, indicating that the effective conductivity in the z direction was much
lower than that in the x − y plane. The present method could capture such anisotropic
behavior in a nonlinear stochastic context.
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Figure 11. Averaged current density J̄x and J̄y over 100 realizations calculated by the NN–I model for the composite
structure for potential difference Φ2 −Φ1 = 144 V. The CNT volume fraction obeys distribution A with µA = 0.9 vol%,
σA = 0.1%, and correlation length â=6 µm: (a) Jx-component: 3D view; (b) Jx-component: plots along different planes;
(c) Jy-component: 3D view; (d) Jy-component: plots along different planes.

The evolution of the quantity of interest J∗x was plotted with respect to the difference
of the potential applied over macrostructure Φ2 −Φ1 in Figure 12. Various distributions
of CNT volume fractions and different correlation lengths were taken into account for
comparison. For each case, 100 realizations were computed, from which we obtained the
average and deviation of J∗x . For instance, in Figure 12a, correlation length â = 6 µm is
for all three different CNT volume-fraction distributions. The averaged value of J∗x was
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independent on standard deviation σ of the Gaussian distribution, whereas the deviation
of J∗x increased slightly with increasing σ. The same phenomenon could also be observed
in Figure 12b,c. Furthermore, by comparing Figure 12a–c, the increase in correlation length
led to a tiny increase in the deviation of J∗x , but had no effect on its averaged value.

Lastly, in Figure 13, distributions of target values J∗x , J∗y and J∗z are plotted for selected
cases of the probabilistic models describing the distribution of the volume fraction in
the macroscale. In Figure 14, the associated empirical cumulative distribution functions
(ECDFs) are provided. These functions were identified from the histograms in Figure 13.
These allow for a direct quantitative reading of key values of interest (minimum, maximum,
mean, percentiles, etc.) regarding the macroscopic quantities. ECDFs also have the property
of converging to the true CDF of the stochastic quantities of interest as the number of
samples is increased [54]. Typically, an accurate estimate of a CDF would require a very
large number of samples (>105); however, performing these many evaluations of nonlinear
multiscale models would be computationally prohibitive. In this regard, the use of the
proposed surrogate is the only viable approach to obtain reliable approximations of the
CDFs under investigation. This demonstrates the potential of the present approach in
constructing probabilistic models for macroquantities of interest in nonlinear multiscale
models of random materials.
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various distributions of CNT volume fraction under different correlation length â. (a) â1=6 µm; (b) â2=12 µm; (c) â3=24 µm.
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Finally, in Figs. 13, distributions of the target values J∗x , J∗y and J∗z are plotted for
selected cases of the probabilistic models describing the distribution of volume fraction in
the macro scale. In Figure 14, the associated Empirical Cumulative Distribution Functions
(ECDF) is provided. These functions have been identified from the histograms in Figure 13.
These allow for a direct quantitative reading of key values of interest (minimum, maximum,
mean, percentiles, etc.) regarding the macroscopic quantities. Also, the ECDF has the
property of converging to the true CDF of the stochastic quantities of interest as the number
of samples is increased [54]. Typically, an accurate estimate of a CDF would require a very
large number of samples (> 105), yet, performing these many evaluations of nonlinear
multiscale models would be computationally prohibitive. In this regard, the use of the
proposed surrogate is the only viable approach to obtain reliable approximations of the
CDFs under investigation. This demonstrates the potential of the present approach in
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Finally, in Figs. 13, distributions of the target values J∗x , J∗y and J∗z are plotted for
selected cases of the probabilistic models describing the distribution of volume fraction in
the macro scale. In Figure 14, the associated Empirical Cumulative Distribution Functions
(ECDF) is provided. These functions have been identified from the histograms in Figure 13.
These allow for a direct quantitative reading of key values of interest (minimum, maximum,
mean, percentiles, etc.) regarding the macroscopic quantities. Also, the ECDF has the
property of converging to the true CDF of the stochastic quantities of interest as the number
of samples is increased [54]. Typically, an accurate estimate of a CDF would require a very
large number of samples (> 105), yet, performing these many evaluations of nonlinear
multiscale models would be computationally prohibitive. In this regard, the use of the
proposed surrogate is the only viable approach to obtain reliable approximations of the
CDFs under investigation. This demonstrates the potential of the present approach in
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These allow for a direct quantitative reading of key values of interest (minimum, maximum,
mean, percentiles, etc.) regarding the macroscopic quantities. Also, the ECDF has the
property of converging to the true CDF of the stochastic quantities of interest as the number
of samples is increased [54]. Typically, an accurate estimate of a CDF would require a very
large number of samples (> 105), yet, performing these many evaluations of nonlinear
multiscale models would be computationally prohibitive. In this regard, the use of the
proposed surrogate is the only viable approach to obtain reliable approximations of the
CDFs under investigation. This demonstrates the potential of the present approach in

Figure 12. Averaged current density J∗x and corresponding deviation as a function of potential difference Φ2−Φ1 for various
distributions of CNT volume fraction under different correlation lengths â. (a) â1 = 6 µm; (b) â2 = 12 µm; (c) â3 = 24 µm.
Color zones indicate ranges of values.
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Figure 13. Histograms associated to probabilistic models describing distribution of J∗ components at the macroscale. Values
of J∗ are reported for a fixed value of macroboundary condition Φ2 −Φ1 = 144V; (a) J∗x , µ = 0.9%, σ = 0.11 µ, â = 24 µm;
(b) J∗x , µ = 1.05% , σ = 0.19 µ, â = 24 µm; (c) J∗y , µ = 0.9%, σ = 0.11µ, â = 24 µm; (d) J∗y , µ = 1.05%, σ = 0.19 µ, â = 24 µm;
(e) J∗z , µ = 0.9%, σ = 0.11 µ, â = 24; (f) J∗z , µ = 1.05%, σ = 0.19 µ, â = 24 µm.
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Figure 14. Identified probabilistic models (empirical cumulated distribution functions) for generating distributions of J∗

components at the macroscale. Values of J∗ are reported for a fixed value of macroboundary condition Φ2 −Φ1 = 144 V;
(a) J∗x , µ = 0.9%, σ = 0.11 µ, â = 24 µm; (b) J∗x , µ = 1.05% , σ = 0.19 µ, â = 24 µm; (c) J∗y , µ = 0.9%, σ = 0.11µ, â = 24 µm;
(d) J∗y , µ = 1.05%, σ = 0.19 µ, â = 24 µm; (e) J∗z , µ = 0.9%, σ = 0.11 µ, â = 24; (f) J∗z , µ = 1.05%, σ = 0.19 µ, â = 24 µm.
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7. Conclusions

A stochastic data-driven multilevel finite-element (FE2) method was proposed to
solve nonlinear heterogeneous structures with uncertainties at both the micro- and the
macrolevel. A hybrid neural-network–interpolation (NN–I) scheme was developed to
improve the accuracy of NN surrogate models, allowing for the use of a lower number of
representative volume element (RVE) nonlinear calculations, which serve as a database to
train the neural networks. This NN–I surrogate model was used to develop a data-driven
method for nonlinear heterogeneous conduction in a stochastic framework: uncertainties
can be included on both the micro- and the macrolevel. More specifically, the drastic
reduction in computational costs brought by the NN-I surrogate model allows Monte
Carlo simulations of nonlinear heterogeneous structures. This framework was applied
to propagate uncertainties in such nonlinear multiscale models, and demonstrated that it
can be used to identify probabilistic models related to some quantities of interest at the
macroscale in a fully nonlinear, anisotropic context.
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