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Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
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Abstract: The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR)
functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of
XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isother-
mal vulcanization kinetics were studied at various temperatures by rheometry and differential
scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accu-
rately predict the curing performance. However, the autocatalytic approach can be used to estimate
the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic pa-
rameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed
using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes
strongly enhanced the thermal stability of the nanocomposite.

Keywords: XNBR; epoxy; halloysite nanotubes; vulcanization kinetics; degradation; grafting

1. Introduction

The vulcanization degree of rubber compounds has a great role in determining the
physical and mechanical properties of the manufactured rubber products [1]. The vulcan-
ization reactions of the rubber compounds are under research in order to obtain useful
insights about the complex mechanisms and kinetics involved [2]. Moreover in rubber
compounds, the incorporation of nanofillers can change the cure kinetics of the systems
because of the changes in the chemical and physical interactions that they produce [3–6].
For instance, Wu et al. reported that the incorporation of even a very low amount of
graphene (GE) to natural rubber (NR), considerably influences the vulcanization kinetics of
the system. An increase in the vulcanization rate, and decreases in scorch time and optimal
cure time were correspondingly observed [7]. Another case of considerable change in the
kinetics of an elastomer when adding a nanofiller was studied by Choi et al. [8]. They
researched the vulcanization kinetics of nitrile butadiene rubber (NBR) nanocomposites
with different organoclay contents using rheometry and differential scanning calorimetry
(DSC) indicating a remarkable decrease in the scorch time without any significant changes
in the optimal cure time and torque values. DSC measurements also unveiled a lower
activation energy in the NBR/organoclay nanocomposites compared to the pristine NBR.
Lipińska et al. studied the cure kinetics of carboxylated nitrile butadiene rubber (XNBR)
nanocomposites containing layered double hydroxides (Mg-Al-LDHs) and reported lower
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ranges of curing temperatures as the Mg:Al ratio increased [9]. However, the apparent
activation energy decreased with the increase of the Mg:Al ratio.

XNBR is a special type of nitrile butadiene rubber (NBR) in which the main poly-
mer backbone is modified with a carboxyl functional group [10]. Generally XNBR com-
pounds have higher tear and abrasion resistance in comparison with the NBR com-
pounds [11]. Literature surveys show that the XNBR compounds containing various
nanofillers are useful materials to make rubber parts with higher physical and mechanical
properties [11,12]. However, as mentioned above, the introduction of nanofillers into
the XNBR matrix influences the vulcanization behavior of the rubber compound [13].
Chudzik et al. [14] studied the effect of modified epoxy resin on the cure state and adhesion
properties of various rubber compounds such as XNBR. They reported that the introduction
of modified epoxy resin into the XNBR leads to a higher adhesion between the rubber and
silver wire. Since the vulcanization of the rubber compounds is a key factor influencing
the properties of the material and the addition of nanofillers has an important effect on the
kinetics and mechanisms of vulcanization, the interest on the detailed knowledge of these
phenomena is paramount.

In previous research, we studied XNBR/epoxy nanocomposites containing different
amounts of XNBR grafted halloysite nanotubes (XHNTs). Our findings indicated that the
addition of XHNTs enhanced the mechanical and dynamic-mechanical properties of the
XNBR/epoxy matrix [15]. The results of the cure rheometer analysis confirmed the en-
hanced cure characteristics and cross-link density of XNBR/epoxy/XHNT nanocomposites
due to possible interactions between the surface modified nanotubes and the XNBR/epoxy
matrix. Morphological observations of XNBR/epoxy nanocomposites containing various
XHNTs show that the nanotubes have a uniform dispersion state in the polymer matrix
which leads to higher mechanical properties.

After these previous studies, increasing the knowledge of the effect of various concentra-
tions of XHNTs on the vulcanization and degradation of XNBR/epoxy nanocomposites was
the main objective of the present research. In order to achieve that, XNBR/epoxy/XHNTs
nanocomposites containing various loadings of nanotubes were prepared and the cure
kinetics of these compounds was experimentally evaluated at various temperatures using
an oscillating disc rheometer (ODR) and an isothermal differential scanning calorime-
ter. Moreover, the degradation behavior of the prepared nanocomposites was monitored
by thermogravimetric analysis (TGA) at various heating rates. Various theoretical ap-
proaches were applied to the obtained experimental data to evaluate the vulcanization and
degradation kinetics parameters.

2. Theoretical Background
2.1. Vulcanization Kinetics

The vulcanization reaction of a rubber compound can be evaluated through using a
differential equation on the basis of time and temperatures of the reaction as the following
equation [16–18]:

dα
dt

= K(T)f(α) (1)

where α is the degree of cure, dα/dt is the curing rate, t is time, K is the kinetic constant
at temperature T and f(α) is function related to the adopted model. The degree of cure
parameter is defined as the following relation in the oscillating disc rheometer (ODR)
analysis [19]:

α =
Mt − M0

M∞ − M0
(2)
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where Mt is the torque value at time t, M0 and M∞ are the torque values at time zero
and the end of vulcanization reaction, respectively. However, the degree of cure can be
calculated from the DSC measurements as the following equation [20,21]:

α =
∆Ht

∆H∞
(3)

where ∆Ht and ∆H∞ are the heat of reaction at time t and total heat of reaction, respectively.
The kinetic constant, K(T), is determined by the Arrhenius equation [22,23]:

K(T) = A exp
(
−Eα

RT

)
(4)

where R is the universal gas constant, A and Eα are the kinetic parameters, the pre expo-
nential factor and activation energy, respectively [24]. The overall vulcanization reaction
rate can represented as [25]:

dα
dt

= A exp
(
−Eα

RT

)
f(α) (5)

where f(α) is the vulcanization reaction model. A simple integration of above equation
by considering the independency of A and E on the vulcanization temperature, yields the
relation between time and heating temperature of the curing process [26]:

ln tα,i = ln
[

g(α)
Aa

]
+

Eα

RTi
(6)

where g(α) is the integral form of the reaction model, tα, i is the time needed to reach the
conversion to a specific value at temperature Ti. It is obvious from Equation (6) that the
plots of lntα,i vs. 1/Ti are lines with the slope of Eα/R.

Vulcanization reaction of rubber compounds can be represented by nth order model
as the following equation [27,28]:

dα
dt

= K(T)(1 − α)n (7)

The logarithmic form of the above equation can be shown as:

ln
(

dα
dt

)
= ln(K) + nln(1 − α) (8)

The resulting graph of ln(dα/dt) vs. ln(1-α) is a line the slope of which gives the value
of n and the intercept of ln(K). Whereas, the activation energy can be calculated from the
slope of the following linear equation, which represents the relation between ln(K) and 1/T:

ln(K) = ln(A)− Eα

RT
(9)

The molecular approach about the vulcanization process of a rubber compound
proposed a mix of reacted and unreacted reactive sites in a curing system which controls
the vulcanization reaction [29]. The single step autocatalytic reaction model can be applied
to determine the parameters of the vulcanization reaction [30,31]:

dα
dt

= K(T)αm(1 − α)n (10)

where αm and (1-α)n represented the reacted and unreacted sites in the vulcanization
reaction, respectively. It should be noted that the reaction order m lies between 0 to 1 and
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n ≥ 1 [32,33]. The K(T) is constant for isothermal conditions which easily allows the values
of m and n to be determined.

2.2. Degradation Kinetics

The rate of thermal decomposition in a polymer system could be represented as
Equation (1). However, there is a difference which the parameter, α, is defined as the extent
of polymer degradation (partial mass loss) as the following equation [34,35]:

α =
W0 − Wt

W0 − Wf
(11)

where W0, Wt and Wf are initial, time and final weights of the polymer, respectively [36].
Activation energy for a given decomposition information based on thermogravimetric
analysis (TGA) could be calculated by a differential isoconversional technique such as the
Friedman method which is represented as the following relation [37,38]:

ln
(

dα
dt

)
= ln[f(α)Aα]−

Eα

RTα
(12)

where the activation energy of thermal decomposition reaction can be determined from
the slope of ln(dα/dt) against 1/Tα at a certain partial mass loss. As the numerical differ-
entiation of TGA data cause some deviations and inaccuracies to predict the degradation
kinetics, the integral isoconversional methods were preferred by Kissinger–Akahira–Sunose
(KAS) [39]:

ln

(
βi

T2
α,i

)
= Const −

(
Eα

RTα

)
(13)

where βi = dT/dt, is defined as heating rate and activation energy evaluated from the slope

of the resulting line of ln
(

βi
T1.92
α,i

)
vs. 1/T.

Ozawa–Flynn–Wall proposed an integral based method which Eα calculated from
the slope of ln(βi) with respect to 1/Tα at any certain partial mass loss as the following
equation [40]:

ln(βi) = Const − 1.052
(

Eα

RTα

)
(14)

3. Materials and Methods

Carboxylated nitrile butadiene rubber (XNBR), Krynac X160, was purchased from
Lanxess Elastomers (Leverkusen, Germany). The XNBR contains 32.5% by weight of
acrylonitrile and 1% by weight of the carboxylic acid group.

The epoxy resin was KER828, a diglycidyl ether of bisphenol A (DGEBA) type, with
an epoxy group content of 5260–5420 mmol/kg. The epoxy resin was supplied by Kumho
P&B chemicals (Seoul, South Korea).

XNBR-grafted halloysite nanotubes (XHNTs) were synthesized in accordance with
our previous research works using halloysite nanotubes (HNTs). The ultrafine grade HNTs
were obtained from Imerys Tableware Asia Limited (Auckland, New Zealand) [15].

Other ingredients such as zinc oxide and stearic acid were laboratory reagent grades
from Merck Co. (Frankfurt, Germany) and used as received.

Various formulations of XNBR/epoxy/XHNT nanocomposites in accordance with
Table 1 were prepared on a laboratory open two roll mill mixer, running at rotor speed
ratio of 1:1.2 for 10 min at 40 ◦C. For this purpose, the XNBR was first masticated for 1 min
and then the epoxy resin was added to the rubber with a proportion of 85/15 of rubber to
resin. The XHNTs were introduced into the rubber mixture after 2 min of mixing process
and the mixing was continued for 5 min. The ZnO and acid stearic were incorporated into
the nanocomposite and mixed for 3 min at the final stage. The ZnO can react with the
carboxylic group of XNBR and acts as a curing agent for this rubber.
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Table 1. Formulations of carboxylated nitrile butadiene rubber (XNBR)/epoxy nanocomposites
containing various functionalized halloysite nanotube (XHNT) loadings.

Item Designation XNBR/Epoxy (phr) HNT (phr) ZnO (phr) Stearic Acid (phr)

1 XE15 100 0 6 2
2 XE15H3 100 3 6 2
3 XE15H5 100 5 6 2
4 XE15H7 100 7 6 2

The cure behavior of prepared nanocomposites were studied by using a Monsanto
Oscillating Disc Rheometer R-100 (ODR, MonTech, Columbia City, IN, USA) operated
at different temperatures 170, 180, 190 and 200 ◦C with 3◦ arc at a period of 30 min in
accordance with ASTM D2084.

The vulcanization characteristics of the prepared samples was also determined from
isothermal differential scanning calorimeter (DSC) using a Netzsch-Maia-200F3 (NETZSCH
Premier Technologies, Exton, PA, USA) under a nitrogen atmosphere operated at various
temperatures 170, 180, 190 and 200 ◦C at a period of 30 min.

Thermogravimetric analysis (TGA, NETZSCH Premier Technologies, Exton, PA, USA)
for various XNBR/epoxy/XHNT nanocomposites was conducted by Netzsch STA in-
struments, NETZSCH Premier Technologies, Exton, PA, USA, 409 PC thermogravimetric
analyzer under nitrogen atmosphere provided by fixed gas flow rate of 100 cm3/min and a
temperature range of 30–600 ◦C. The heating rates were adjusted at 5, 10, 15 and 20 ◦C/min.

4. Results and Discussion
4.1. Cure Characteristics

The vulcanization behavior of XNBR/epoxy nanocomposites containing different
concentrations of XHNTs at temperature of 170 ◦C is depicted in Figure 1. We can see
that the higher concentrations of XHNTs cause higher torque values at the initial and
final steps of curing of nanocomposites. The parameters related to the vulcanization of
XNBR/epoxy compounds and its nanocomposites at various heating temperatures are
displayed in Table 2. The results show that the scorch time and optimal cure time reduced
with the introduction of XNHTs into the XNBR/Epoxy matrix. It may have contributed
to the interactions between the XHNTs and XNBR/epoxy matrix which leads to a higher
values in the torque rheometer and curing rate [41]. It is assumed that some possible
interactions between the nanotubes and polymer matrix create immobility in the polymer
chains which leads to an accelerated cure reaction.
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Table 2. Cure parameters of XNBR/epoxy/XHNT nanocomposites at various heating rates.

Designation Heating
Temperature (◦C)

MH
(N.m)

ML
(N.m)

(MH − ML)
(N.m)

ts2

(min)
tc90

(min)

XE15

170 4.23 1.36 2.87 3.1 16.4
180 5.34 1.59 3.75 1.4 2.7
190 6.58 1.75 4.83 1.2 2.2
200 8.34 1.83 6.51 0.9 1.8

XE15H3

170 4.46 1.56 2.9 3 13.3
180 6.2 1.81 3.27 1.3 1.9
190 8.29 1.89 6.41 1.2 1.7
200 9.15 1.95 7.2 0.9 1.5

XE15H5

170 4.73 1.59 3.14 2.9 10.5
180 6.57 1.91 4.66 1.2 1.7
190 9.56 2.02 7.54 1 1.5
200 10.93 2.12 8.8 0.9 1.4

XE15H7

170 5.49 1.62 3.88 2.8 9.3
180 8.32 2.01 6.31 1.8 1.7
190 10 2.09 7.9 0.9 1.3
200 11.22 2.17 9.05 0.8 1.4

4.2. Vulcanization Kinetics

The variation of the degree of curing parameter vs. time calculated from rheome-
ter analysis at various heating temperatures was investigated in Figure 2 for various
XNBR/epoxy/XHNT nanocomposites. The results indicated that for a given heating tem-
perature, the degree of curing rapidly increased after the activation of the curing reaction.
After the initial step, the degree of curing slowly increased until reaching a constant value
at the final stage. A shift in the degree of cure parameter to higher values at the initial
stage of vulcanization reaction was attributed to the chain extension and cross-linking of
XNBR chains [42]. However, the cross-linking reactions retarded the movement of reacting
molecules which resulted in a decrease in the rate of conversion [43].
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The effect of incorporation of XHNTs into the XNBR/epoxy matrix can be monitored
in Figure 2a–d. A higher content of nanotubes increased the cure rate and degree of
conversion at the initial stage of the vulcanization reaction.

Figure 3 shows the plots of lntα,i as a function heating temperature (1/Ti) for various
prepared nanocomposites. We can see that for all samples the plots of lntα,i vs. 1/Ti is a
line for every specified conversion the slope of which represented the activation energy.
The resulted activation energy as a function of cure conversion for all prepared samples is
depicted in Figure 4. The results indicated that the activation energy decreased with higher
concentrations of XHNTs which is attributed to the effect of XNBR-grafted nanotubes on
the vulcanization reaction of nanocomposites [44]. Therefore, lower energies are needed to
complete the vulcanization process.
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The plots of ln(dα/dt) with respect to ln(1-α) and ln(K) versus 1/T are demonstrated
in Figures 5 and 6 for various XNBR/epoxy/XHNT nanocomposites. The calculated
kinetic parameters based on nth order model for various prepared nanocomposites are
summarized in Table 3. The results obtained indicated higher values of rate constant with
higher temperatures in which this effect is more pronounced with the incorporation of
XHNTs into the XNBR/epoxy matrix. Furthermore, the reaction order, n, lies between 1
and 2 for all samples and increased with temperature. It should be noted that the reaction
order increases with the introduction of XHNTs into the rubber matrix which is attributed to
the effect of XHNTs on the vulcanization reaction [45]. As can be observed in Figure 7, there
is a difference between the predicted conversion rate (dα/dt) curves from the nth order
kinetic model and experimental values at most regions of the conversion parameter.
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Table 3. Vulcanization kinetic parameters for various XNBR/epoxy/XHNT nanocomposites calcu-
lated through using nth order model.

Designation T (◦C) K (s−1) n lnA (s−1) Eα (kJ/mol)

XE15

170 1.34 1.17

9.59 95.73
180 1.42 1.18
190 1.54 1.27
200 1.68 1.35

XE15H3

170 1.41 1.3

11.16 78.19
180 1.48 1.38
190 1.57 1.45
200 1.73 1.53

XE15H5

170 1.45 1.37

12.09 65.59
180 1.51 1.42
190 1.63 1.46
200 1.76 1.58

XE15H7

170 1.48 1.52

14.27 56.83
180 1.54 1.66
190 1.65 1.69
200 1.78 1.85
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The results of vulcanization analysis for various XNBR/epoxy/XHNTs through using
the autocatalytic approach are presented in Table 4. It should be noted that the kinetic
parameters were evaluated using a non-linear regression analysis. As can be seen, the rate
constant increased with the higher heating temperature. However, the values of reaction
order, m and n, varies with temperature and XHNT loading. One can see that the reaction
order, n, lies between 1 and 2 which increases with temperature and XHNT loading whereas
the reaction order, m, lies between 0 and 1 which shows a more variations with respect to
the XHNTs content compared to the n parameter. As indicated in Table 4, the activation
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energy required for vulcanization reaction decreased with higher concentration of XHNTs
such as the results of nth order model.

Table 4. Vulcanization kinetic parameters for various XNBR/epoxy/XHNT nanocomposites calcu-
lated through using the autocatalytic approach.

Designation T (◦C) K (s−1) m n lnA (s−1) Eα (kJ/mol)

XE15

170 1.12 0.3 1.11

8.25 85.62
180 1.13 0.36 1.13
190 1.15 0.44 1.21
200 1.23 0.47 1.23

XE15H3

170 1.19 0.35 1.14

9.34 73.12
180 1.25 0.4 1.18
190 1.29 0.49 1.25
200 1.33 0.52 1.27

XE15H5

170 1.25 0.42 1.17

10.18 61.5
180 1.3 0.48 1.22
190 1.34 0.53 1.26
200 1.38 0.58 1.28

XE15H7

170 1.27 0.47 1.2

11.03 52.92
180 1.32 0.56 1.24
190 1.37 0.6 1.27
200 1.43 0.66 1.32

Figure 8 compares the plot of the conversion rate (dα/dt) resulting from experimental
and theoretical values based on the autocatalytic approach. It is evident from Figure 8 that
there is a good agreement between the experimental values and predicted conversion rate
for prepared nanocomposites. However, there are some deviations from the experimental
conversion rate with higher XHNT loading especially at the initial state of vulcanization
reaction. This may be due to the effect of XHNTs on the reaction process resulting from
some polymer–filler interactions [15,46,47].
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As previously discussed, and as shown in Tables 3 and 4 for the other proposed
models, the Eα decreases as the XHNT content increases. This means that the vulcanization
process is much faster with XHNT content because of XNBR grafted nanotubes on the
vulcanization reaction of nanocomposites. The nanotubes act as an accelerator for the
whole reaction of vulcanization according to all the results obtained.

4.3. Vulcanization Kinetics by Differential Scanning Calorimetry (DSC)

As the DSC measurement is a useful technique to determine the reaction kinetics
parameters, it is used in the form of isothermal method to display the vulcanization
kinetics of XNBR/epoxy/XHNT nanocomposites. Figure 9 represents a typical isothermal
DSC scan for various XNBR/epoxy/XHNTs nanocomposites at 170 ◦C. The rate and
degree of vulcanization reaction can be predicted from the exothermic peak position and
the area under the DSC curves [48,49]. A comparison among DSC curves of various
prepared nanocomposites suggested that the nanocomposites containing a higher loading
of nanotubes exhibits a higher cross-linking and more rapid vulcanization process [50,51].
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XNBR/epoxy/XHNT nanocomposites at 170 ◦C.

To study of kinetics of vulcanization of various prepared nanocomposites, the total
enthalpy of curing and fraction of heat released at time, t, were calculated from isothermal
DSC curves. Then the degree of vulcanization and rate of reaction were calculated to
determine the kinetics parameters in accordance with the autocatalytic approach. The
kinetics parameters were evaluated through using non-linear regression analysis which
is presented in Table 5. The results indicated that the kinetics parameters obtained from
isothermal DSC analysis show a direct proportionality with temperature such as rheometer
analysis. However, there is a difference between the resulting cure kinetics parameters from
DSC curves and rheometer analysis due to the different nature of theoretical background of
two methods of analysis [8,52]. The predicted cure rate for various XNBR/epoxy/XHNT
nanocomposites obtained from using the autocatalytic approach and experimental values
are depicted in Figure 10. It is clear that there is a good agreement between the predicted
and theoretical values, indicating the suitability of the autocatalytic approach to study the
vulcanization process of prepared nanocomposites.
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Table 5. Vulcanization kinetic parameters for various XNBR/epoxy/XHNT nanocomposites calcu-
lated through using the autocatalytic approach and isothermal DSC curves.

Designation T
(◦C)

∆H
(W/g)

∆H
(W/g)

K
(s−1) m n lnA

(s−1)
Eα

(kJ/mol)

XE15

170 5.95 5.95 1.03 0.23 1.03

8.22 80.15
180 6.35 6.35 1.05 0.27 1.08
190 8.47 8.47 1.07 0.3 1.13
200 10.36 10.36 1.11 0.32 1.18

XE15H3

170 6.12 6.12 1.07 0.26 1.1

9.26 72.11
180 7.54 7.54 1.1 0.3 1.13
190 8.86 8.86 1.12 0.33 1.17
200 10.59 10.59 1.13 0.36 1.21

XE15H5

170 6.15 6.15 1.1 0.31 1.14

10.02 60.35
180 7.66 7.66 1.12 0.36 1.16
190 9.03 9.03 1.16 0.38 1.21
200 10.77 10.77 1.18 0.42 1.26

XE15H7

170 6.23 6.23 1.17 0.35 1.19

10.86 48.64
180 7.82 7.82 1.2 0.41 1.22
190 9.18 9.18 1.23 0.45 1.28
200 10.85 10.85 1.25 0.48 1.3
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4.4. Thermal Degradation Kinetics

The results of thermogravimetric analysis (TGA) for various XNBR/epoxy/XHNTs
conducted at heating rate of 5 ◦C/min were evaluated in Figure 11. The resulted degra-
dation parameters of various prepared nanocomposites were presented in Table 6. It is
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observed that the major decomposition of various XNBR/epoxy/XHNT nanocomposites
occurs at temperatures higher than 350 ◦C.
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Figure 11. (a) Thermogravimetric analysis (TGA) and (b) DTG thermograms of various
XNBR/Epoxy/XHNTs at heating temperature of 5 ◦C/min.

Table 6. Thermal decomposition characteristics of XNBR/Epoxy/XHNT nanocomposites calculated
from TGA and DTG thermograms at heating temperature of 5 ◦C/min.

Designation T5 (◦C) T10 (◦C) TP (◦C) WLP (%) Residue (%)

XE15 355.83 382.26 456.54 53.04 24.47
XE15H3 356.00 382.87 461.26 49.19 30.30
XE15H5 357.79 383.69 462.25 46.67 30.87
XE15H7 360.0 383.8 468.3 44.20 32.40

The effects of heating rate and XHNTs loading on the partial mass loss parameter, α,
are depicted in Figure 12 for various prepared nanocomposites. It is evident that the shape
of the resulting graphs is similar for all prepared samples which indicated that the XHNTs
does not affect the degradation mechanism of XNBR/epoxy matrix [53]. However, the
results indicated that the higher heating rate leads to a higher temperature to complete
degradation of the prepared samples.

In order to calculate the activation energy required for degradation reactions, the fitted
straight lines at various partial mass loss are presented in Figure 13 on the basis of the
Friedman, Kissinger–Akahira–Sunose (KAS) and Ozawa-Flynn–Wall (OFW) models. It
is clear from Figure 13a that the fitted straight lines through using the Friedman method
has some errors which makes this model unable to precisely predict the degradation
mechanism of prepared nanocomposites. However, the resulting straight lines by using
the KAS and OFW models in Figure 13b,c are parallel together at most partial mass loss
values and well fitted to the experimental data which are attributed to the integral base of
these models [54].
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Figure 14 demonstrates the variation of activation energy for degradation of XNBR/
Epoxy/XHNTs nanocomposites with partial mass loss parameter. The results indicated
that the activation energy calculated through using the Friedman method show disordered
variations with the partial mass loss. However, the graph of activation energies derived
from the KAS and OFW methods have more regularity at various partial mass losses. As
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can be seen in Figure 14, the nanocomposites containing higher concentration of XHNTs
show higher activation energies at a whole range of partial mass loss. In other word, the
nanotubes act as a retarder for the degradation reaction of XNBR/epoxy compound which
can be attributed to its physical structure and probable interactions with the polymer
matrix [55].
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The calculated degradation kinetic parameters based on autocatalytic approach are
presented in Table 7. We can see that the frequency factor, A, which is directly dependent
on the activation energy [56], shows the same trend and increases with the incorporation
of XHNTs into the XNBR/epoxy matrix. The results of reaction orders, m and n, indicated
that this parameters decrease with the XNTs loading which is attributed to the retardation
effect of nanotubes in the degradation mechanism of the polymer matrix [57].

Table 7. Degradation parameters obtained through using autocatalytic approach for various
XNBR/epoxy/XHNT nanocomposites.

Designation XE15 XE15H3 XE15H5 XE15H7

Friedman

Eα (kJ/mol.) 227.89 227.70 231.85 252.33
Ln A (min−1) 27.52 33.85 34.96 35.42

m 0.69 0.19 0.08 0.03
n 2.28 2.17 1.65 1.12

KAS

Eα (kJ/mol.) 221.80 228.04 234.87 252.44
Ln A (min−1) 29.65 30.95 34.27 35.20

m 0.62 0.24 0.15 0.10
n 1.76 1.74 1.63 1.54

OFW

Eα (kJ/mol.) 197.48 206.00 211.38 222.53
Ln A (min−1) 29.87 31.15 34.28 35.17

m 0.64 0.14 0.15 0.10
n 1.89 1.77 1.75 1.33
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The predicted rate of degradation reaction by using theoretical models and experimen-
tal data are compared in Figure 15. The results indicated that there is a good agreement
between the theoretical and experimental values of the rate of degradation reaction for
various XNBR/epoxy/XHNTs through using the KAS and OFW models. However, there
are some deviations from experimental values by Friedman model especially with higher
XHNTs loading at the early stage of the degradation mechanism.
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5 ◦C/min for: (a) XE15; (b) XE15H3; (c) XE15H5 and (d) XE15H7.

5. Conclusions

XNBR/epoxy nanocomposites containing different concentrations of XNBR-grafted
halloysite nanotubes (XHNTs) were prepared by using laboratory two roll mills.

The cure rheometer investigations at various temperatures demonstrated that the
introduction of XHNTs into the XNBR/epoxy matrix causes a rise in the maximum torque
values while it decreases the scorch and optimal cure times. The vulcanization kinetics
study revealed that the cure reaction of prepared XNBR/epoxy/XHNTs nanocomposites
follows the autocatalytic model and the nth order model could not precisely predict the
vulcanization mechanism. However, there are some differences between the resulting vul-
canization reaction parameters calculated through using a cure rheometer and isothermal
DSC analysis. The results suggested that the incorporation of XHNTs into the polymer
matrix cause a change in the vulcanization reaction which leads to a decrease in the activa-
tion energy parameter. From these results, the conclusion is that the addition of XHNTs
accelerates the vulcanization process.

The study of the degradation mechanism of prepared nanocomposites using non-
isothermal TGA measurements indicated that the nanotubes act as a retarder in the degra-
dation reaction with a higher activation energy. The results suggested that the incorporation
of XNBR-grafted halloysite nanotubes into the XNBR/epoxy compound will produce a
nanocomposite with better vulcanization behavior and higher thermal stability.
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