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Abstract: During concrete construction in winter, the concrete performance is generally improved 

by adding a chemical admixture or providing protection using tents and hot-air blowers. However, 

long-term strength or safety accidents may occur due to the installation and removal of the tents. 

This study considered insulated gang forms to improve formwork methods. In this regard, the mi-

crostructure and micropore characteristics of concrete were investigated experimentally to examine 

the insulated gang form effect on the physical and mechanical properties of concrete. The micropore 

characteristics were investigated through scanning electron microscopy. The results confirm that 

applying insulated gangs improves workability and safety without adding chemical admixture. 

Moreover, the application of insulated gang forms reduces the use of tents and hot-air blowers. 

Therefore, insulated gangs provide excellent initial quality to the concrete. 
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1. Introduction 

In modern high-rise building construction, reducing the period of frame construction 

is essential for ensuring project feasibility. Therefore, selecting an appropriate formwork 

method is crucial [1]. 

Formwork construction represents a considerable proportion of the building con-

struction cost as this step accounts for 30–40% of the structure construction cost and 10% 

of the overall construction cost [2–4]. In addition, the formwork method plays a crucial 

role in reducing the time required to raise one floor [1]. Moreover, selecting an appropri-

ate formwork method is paramount as it affects the total construction period and cost, as 

well as the subsequent processes, such as electricity and equipment [5]. Therefore, there 

is a continuous interest in studying novel methods regarding formwork construction. 

As a formwork method, gang forms have been mainly used for high-rise offices and 

apartments in various countries [6]. For such high-rise modern buildings, reducing the 

construction period is considered important. In particular, in cold countries where the 

average daily temperature falls below 4 °C, year-round construction has become a neces-

sity. Moreover, in countries with distinct seasonality, concrete quality control has also 

been considered important [7]. 

Formwork and concrete construction in winter have the problem of preventing early 

frost damage in the concrete and securing early strength [8]. If early frost damage occurs 

before the concrete hardens, the compressive strength of the concrete reduces. In this re-

gard, the compressive-strength reduction can be due to various causes; however, concrete 

significantly affects the resistance to early frost damage if its compressive strength reaches 

a certain target before occurring early frost damage [9–11]. 

There are several countermeasures to prevent such early frost damage [8]: (1) after 

pouring concrete, the area is enclosed in a tent with the inside heated with an oil stove or 
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by electric heating, (2) water or aggregate is heated, (3) the content of cement or Type Ⅲ-

R Portland cement is increased, (4) protective insulation is used, or (5) chemical admixture 

is used in winter to improve strength development at early ages. However, these methods 

are not generally applied in all countries. 

Method (1) is the most typically used method; however, environmental problems, 

and problems such as the death of workers from suffocation, frequently occur due to the 

use of hot-air blowers and heaters. In Method (2), the cost of heating water and aggregate 

increases for ready-mixed concrete manufacturers. For (3), the cost increases owing to the 

increase in the amount of cement and change in cement type. For (4), protective insulation 

is used only for a part of the structure, and the labor cost and construction period increase 

when used for the entire structure. Finally, several studies have been conducted on 

method (5). As representative cases, Cullu and Arslan studied the physical and mechani-

cal properties of concrete that used antifreeze in cold weather [12]. Riza Polat studied the 

effects of elements to secure the strength of fresh concrete in cold weather [8]. Lee inves-

tigated the use of accelerators to develop the early strength of fresh concrete [13]. 

Various types of chemical admixtures have been used to prevent early frost damage 

in fresh concrete in winter [14]. However, most of these studies have not been imple-

mented due to inconveniences such as mix design adjustment, reduction in long-term 

strength, and chlorides. Method (1), which can directly control the curing temperature, 

has been mainly used [15]. 

However, some studies have pointed out that method (1) presents problems such as 

high fuel cost, increased installation cost, and environmental pollution [16,17]. Thus, stud-

ies on formwork have been conducted to improve these limitations. Most of the previous 

studies mainly focused on preventing frost damage in fresh concrete. In addition, several 

studies were conducted to evaluate the durability of hardened concrete, including the mi-

crostructure and microporous properties of the hardened concrete [18–20]. 

In other studies, the effect of temperature on the composition of pore solution was 

investigated [21–24]. These studies presented data on temperature dependence, quantity 

and stability of hydration products, and pore solution composition. 

The temperature change, due to the heat of hydration or external environment 

change, significantly affects the mechanical properties of concrete at an early age. There-

fore, it is necessary to investigate and quantify the mechanical characteristics according to 

temperature and age [25]. Therefore, this study focused on preventing early frost damage 

using a newly developed insulated gang form instead of the method of improving con-

crete performance by adding a chemical admixture during concrete construction in win-

ter, as in previous studies on protection in winter. In addition, the process of generating 

hydrates according to temperature and age was examined using a scanning electron mi-

croscope (SEM), and the micropore characteristics of concrete were investigated by mer-

cury intrusion porosimetry (MIP). 

2. Materials and Methods 

2.1. Design of Experiments 

The experimental design of this study is outlined in Table 1, and the detailed struc-

ture of the insulated gang form is illustrated in Figure 1. The experiment was performed 

under cold weather conditions with a minimum temperature of −20 °C. The insulated 

gang form used in the experiment consisted of a rigid urethane board (Development Ad-

vance solution Co.Ltd., Jeollanam-do, Korea) (insulation 30 mm) attached to the outside 

of the form with adhesives (Buildex Co.Ltd., Seoul, Korea.) The other variables and con-

ditions are identical to those of the conventional gang form. Concrete was poured into this 

gang form, and it was compared with concrete fabricated following the conventional gang 

form to identify the temperature history, microstructure, and micropore characteristics. 

For accurate control of the outside air temperature in winter, the experiment was con-

ducted in a refrigerated container, as shown in Figure 2. 
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Table 1. Experimental design: variables, number, and level. 

Experimental Variable 
Experimental 

Number 
Experimental Level 

w/b 1 0.499 

Slump (mm) 1 180 

Air (%) 1 4.5 ± 1.5 

Curing chamber minimum/maximum 

temperatures (°C)—3days 
2 −20/5 

Temperature inside the member (°C) 1 5 

Hardened concrete 4 

Temperature history, compres-

sive strength, microstructure 

(SEM), and micropore. 

W. w/b: water/binder (cement + fly ash + blast furnace slag) ratio.

 

Figure 1. Schematic diagram of the insulated gang form (cross-section). 

 

Figure 2. View of the refrigerated container. 
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The insulated gang form is prepared as a 100% factory-made product, and there is 

no need for additional on-site fabrication process such as spraying or affixing insulation 

Therefore, it is easy to install, with small human resources loss, and exhibits a higher in-

sulation effect than the existing protection methods in winter. 

For concrete, the typical concrete mix commonly used at construction sites in winter 

was used, without specifically adding admixture for facilitation of hydration reaction. 

As for the water/binder ratio, the general strength combination, which is commonly 

used in construction sites, was used, and the target slump and air volume were set at 180 

mm and 4.5 ± 1.5%. As for experimental variables, after concrete pouring, the slump and 

air content were measures. For hardened concrete, the temperature history, compressive 

strength, microstructure (SEM), and micropores of the concrete were measured. 

The curing plan of this study considered an outside temperature in the range from 5 

to −20 °C. The temperature inside the member was set to 5 °C or higher for three days after 

concrete pouring. Subsequently, the formwork was removed, and air curing was per-

formed. The measured outside temperature ranged from −5 °C to 0 °C, which corre-

sponded to the average temperature at the end of December (as in Asia–South Korea). For 

the conventional and insulted gang forms, a 3.0 mm-thick steel plate was used in addition 

to 50 mm × 30 mm × 2.3 mm rectangular pipes as vertical and horizontal members. A 30 

mm-thick rigid urethane board was used as the insulation of the insulated gang form. 

Table 2 shows the concrete mix ratio, and Table 3 lists its physical properties. 

Table 2. Concrete mix ratio. 

w/b W (kg/m3) S/a (%) 
Unit weight (kg/m3) 

C B F S G SP 

0.499 171 48 275 34 34 870 951 2.4 

W: unit water content, S/a: fine aggregate ratio, C: Portland cement. S: fine aggregate, G: coarse 

aggregate, B: blast furnace slag, F: Fly-ash, SP: Super Plasticizer 

Table 3. Physical properties of the urethane board used in insulated gang form. 

Purpose Species Ingredient 
Thickness 

(mm) 

Thermal 

Conductivity 

(W/m·k) 

Density 

 (kg/m3) 

Insulation 
Polyure-

thane 
Polyol + Isocyanate 30 0.018 35 

2.2. Experimental Method 

2.2.1. Fabrication of Members and Measurement Method 

For concrete, a ready-mixed concrete product, mainly used in general construction 

sites, was used. The experimental specimens were fabricated as a four-side closed box 

type with a wall thickness, width, and height of 200 m, 1800 mm, 600 mm, respectively, 

as shown in Figures 3 and 4. The specimens were small-scale members in the most similar 

configuration to the insulated gang form actually constructed. In order to measure the 

temperature of the concrete, a T-type thermocouple (Omega Engineering Co.Ltd., Seoul, 

Korea) was fixed to the center and surface of each wall at a point of 300 mm in height, and 

an automatic temperature recorder (Omega Engineering Co.Ltd., Seoul, Korea) was set to 

record the results every 2 h. Temperature measurement was carried out immediately after 

placing the concrete. 
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Figure 3. Sketch of the floor plan. 

 

Figure 4. Sketch of the elevation. 

The specimens were fabricated as a four-sided closed box type to have conditions 

similar to those at the actual construction site. Moreover, a hot-air blower (Osung Air 

Tech. Co.Ltd., Incheon-si, Korea) was installed, and the internal space was heated so that 

the internal temperature could be maintained at 5 °C. Figure 5 shows the thermocouple 

installation locations and placement of the hot-air blower. 

Regarding the outside air condition for the specimens, curing was performed for 

three days by setting the temperature between 5 to −20 °C, which corresponds to cold 

weather conditions. Subsequently, the specimens were cured for 25 days at temperatures 

between −5 and 0 °C. This outside air condition was set based on the winter season in 

South Korea when insulated gang form is installed. The normal temperature condition 

(20 °C) was excluded from the experimental conditions as it did not meet the purpose of 

this study to prevent early freezing in winter. 
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Figure 5. Thermocouple installation locations and placement of the hot-air blower. 

In the preparation of specimen for SEM analysis and pore diameter measurement, 

the central part of the specimen was crushed at each day of age, the crushed parts were 

passed through a 5mm sieve, and small pieces remaining on the 2.5 mm sieve were ex-

tracted. In the concrete specimen, the core was taken from the central part of the structure 

to avoid other effects such as bleeding and settlement of aggregates. Acetone was used to 

stop the hydration reaction immediately after crushing the concrete core. As a method for 

stopping the hydration reaction, the specimen was immersed in acetone immediately, and 

the free water in the specimen was replaced with acetone. Acetone immersion was con-

ducted for about 24 h, and new acetone was replaced every 8 h. When this process was 

completed, it was dried at 100 °C for 1 day using a dryer. 

2.2.2. Measurement with Scanning Electron Microscope (SEM) 

The resolution of the SEM (Seron tech. Co.Ltd., Gyeonggi-do, Korea) is determined 

by how small the working distance of the electron beam and whether the beam can be 

applied to the specimen with high brightness. For use of SEM, a conductive material is 

coated on the surface of the specimen. In addition, for the surface of the specimen, a free 

fracture surface is desirable for a concrete structure or a hydration structure, and the sur-

face should be appropriately flat. The specimen fixed with an adhesive or double-sided 

tape on the observation stand, and gold and carbon are deposited on the surface with a 

sputtering device such as an ion coater. The SEM observation is conducted in a vacuum 

of 0.075006 × 10−3 to 0.0075006 × 10−3 N/m2 with the coated specimen, and care is taken 

during the process to minimize the evaporation of the volatile component in the adhesive 

or double-sided tape used. In addition, cement pastes in the initial stage of hydration or 

colloidal substances need to be handled carefully. In this experiment, samples of about 5 

mm were taken from the specimen as shown in Figure 6a and after surface treatment as 

shown in Figure 6b, the surface of the samples was observed at 10,000× magnification. 
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(a) 

 
(b) 

Figure 6. (a) Samples taken from the specimens. (b) Specimen surface treatment system (SEM). 

2.2.3. Measurement of Pore Diameter Distribution by Mercury Intrusion 

Concrete pore diameter distribution is affected by the materials used, mixing ratio, 

and curing method, but the total pore volume or pore diameter distribution of concrete 

varies depending on chemical degradation factors such as neutralization, sulfate corro-

sion, and acid rain or physical degradation factors such as frost damage. Due to such deg-

radation, the durability of the concrete is reduced, but the measurements of pore diameter 

distribution are generally used for evaluation of various factors affecting the durability 

performance of the concrete rather than for quantitative diagnosis and evaluation of the 

concrete durability. That is, it is used as an indicator for evaluating various properties of 

concrete materials in many cases. As for the measuring tool in this experiment, pore dis-

tribution was measured using mercury intrusion with a porosimeter in Figure 7. The 

measurement range was 0.2 MPa, and the size range was 60A to 360 μm/Hg. In order to 

analyze the internal pore structure, calcium was eluted for 7 to 28 days of immersion age, 

and then micropore-size-distribution was analyzed by Mercury Intruction Porosimetry 

(MIP) (Micromeritics Co.Ltd., Atlanta, USA). As for the MIP analysis, three specimens 

were measured according to the elution time, and their uniformity was maintained by 

keeping the sample size to below 10 mm. 
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Figure 7. MIP distribution measuring device. 

3. Results 

3.1. Temperature History and Compressive Strength Characteristics 

Figure 8 shows the temperature history of the concrete for the gang form type on the 

external surface and in the central part. Immediately after concrete pouring, the heat of 

hydration showed a tendency to decrease for both the conventional and insulated gang 

forms because of the low outside temperature. However, the conventional gang form ex-

hibited a faster decrease than the insulated gang form, and the concrete surface tempera-

ture dropped below 0 °C at 28 h of age. 

The ideal temperature for concrete curing is 15 to 16 °C. The normal range of temper-

ature for the concrete environment is between 5 and 32 °C [12]. At temperatures below 5 

°C, the chemical reaction between cement and water is greatly reduced [12]. 

In the case of the insulated gang form, no significant increase was found in the heat 

of hydration due to the low outside temperature. However, the temperature history was 

higher than that of the conventional gang form. In addition, the temperature difference 

between the central and external surfaces was not large. 

Figure 9 shows the compressive strength characteristics of concrete using the gang 

form type. The compressive strength of the conventional gang at 3 days of age was 3.51 

MPa, which was lower than the compressive strength required for demolding (5 MPa). 

Nevertheless, in the case of the insulated gang form, the compressive strength at 3 days 

of age was 5.84 MPa, which exceeded the formwork stripping time and the value required 

to avoid early frost damage. Regarding the temperature history, the insulation perfor-

mance of the insulated gang form was found to be excellent for improving the early com-

pressive strength. 
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(a) Surface 

 

(b) Central part 

Figure 8. Temperature history of concrete. 

 

Figure 9. Compressive strength characteristics of concrete. 
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3.2. Microstructure Characteristics 

The changes during the initial hydration reaction of cement are particularly pro-

nounced within 28 days after hydration. In this process, calcium silicate hydrate (C-S-H) 

is the major products in addition to cement particles, and ettringite and monosulfate hy-

drates are also produced. In addition, relatively large calcium hydroxide crystals in the 

shape of a hexagonal plate can be seen at the early stage, which gradually decreases due 

to carbonation as well as the progress of hydration. 

Figures 10 and 11 show the microstructure analysis results by gang form type ob-

tained by magnifying hardened cement 10,000 times through SEM. Figure 10a shows hy-

drated concrete in conventional gang form at 3 days of age. Since no hydration reaction 

occurred due to the low temperature of −20 °C, un-hydrated cement is mostly observed. 

However, it can be seen that from the 7 days of age in Figure 10b, ettringite in the form of 

needles is produced and slow process of hydration reaction can be observed. 

  
(a) 3 days (b) 7 days 

Figure 10. Microstructure characteristics (conventional gang form). 

  
(a) 3 days (b) 7 days 

Figure 11. Microstructure characteristics (insulated gang form). 

At low temperatures, the hydration reaction starts very slowly, and ions dissolved 

before the precipitation of hydrates take longer time in diffusion and C-S-H hydrates with 

low density show more even distribution and small and irregular structure develop [26–

28]. The solubility of ettringite increases significantly with temperature [27]. 

The interconnected needle shapes in Figure 11 a form the basis of the initial strength 

of the concrete, and more dense structure is formed over time. These needle shapes can 

only be observed at the initial stage of hydration, and these decrease over time as shown 

in Figure 11b. 
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However, when using the insulated gang form, the ettringite, C-S-H gel, and calcium 

hydroxide were generated at 3 days of age, indicating that its hydration reaction was bet-

ter than that of the conventional gang form. At 7 days of age, the hydration products were 

denser than the conventional gang form. 

Mostly ettringite is the initial hydration product, which is bridging the binder grains, 

until the stiffening and setting occurs [29]. 

The application of the insulated gang formed an accelerated hydration reaction ow-

ing to its excellent insulation performance; thus, it increased early compressive strength 

in addition to the temperature history and compressive strength characteristics shown in 

Section 3.1. 

3.3. Micropore Characteristics 

Irregular air voids in concrete cause reduced strength and concrete performance deg-

radation. The fine pores in the hydration structure become even smaller as the hydration 

reaction proceeds, resulting in a denser microstructure. 

Figure 12 shows the dimensional range of pores [30], and Figure 13 show the pore 

distribution inside the hardened cement, according to the gang form type after 7 and 28 

days of age, obtained by MIP. Figure 14 shows the cumulative pore volume as function of 

the gang form type at 7 and 28 days of age. With an increase in the age, large pores of 100 

µm in size decreases, and small pores of 1 µm or less increases in both conventional and 

insulated gang forms. This tendency was clear in the insulated gang form and in the con-

ventional gang form. 

 

Figure 12. Dimensional range of solids and pores in a hydrated cement paste [30]. 

 
(a) Conventional gang form (7 days of age) 
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(b) Insulated gang form (7 days of age) 

 
(c) Conventional gang form (28 days of age) 

 
(d) Insulated gang form (28 days of age) 

Figure 13. Pore structure at 7, and 28 days of age. 
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As for the conventional gang form, the hydration reaction was slow due to low con-

crete retention, which resulted in larger unhydrated cement particles in the early age and 

irregular cement structure. Therefore, for the conventional gang form, relatively large 

pores between 50 and 300 µm were observed at 7 days of age owing to the low curing 

temperature. At 28 days of age, the distribution of large pores decreased because of the 

hydration reaction. However, in the insulated gang form, a smaller number of large pores 

of 100 µm were observed at 7 days of age than in the conventional gang form. A similar 

tendency was confirmed in the 0.01–1 µm range. Hydration reaction was faster in the in-

sulated gang form than in conventional gang form at low temperatures with no special 

hydration accelerator added. 

This is because, due to the development of hydration and pozzolanic reactions, pre-

cipitation of the primary and secondary hydration products occurred, filling the pores, 

and shifting the curve of pore size to a smaller size [31]. Prevention of early freezing is 

very important in curing concrete in winter. As suggested by the results of the experiment, 

the use of insulated gang form is expected to have a great effect in preventing early freez-

ing damage by promoting hydration reaction and reducing pores (or water) compared to 

the conventional gang form in the early age. This result can be clearly seen in Figure 14b, 

which shows the 28-day total pore volume distribution curve, and the tendency is more 

clearly shown than the result in Figure 14a. 

At 28 days of age, more small pores in the 0.01–0.1 µm range were observed in the 

insulated gang form than in the conventional gang form, indicating superior micropores 

characteristics than when using the conventional gang form. In particular, pores smaller 

than 0.05 µm are known to be closely related to concrete strength because they are in the 

sizes of gel pores and capillary pores, as shown in Figure 13. The application of the insu-

lated gang form slightly increases micropores with sizes close to 0.05 µm, compared to the 

conventional gang form. These results indicate that the insulated gang form improves 

concrete strength in cold weather [30]. As the hydration reaction proceeds, the fine pores 

inside the hydration tissue becomes smaller and form a more dense structure. This phe-

nomenon has a great effect on improving strength and preventing deterioration. 

The pore size distribution has a great impact on the durability of concrete. From the 

size distribution, large pores have a negative effect on the durability of the concrete. How-

ever, when pores are uniformly introduced as in the use of air-entraining (AE) agent, the 

concrete resistance to freezing and thawing improves. 

The results showed that the sample that used the insulated gang form exhibited a 

smaller cumulative pore volume than the samples that used the conventional gang form 

as the age increased. 

This experimental result shows the comparative analysis on the cement hydration 

results according to the insulation performance of the insulated gang form. The analysis 

according to the secondary cement-product, admixture, and aggregate type is not consid-

ered in this result. Further studies need to be conducted reflecting these details in the fu-

ture. 
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(a) Age 7 days 

 
(b) Age 28 days 

Figure 14. Cumulative pore volume. 

4. Conclusions 

The experiment in this study was performed under cold weather conditions with a 

minimum temperature of −20 °C. When the insulated gang form was applied under such 

conditions, the temperature history, compressive strength, microstructure, and micropore 

characteristics of concrete were analyzed. The main results are as follows: 

1. Immediately after concrete pouring, the conventional gang form exhibited a faster 

decrease in the heat of hydration than the insulated gang form, and the concrete sur-

face temperature dropped below 0 °C at 28 h of age. These results are likely to have 

a great influence on the initial curing of concrete. 

2. The compressive strength of the conventional gang form did not exceed 5 MPa at 3 

days of age. However, for the insulated gang form, the compressive strength at 3 

days of age exceeded 5 MPa. This greatly contributes to the shortening of the con-

struction period due to the rapid demolding time of the formwork. 
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3. When the microstructure was analyzed according to the member type, a large 

amount of unhydrated cement was observed in the conventional gang form at 3 days 

of age because the hydration reaction was barely performed because of the low tem-

perature. However, in the insulated gang form, ettringite, C-S-H gel, and calcium 

hydroxide, which are hydration products, were observed in large quantities at 3 days 

of age. These results indicate that the hydration reaction was further accelerated com-

pared to the case when the conventional gang form was used. 

4. As age increased, large pores decreased and pores smaller than 1 µm increased. In 

addition, the distribution of relatively small pores increased in the insulated gang 

form compared to that in the conventional gang form. Overall, the insulated gang 

form exhibited a smaller cumulative pore volume than the conventional gang form 

as the age increased. 

Summarizing the results of this study, the use of insulated gang form for the con-

struction of apartment houses in cold winter will result in a denser concrete structure than 

that with the conventional gang form to ensure the concrete quality in winter. 

Author Contributions: Investigation, K.-Y.N. and M.-K.L.; formal analysis, K.-Y.N.; writing—orig-

inal draft/review and editing, M.-K.L. All authors have read and agreed to the published version of 

the manuscript. 

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant 

funded by the Korean Government (NRF-2018R1D1A1B07049390). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare that they have no competing interests. 

References 

1. Proverbs, D.G.; Holt, G.D.; Olomolaiye, P.O. Factors impacting construction project duration: Comparison between France, 

Germany and the U.K. Build. Environ. 1999, 34, 197–204. 

2. Hanna, A.S. Concrete Formwork Systems; Marcel Dekker Inc.: New York, NY, USA, 2005. 

3. Kang, K.I.; Kim, G.H.; An, S.H.; Cho, H.H.; Seo, D.S. Improved productivity using a modified table formwork system for high-

rise building in Korea. Build. Environ. 2005, 40, 1472–1478. 

4. Kim, J.J.; Park, B.J.; You, S.K.; Kim, J.H. Comparative study of strength and weakness of system form in high-rise building 

project. Archit. Inst. Korea Struct. Constr. 2012, 12, 9–10. 

5. Tam, C.M.; Tong, T.L.K.; Lau, T.C.T.; Chan, K.K. selection of vertical formwork system by probabilistic neural networks model, 

Constr. Manage. Econ. 2007, 23, 245–254. 

6. Koo, K.J.; Cho, D.H.; Lee, J.H.; Park, S.H.; Park, C.S. Process of formwork crew team formation based on work zoning in apart-

ment housing projects. J. Korea Inst. Build. Constr. 2012, 12, 285–286. 

7. Han, C.G.; Oh, S.K.; Sin, D.A.; Kim, K.M. Efficient Construction of Cold Weather Concrete using Anti-Freeze Agent and Insu-

lation Form. J. Archit. Inst. Korea Struct. Constr. 2004, 20, 59–65. 

8. Polat, R.; Karagol, F.; Demirboga, R.; Kaygusuz, M.A. The effects of urea on strength gaining of fresh concrete under the cold 

weather conditions. Constr. Build. Mater. 2014, 64, 114–120. 

9. Powers, T.C. Prevention of frost damage to green concrete. RlLEM Bull. 1962, 14, 120–124. 

10. Sadgrove, B.M. Freezing of concrete at early age. Cement and concrete Association. Technical. Rep. 1974, 42, 503. 

11. Gruenwald, E. Cold weather concreting with high-early strength cement. In Proceedings of the RILEM Symposium on Winter 

Concreting, Theory and Practice; 1956; Session B-1. https://books.google.co.kr/books/about/RILEM_Symposium_on_Win-

ter_Concreting.html?id=Gw8fAQAAMAAJ&redir_esc=y 

12. Cullu, M.; Arslan, M. The effects of antifreeze use on physical and mechanical properties 446 of concrete produced in cold 

weather. Compos. Part B Eng. 2013, 50, 202–209. 

13. Lee, Y.S.; Ryou, J.S. Properties of early-stage concrete with setting-accelerating tablet in cold weather. Mater. Sci. Eng. A Struct. 

2012, 532, 84–90. 

14. Korhonen, C.J. Expedient low-temperature concrete admixtures for the army: US Army Corps of Engineers. Cold Reg. Res. Eng. 

Labor 1999, 1–20. https://www.semanticscholar.org/paper/EXPEDIENT-LOW-TEMPERATURE-CONCRETE-ADMIXTURES-

FOR-Korhonen/9389af4147b011b51b622598d50dfbcb23fb1a73. DOI : 10.21236/ADA375241 



Materials 2021, 14, 2862 16 of 16 
 

 

15. Kim, J.H.; Nam, K.Y.; Won, J.Y.; Lim, N.G. A study on the cold weather concrete casting with the insulation gang form and 

insulation Euro form. Archit. Inst. Korea Struct. Constr. 2012, 29, 77–84. 

16. Won, J.Y.; Lee, S.H.; Park, T.W.; Nam, K.Y. Basic applicability of an insulated gang form for concrete building construction in 

cold weather. Constr. Build. Mater. 2016, 125, 458–464. 

17. Kim, K.M.; Won, C.; Lee, H.J.; Oh, S.K.; Han, C.G. A fundamental study on the development of insulating forms for cold weather. 

Constr. Build. Mater. 2016, 125, 458–464. 

18. Nam, J.S.; Kim, G.Y.; Lee, B.; Hasegawa, R.; Hama, Y. Frost resistance of polyvinyl alcohol fiber and polypropylene fiber rein-

forced cementitious composites under freeze thaw cycling. Compos. Part B-Eng. 2016, 90, 241–250. 

19. Wang, L.; He, T.S.; Zhou, Y.X. The influence of fiber type and length on the cracking resistance, durability and pore structure 

of face slab concrete. Constr. Build. Mater. 2021, 282, 122706. 

20. Wang, L.; Luo, R.; Zhang, W.; Jin, M.; Tang, S. Effects of fineness and content of phosphorus slag on cement hydration, perme-

ability, pore structure and fractal dimension of concrete. Fractals, 2021, 29, 2140004. 

21. Nassif, A.Y.; Petrou, M.F. Influence of cold weather during casting and curing on the stiffness and strength of concrete. Constr. 

Build. Mater. 2013, 44, 161–167. 

22. Wieker, W.; Bade, T.; Winkler, A.; Herr, R. On the composition of pore solutions squeezed from autoclaved cement pastes. In 

Proc. Intern RILEM Workshop Hydration Setting; Nonat, A., Mutin, J.C., Eds.; Dijon, E & FN Spon: London, UK, 1992; pp. 125–

135. 

23. Thomas, J.J.; Rothstein, D.; Jennings, H.M.; Christensen, B.J. Effect of hydration temperature on the solubility behavior of Ca-, 

S-, Al-, and Si-bearing solid phases in Portland cement pastes. Cem. Concr. Res. 2003, 33, 2037–2047. 

24. Michaud-Poupardin, V.; Sorrentino, D. Application of a thermodynamic analysis of the “CaO–Al2O3–CaSO4–alkali–H2O” sys-

tem to real OPC mortars at 90 °C In Proceedings of the 11th Intern. Cong. Chem. Cem., Durban, South Africa, 2003; Grieve, G.; 

Owens, G., Eds.; pp. 1903–1912. 

25. Ortiz AAguado LAgullo, T. Garcia, Influence of environmental temperatures on the concrete compressive strength: Simulation 

of hot and cold weather conditions. Cem. Concr. Res. 2005, 35, 1970–1979. 

26. Stark, J.; Moser, B.; Bellmann, F. new approaches to cement hydration in the early hardening stage, In Proceeding of 11th Inter-

national Congr Chem Cem, Durban, South Africa, 2003; Grieve, G.; Owens, G., Eds.; pp. 261–277. 

https://books.google.co.kr/books/about/11th_International_Congress_on_the_Chemi.html?id=5QRCxQEACAAJ&redir_esc=y 

27. Perkins, R.B.; Palmer, C.D. Solubility of ettringite(Ca6[Al(OH)6]2(SO4)3 26H2O)at 5–75 ℃. Geochim. Cosmochim. Acta 1999, 63, 

1969–1980. 

28. Glasser, F.P.; Damidot, D.; Atkins, M. Phase development in cement in relation to the secondary ettringite problem. Adv. Cem. 

Res. 1995, 26, 57–68. 

29. Locher, F.W.; Richartz, W.; Sprung, S. Setting of cement—Part I: Reaction and development of structure. ZKG Int. 1976, 29, 435–

442. 

30. Mehta, P.K. Concrete, Structure, Properties and Materials; Prentice Hall: Engelwood Cliffs, NJ, USA, 1986. 

31. Caneda-Martínez, L.; Monasterio, M.; Moreno-Juez, J.; Martínez-Ramírez, S.; García, R.; Frías, M. Behaviour and Properties of 

Eco-Cement Pastes Elaboratedwith Recycled Concrete Powder from Construction andDemolition Wastes. Materials 2021, 14, 

1299. 


