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Abstract: The multi-cell composite T-shaped concrete-filled steel tubular (MT-CFST) element is an
innovative structural form. It has great potential for construction applications because of favorable
advantages over traditional composite elements. The flexural strength of MT-CFST beams was
investigated in this study to provide recommendations in line with existing design codes. First,
formulations to evaluate the flexural strength of MT-CFST beams were derived based on the Unified
Theory and plastic stress distribution method (PSDM). For the Unified Theory-based formula, a
modified confinement effect factor that considers the shape of a cross-section was proposed. An
experimental study on the flexural behavior of six MT-CFST beams as well as two hollow section
counterparts was conducted. The influence of bending moment direction, concrete infill, wall
thickness, and cross-section sizes were investigated. The accuracy of the proposed formulations was
verified against the test results and numerical results from finite element modeling. The comparisons
showed that the formula in line with the Unified Theory provided more accurate predictions with
reasonable conservatism for the studied MT-CFST beams.

Keywords: steel tube; concrete-filled; T-shaped; composite; flexural strength; unified theory; plastic
stress distribution

1. Introduction

Concrete-filled steel tubular (CFST) elements can reduce the materials costs and the
construction time effectively in comparison to equivalent steel or reinforced concrete
elements, since CFST cross-sections make full use of the advantages of both steel and
concrete materials [1–5]. Recently, the applications of special-shaped (L, T, †, etc.) CFST
cross-sections in residential buildings and bridges have attracted much attention [6–12].
With favorable static and seismic performance, multi-cell composite T-shaped concrete-
filled steel tubular (MT-CFST) elements, first proposed by Tu et al. [7–9], have great potential
for construction applications. A typical MT-CFST cross-section is shown in Figure 1, in
which three rectangular (square) steel tubes are first joined by fillet weld, and concrete is
then poured into the steel tubes.

Design provisions for normal CFST members have been established in a series of
design codes such as AISC 360-16 [13], EC4 [14] and GB 50936-2014 [15]. However, no
design guidelines are provided for the implementation of special-shaped CFST members,
even though GB50936-2014 [15] provides design guidelines for octagon and hexadecagon
CFST sections. Currently, the limited knowledge regarding the actual mechanical behavior
of special-shaped CFST members is a major deterrent to the establishment of related design
provisions and their widespread use.

For the determination of flexural strength of CFST beams with compact sections, the
plastic stress distribution method (PSDM) is adopted in both AISC 360-16 [13] and EC4 [14].
This method assumes a CFST section undergoes full plasticization under an ultimate limit
state, in which steel reaches yield strength (fy) in both compression and tension regions, and
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the concrete compressive stress is equal to a shape factor times the compressive strength
(fc’) of concrete. The tensile strength of concrete is neglected in establishing the internal
force equilibrium of the section. Differently from AISC 360-16 [13] and EC4 [14], GB
50936-2014 [15] adopts a Unified Theory to predict the ultimate capacity of CFST members
under different loadings. The Unified Theory was first proposed by Zhong [16], and it was
continuously improved due to the great effort of Han [17]. In the Unified Theory, steel is
integrated with concrete infill, and they are taken as a new composite material. A unified
body is then used to calculate the ultimate capacities of CFST members under different
loading conditions.
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Previous studies on the evaluation of flexural strength of CFST beams were mainly
focused on normal sections. The studies of Jiang et al. [18], Elchalakani et al. [19], GHo
and Liu [20], Xiong et al. [21], and Chitawadagi and Narasimhan [22] showed PSDM
was found to underpredict the flexural strength in almost all cases in comparison with
experimental results of CFST beams with circular, square and rectangular cross-sections.
In addition, Ren et al. [23] reported that PSDM was conservative for CFST beams with
elliptical cross-sections. A series of studies showed that the predicted results from the
simplified formulations in line with the Unified Theory were in close agreement with
test results of circular CFST beams, but the Unified Theory-based formulations produced
unconservative errors for square and rectangular CFST beams with low concrete-to-steel
rations in a few cases [24–28]. With respect to composite CFST beams, Moon et al. [10]
reported PSDM gave a reasonably conservative prediction for the bending resistance of
a T-shaped composite CFST girder composed of CFST circular beams and concrete slabs
under both positive and negative bending moments, based on experimental and numerical
studies. Since the MT-CFST section is not covered in the existing design standards [13–15],
the accuracy of design provisions in line with the Unified Theory of concrete-filled steel
tubes, and the plastic stress distribution method (PSDM) for MT-CFST members should be
assessed.

The following sections of the paper are mainly focused on three aspects: (1) deriving a
Unified Theory-based formula applicable to MT-CFST beams by means of introducing a
modified confinement effect factor, (2) conducting an experimental study on the flexural
behavior of six MT-CFST beams as well as two hollow section counterparts, and (3) eval-
uating the accuracy of the Unified Theory-based method and plastic stress distribution
method (PSDM) for the determination of the flexural strength of MT-CFST beams.
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2. Methods to Predict the Flexural Strength of MT-CFST Beams
2.1. The Nominal Bending Resistance Determined by the Unified Theory

In accordance with the Unified Theory, the nominal ultimate bending resistance of a
CFST beam is determined by

Mu = γmWsc fsc (1)

where Wsc is the elastic section modulus; fsc is the compressive strength of the composite sec-
tion; γm is the flexural strength factor for the composite material that exhibits non-isotropic
strength behavior (the compressive strength of this composite material is higher than its
tensile strength); γm, provided in [9] for T-shaped CFST sections, given by Equations (2)
and (3), is adopted in this study.

γm = 0.51 + 0.47 ln
(
α fy/ f ′c + 0.52

)
for positive bending (2)

γm = 0.84 + 0.78 ln
(
α fy/ f ′c + 0.53

)
for negative bending (3)

where fy and fc’ are the yield strength of the steel tube and the compressive strength (prism)
of the concrete infill, respectively; α = (As

f/Ac
f + As

w/Ac
w); As

f and As
w are steel area of

the flange and the web, respectively; Ac
f and Ac

w are concrete area of the flange and the
web, respectively.

A unified formula to calculate fsc for CFST polygon sections is provided in GB 50936-
2014 [15]. It was developed by regression analysis and calibration against experimental
results, given by

fsc =
(

1.212 + Bξ + Cξ 2
)

f ′c (4)

ξ =
As fy

Ac f ′c
(5)

where As and Ac are the area of the steel and concrete infill of the composite section, respec-
tively. The coefficient B and C consider the contributions of steel and concrete, respectively.
The confinement factor ξ, derived from the CFST circular and square sections, is used to
account for the confinement effect on concrete infill. The factor ξ works well for CFST cir-
cular and square sections [29,30], but it cannot appropriately reflect the confinement effect
for a MT-CFST section [9], since the confinement effect has a great relationship with the
shape of the cross-section. Thus, a modified confinement factor (ξMT) and a new approach
of calculating fsc for MT-CFST sections were developed in this study. The development
of ξMT and the calculation of fsc for an MT-CFST section are described in the following
subsubsections.

2.1.1. A Modified Confinement Factor Considering Geometry Effects on Confinement

The development of the modified confinement factor (ξMT) is illustrated in Figure 2,
described as follows:
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First, based on the research findings of Zhang et al. [29] and Mander et al. [31], the
in-filled concrete of a multi-cell T-shaped composite section is divided into effectively and
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ineffectively confined areas through a second-degree parabola with an initial tangent angle
of θ, as shown in Figure 3. The purpose of dividing effectively and ineffectively confined
areas for in-filled concrete is to obtain the modified confinement factor (ξMT) that considers
the effect of the cross-section shape on the confinement to in-filled concrete. The division
of effectively and ineffectively confined concrete areas depends on the shape of the steel
tube in the outermost layer. Confining stress from the steel tube in the effectively confined
core is larger than that in the ineffectively confined area.
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Second, a confinement ratio (Con) is defined, as given by Equation (6):

Con =
Ae f f

Ac
(6)

where Aeff and Ac are the area of the effectively confined core and the total area of the
concrete infill, respectively. To simplify the calculation process, the round corner of all of
the hollow sections is taken as sharp. The Con for different components of an MT-CFST
section can be obtained by integration, given by

Con−MT− f ≈ 1− s
6

(
1 +

1
s
+

1
m

)
tan θ1 for the flange of an MT−CFST section (7)

Con−MT−w ≈ 1− 1 + 2n2

6n
tan θ2 for the web of an MT−CFST section (8)

where s = (c − 2t)/(a − 2t); m = (c − 2t)/d; n = (b − 2t)/(a − 2t); θ1 = min {45◦, 180◦/π·
arctan(1/s)}; θ2 = min{45◦, 180◦/π·arctan(1/n)}.

Third, assuming that under the same confinement ratio the enhancement effect is
only influenced by the geometry of a cross-section, an equivalent shape factor (Kequi) that
considers the changes of confinement effects with different CFST sections was proposed.
Based on the relationship between the confinement ratio of the flange (web) of a T-shaped
section and that of a square section, the equivalent shape factor is given by

Kequi− f =
Con−MT− f

Con−squ
for the flange of an MT−CFST sec tion (9)

Kequi−w =
Con−MT−w

Con−squ
for the web of an MT−CFST sec tion (10)
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where Con-squ is the confinement ratio of the corresponding square section (the square
section has the same area and wall thickness as the flange (web) of the T-shaped section),
given by

Con−squ = 1− 2
3

tan θ (11)

where θ is equal to θ1 for the calculation of K_equi-f, and θ2 for K_equi-w.
Lastly, the modified confinement factor (ξMT) for the flange and web of an MT-CFST

section is given by

ξMT− f = Kequi− f

(
A f

s fy/A f
c f ′c
)

for the flange of an MT−CFST sec tion (12)

ξMT−w = Kequi−w
(

Aw
s fy/Aw

c f ′c
)

for the web of an MT−CFST sec tion (13)

where As
f and As

w are steel area of the flange and the web, respectively, and Ac
f and Ac

w

are concrete area of the flange and the web, respectively.

2.1.2. Calculation of fsc for an MT-CFST Section

Assumes that the compressive strength of an MT-CFST section can be determined by
adding the compressive strength of its components, as given by

A fsc = A f fsc− f + Aw fsc−w (14)

Rewriting Equation (14) gives

fsc =
A f fsc− f + Aw fsc−w

A f + Aw
(15)

where A, Af and Aw are the area of the whole section, flange and web, respectively; A =
Af + Aw, and fsc-f and fsc-w are the compressive strength of the flange component and web
component, respectively. fsc-f and fsc-w are calculated based on the unified formula using
a modified confinement factor (ξMT) that considers the geometry effects on confinement,
given by

fsc− f = [1.212 + BξMT− f + C
(

ξMT− f

)2
] f ′c (16)

fsc−w = [1.212 + BξMT−w + C(ξMT−w)
2] f ′c (17)

where the coefficient B and C are given by

B = 0.131
fy

213
+ 0.723 (18)

C = −0.7
f ′c

14.4
+ 0.026 (19)

Substituting Equations (16) and (17) into Equation (7) gives

fsc =

1.212 +
B
(

A f ξMT− f + AwξMT−w

)
A f + Aw

+
C
(

A f ξMT− f
2 + AwξMT−w

2
)

A f + Aw

 f ′c (20)

2.2. The Nominal Bending Resistance Determined by the Plastic Stress Distribution Method

The plastic stress distribution for an MT-CFST compact section under positive bending
moment is shown in Figure 4. In this figure, yp is the distance from the bottom of the
cross-section to the plastic neutral axis (PNA); ys is the distance from the centroid of the
tension zone of the steel tube to the centroid of the tension zone of the concrete infill; yc is
the distance from the centroid of the tension zone of the steel tube to the centroid of the
steel tube’s compression zone; y1 is the distance from the bottom of the cross-section to
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the centroid of the tension zone of the steel tube, and y2 is the distance from the bottom
of the cross-section to the centroid of the compression zone of the steel tube. Fs and Fs

’

are the tension force and compression force of the steel tube, respectively, and Fc
’ is the

compression force of the concrete infill. Details on the equations used to obtain yp, ys, yc, y1
and y2 are shown in Appendix A. The nominal bending resistance can be obtained through
equilibrium equations, given by

Mu = F′sys + F′cyc (21)

F′s = fy A′s (22)

F′c = 0.85 f ′c A′c (23)

where A′s and A′c are the compression area of steel tube and concrete infill, respectively;
Equilibrium equations to obtain A′s and A′c are shown in Appendix A. For the plastic stress
distribution method, the compressive strength of the concrete infill is taken as 0.85 f ′c , and
the tensile strength of concrete is neglected. Note that EC4 also allows the coefficient 0.85
to be replaced by 1 for normal CFST sections. In the case of an MT-CFST compact section
under positive bending moment, the nominal bending resistance can be obtained by using
a similar approach.
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3. Experimental Study
3.1. Description of Specimens

The multi-cell composite T-shaped concrete-filled steel tubular (MT-CFST) specimens
were designed to be not susceptible to local buckling and lateral-torsional buckling before
the composite section reaches full plastic stress distribution. For a CFST beam, the presence
of in-filled concrete prevents the hollow steel tube from deforming inward and changes
the local buckling mode of the hollow steel tube within the cross-section and along the
length of the member [17,24,32]. In this study, the limiting wall slenderness (width-to-
thickness ratio) for MT-CFST sections was conservatively taken as that for steel rectangular
hollow compact sections. It should be noted that the steel rectangular hollow compact
sections here refer to cross-sections that can develop their plastic moment resistance but
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have limited rotation capacity because of local buckling. The limiting laterally unbraced
length for MT-CFST beams was conservatively taken as that of equivalent T-shaped steel
beams under the limit of plastic yielding specified in AISC 360-16 [13]. The limiting wall
slenderness (for compact, non-compact and slender section) and limiting laterally unbraced
length (for plastic yielding and inelastic lateral-torsion buckling) applicable to MT-CFST
members will be investigated in the authors’ future paper.

Six multi-cell composite T-shaped concrete-filled steel tubular (MT-CFST) beams and
two multi-cell composite T-shaped hollow steel tubular (MT-HST) beams were tested. A
summary of the geometric and material properties of the specimens is shown in Table 1.
The specimens were divided into four groups. For each group, two identical specimens
were prepared with the same material and geometric properties. To investigate the effect
of bending moment direction on the flexural behavior of the specimens, both positive and
negative bending moments were considered for each group. The letters P and N in the
specimen name correspond to positive bending moment and negative bending moment,
respectively. The cross-sectional parameters (a, b, c, t and R-in) are defined in Figure 5. The
letters a, b and c represent the side length of a single steel rectangular hollow section (RHS).
The total height of the composite T-shaped cross-section is a plus b, and 2c is the flange
width of the composite cross-section. The characters t and R-in are the wall thickness and
inside radius of the corner, respectively. The height and wall thickness of the composite
cross-section varied for different MT-CFST specimens. The nominal length (L) of all of
the specimens was 1300 mm. For steel tubes with the nominal wall thickness of 2.50 mm,
the average yield stress (fy) and average Young’s modulus (Es) of steel tube were 315 MPa
and 198.2 GPa, respectively, while for those with the nominal wall thickness of 2 mm, fy
and Es were 321.6 MPa and 199.6 GPa, respectively. The average compressive strength (fc’)
and average Young’s modulus (Ec) of the concrete infill for all of the MT-CFST specimens
were 41.3 MPa and 35.5 GPa, respectively. For each composite T-shaped hollow steel
tubular specimen, four pairs of special transverse stiffeners (shown in Figure 6), which
were perpendicular to the flanges and welded to the web, were used to prevent premature
local buckling caused by concentrated forces. The fabrication of the specimens was similar
to that presented in [8].
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Table 1. Geometric and material properties of the specimens.

Specimen Group a (mm) b (mm) c (mm) t (mm) R-in
(mm)

L
(mm)

Es
(GPa)

fy
(MPa)

Ec
(GPa)

fc
′

(MPa)

MT-HST1-P
1

60.1 80.3 79.9 2.48 3.97 1300.5 198.2 315
MT-HST1-N 60.4 79.8 80 2.50 4.75 1301 198.2 315

MT-CFST2-P
2

59.9 80 80.4 2.52 5.25 1300 198.2 315 35.5 41.3
MT-CFST2-N 60.5 80.2 79.6 2.46 5.09 1299.6 198.2 315 35.5 41.3

MT-CFST3-P
3

59.8 79.2 79.9 1.99 3.38 1299.8 199.6 321.6 35.5 41.3
MT-CFST3-N 59.5 80.3 79.6 2.01 4.42 1299.4 199.6 321.6 35.5 41.3

MT-CFST4-P
4

60.3 100.7 80.4 2.52 5.80 1300.9 198.2 315 35.5 41.3
MT-CFST4-N 59.8 100.1 79.7 2.49 4.01 1301.2 198.2 315 35.5 41.3

The comparison between specimens in the second group (MT-CFST2) and those in the
first group (MT-HST1) assessed the contribution of concrete infill to flexural strength. The
third group of specimens (MT-CFST3) was compared with the second group of specimens
(MT-CFST2) to investigate the effect of wall thickness on flexural strength, whereas the
comparison of specimens in the fourth group (MT-CFST4) and those in the second group
(MT-CFST2) emphasized the influence of cross-section sizes.

3.2. Description of Test Setup

Four groups of four-point bending tests were conducted at the Structural Engineering
Laboratory of Beihang University (BUAA). A hydraulic machine with a capacity of 1000 kN
under displacement control was employed. The simply supported span for each specimen
was 1200 mm. A general view of the four-point bending test and a schematic diagram
of the test setup are shown in Figure 7. For each group, one specimen was subjected to
a positive bending moment, while a negative bending moment was applied to the other.
All the specimens bent about the unsymmetrical axis. Three linear variable displacement
transducers (LVDTs) were used to measure the deflections at the mid-span and at the two
loading points. Another two LVDTs were placed at the support points. For MT-CFST
specimens, a total of seven strain gauges were attached on the surface of steel tubes in the
mid-span, in which two were on the top and bottom of the cross-section, respectively, and
five were attached along the height of the cross-section.



Materials 2021, 14, 2838 9 of 21

Materials 2021, 14, x FOR PEER REVIEW 8 of 20 
 

 

the comparison of specimens in the fourth group (MT-CFST4) and those in the second 
group (MT-CFST2) emphasized the influence of cross-section sizes. 

Table 1. Geometric and material properties of the specimens. 

Specimen Group a (mm) b (mm) c (mm) t (mm) R-in (mm) L (mm) Es (GPa) fy (MPa) Ec (GPa) fc′ (MPa) 
MT-HST1-P 

1 
60.1 80.3 79.9 2.48 3.97 1300.5 198.2 315   

MT-HST1-N 60.4 79.8 80 2.50 4.75 1301 198.2 315   
MT-CFST2-P 

2 
59.9 80 80.4 2.52 5.25 1300 198.2 315 35.5 41.3 

MT-CFST2-N 60.5 80.2 79.6 2.46 5.09 1299.6 198.2 315 35.5 41.3 
MT-CFST3-P 

3 
59.8 79.2 79.9 1.99 3.38 1299.8 199.6 321.6 35.5 41.3 

MT-CFST3-N 59.5 80.3 79.6 2.01 4.42 1299.4 199.6 321.6 35.5 41.3 
MT-CFST4-P 

4 
60.3 100.7 80.4 2.52 5.80 1300.9 198.2 315 35.5 41.3 

MT-CFST4-N 59.8 100.1 79.7 2.49 4.01 1301.2 198.2 315 35.5 41.3 

3.2. Description of Test Setup 
Four groups of four-point bending tests were conducted at the Structural Engineer-

ing Laboratory of Beihang University (BUAA). A hydraulic machine with a capacity of 
1000 kN under displacement control was employed. The simply supported span for each 
specimen was 1200 mm. A general view of the four-point bending test and a schematic 
diagram of the test setup are shown in Figure 7. For each group, one specimen was sub-
jected to a positive bending moment, while a negative bending moment was applied to 
the other. All the specimens bent about the unsymmetrical axis. Three linear variable dis-
placement transducers (LVDTs) were used to measure the deflections at the mid-span and 
at the two loading points. Another two LVDTs were placed at the support points. For MT-
CFST specimens, a total of seven strain gauges were attached on the surface of steel tubes 
in the mid-span, in which two were on the top and bottom of the cross-section, respec-
tively, and five were attached along the height of the cross-section. 

 
(a) 

Materials 2021, 14, x FOR PEER REVIEW 9 of 20 
 

 

Hydraulic serva actuator

LVDTs

Load sensorDistributing beam

Strain guages

Support

MT-CFST Specimen

 
(b) 

Figure 7. A general view of the four-point bending test and schematic diagram of the test setup: (a) Four-point bending 
test of MT-HST specimen; (b) schematic diagram of the test setup. 

3.3. Test Results 
The failure modes of all of the specimens are shown in Figure 8a. Neither brittle fail-

ure nor lateral-torsional buckling occurred throughout the loading history. MT-HST spec-
imens suffered from severe inward local buckling (shown in Figure 8b) near the loaded 
points in the compression region, while some MT-CFST specimens exhibited slightly out-
ward local buckling, as shown in Figure 8c. The difference in local buckling mode is at-
tributed to the presence of in-filled concrete which prevents the steel tube from deforming 
inwards. 

A plot of moment versus deflection curves for all of the tested specimens is shown in 
Figure 9. It was observed that MT-HST beams can develop their plastic moment resistance 
(22.4 kN∙m) but had limited rotation capacity because of local buckling (the MT-HST 
beams were not capable of maintaining plastic moment resistance when undergoing large 
deformation). Nearly similar moment-deflection curves were obtained for the two MT-
HST beams. This is aligned with the plastic stress distribution method, in which plastic 
moment resistance is identical for the studied MT-HST specimen under both positive and 
negative bending moments. 

It was observed that all MT-CFST beams exhibited very noticeable ductile behavior. 
A similar flexural behavior was observed for MT-CFST beams in the same group at the 
initial loading stage. At higher load levels, the flexural stiffness of an MT-CFST beam un-
der a negative bending moment dropped considerably until it reached the yield plateau, 
in comparison with the identical one under positive bending. This may be caused by the 
brittle failure of concrete in the tension zone. With the initial neutral axis shifting toward 
the plastic neutral axis, the brittle failure area of tensile concrete under negative bending 
may be larger than that under positive bending. MT-CFST beams under positive bending 
could maintain plastic moment resistance when undergoing large deformation, while a 
moderate increase in resistant moment was found for the counterparts under negative 
bending. This is attributed to the redistribution of stress in steel and concrete and strain-
hardening of steel (after yielding of steel). 

Figure 7. A general view of the four-point bending test and schematic diagram of the test setup: (a) Four-point bending test
of MT-HST specimen; (b) schematic diagram of the test setup.



Materials 2021, 14, 2838 10 of 21

3.3. Test Results

The failure modes of all of the specimens are shown in Figure 8a. Neither brittle failure
nor lateral-torsional buckling occurred throughout the loading history. MT-HST specimens
suffered from severe inward local buckling (shown in Figure 8b) near the loaded points in
the compression region, while some MT-CFST specimens exhibited slightly outward local
buckling, as shown in Figure 8c. The difference in local buckling mode is attributed to the
presence of in-filled concrete which prevents the steel tube from deforming inwards.
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A plot of moment versus deflection curves for all of the tested specimens is shown in
Figure 9. It was observed that MT-HST beams can develop their plastic moment resistance
(22.4 kN·m) but had limited rotation capacity because of local buckling (the MT-HST
beams were not capable of maintaining plastic moment resistance when undergoing large
deformation). Nearly similar moment-deflection curves were obtained for the two MT-HST
beams. This is aligned with the plastic stress distribution method, in which plastic moment
resistance is identical for the studied MT-HST specimen under both positive and negative
bending moments.
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It was observed that all MT-CFST beams exhibited very noticeable ductile behavior.
A similar flexural behavior was observed for MT-CFST beams in the same group at the
initial loading stage. At higher load levels, the flexural stiffness of an MT-CFST beam under
a negative bending moment dropped considerably until it reached the yield plateau, in
comparison with the identical one under positive bending. This may be caused by the
brittle failure of concrete in the tension zone. With the initial neutral axis shifting toward the
plastic neutral axis, the brittle failure area of tensile concrete under negative bending may
be larger than that under positive bending. MT-CFST beams under positive bending could
maintain plastic moment resistance when undergoing large deformation, while a moderate
increase in resistant moment was found for the counterparts under negative bending. This
is attributed to the redistribution of stress in steel and concrete and strain-hardening of
steel (after yielding of steel).

Considering both the ultimate and serviceability limit states for practice, the bending
moment corresponding to the strain of extreme fiber of 0.01 was defined as the ulti-
mate bending moment (Mu-exp), and the same approach has been adopted by Zhong [16],
Han [17], Han et al. [24] and Wang et al. [26]. The values of Mu-exp for all of the MT-CFST
specimens are shown in Table 2. It was found that Mu-exp for MT-CFST beams under
positive bending were greater than the counterparts under negative bending. This may
be explained by the Unified Theory, in which steel and concrete infill are considered as a
new composite material whose compressive strength is higher than its tensile strength. For
a given T-shaped section with this composite material, the theoretical flexural resistance
under positive bending was greater than that under negative bending. The difference
of Mu-exp between MT-CFST beams under positive bending and the counterparts under
negative bending was within 4%.

Table 2. Ultimate bending moment and shifting values between initial neutral axis and plastic
neutral axis.

Specimen Group Mu-exp (kN·m) YINA (mm) YPNA (mm) ys (mm)

MT-HST1-P
1

22.8 53.50 57.89 4.39↓
MT-HST1-N 23.9 86.46 82.11 4.35↑
MT-CFST2-P

2
34.7 53.19 33.50 19.69↑

MT-CFST2-N 33.0 86.18 80.56 5.62↑
MT-CFST3-P

3
27.3 52.93 29.71 23.22↑

MT-CFST3-N 26.9 86.81 79.95 6.83↑
MT-CFST4-P

4
42.6 61.15 35.86 25.29↑

MT-CFST4-N 38.7 99.26 101.44 2.18↓
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Compared to the MT-HST specimens, the ultimate bending moment of the MT-CFST
counterparts increased by 12% under positive bending and 9% under negative bending.
The initial flexural stiffness of the MT-CFST beams was significantly enhanced. The results
indicated that the contribution of in-filled concrete in the compression zone was significant
for the flexural resistance and initial flexural stiffness of the studied composite beams since
the hollow steel tubes were designed to be not susceptible to local buckling effects before
developing full plastic capacity. With a reduction in the steel wall thickness, Mu-exp for
MT-CFST3-P and MT-CFST3-N were 6.1–7.4% lower than the counterparts in the second
group. It should be noted that the flexural strength and initial flexural stiffness of the
composite beam may be largely controlled by the steel tube since materials lying on the
outside of the composite cross section have a significant influence on the flexural behavior
of the beam. The ultimate bending moments of MT-CFST specimens in the fourth group
were approximately 5.7–7.9% higher than those in the second group. This demonstrated
that cross-section sizes had an appreciable influence on the flexural capacity of the studied
multi-cell composite T-shaped concrete-filled steel tubular specimens.

3.4. Neutral Axis and Strain Distributions

The theoretical shifting values between the initial neutral axis and plastic neutral axis
are shown in Table 2. In this table, YPNA is the distance from the top of the composite
section to the plastic neutral axis (PNA) corresponding to full plastic stress distribution, and
YINA is the distance from the top of the composite section to the initial neutral axis (INA),
which is also the unsymmetrical axis that passes through the centroid. Note that the plastic
neutral axis for the MT-HST cross-section is the axis that divides the area into two equal
parts, but it does not coincide with the centroidal axis. ys is the distance between PNA and
INA. An upward pointing arrow (↑) means that the initial neutral axis is shifted upwards
during the loading history, while a downward pointing arrow (↓) denotes downward
shifting of the initial neutral axis. The measured strain distributions at four different load
levels (0.2 Mu-exp, 0.5 Mu-exp, 0.7 Mu-exp and Mu) for MT-CFST2-P and MT-CFST3-N are
shown in Figure 10, where the horizontal and vertical axes represent longitudinal strain
and the distance from the bottom of the composite section, respectively.

It was seen that when the bending moments were no more than 0.7 Mu-exp, the mea-
sured longitudinal strains varied almost linearly with the distance from the initial neutral
axis, which followed the plane section assumption. This indicated that the composite
section works well as a unified body. Appreciable discrepancies at Mu-exp were observed.
This was because cracking or crushing of in-filled concrete already occurred and steel tubes
might experience local buckling, which resulted in stress redistribution of the composite
section. From Figure 10, the initial neutral axis shifted upwards for both positive and
negative bending cases, which complied with the moving tendency of the initial neutral
axis predicted by the plastic stress distribution method (PSDM). The initial neutral axis
moved approximately 31 mm for MT-CFST2-P and 9 mm for MT-CFST3-N, while it moved
around 16 mm for MT-CFST3-P and 12 mm for MT-CFST3-N. The measured shifting values
of the initial neutral axis did not agree well with the results determined by PSDM (shown
in Table 2). One possible explanation is that the actual stress distribution of the composite
cross-section was not identical to the assumption of the plastic stress distribution theory
when the bending moment reached Mu-exp. In addition, the inevitable error of marking the
location of strain gauges also had a negative influence on the measured shifting values.



Materials 2021, 14, 2838 13 of 21
Materials 2021, 14, x FOR PEER REVIEW 12 of 20 
 

 

-15,000 -10,000 -5,000 0 6,000
0

20

40

60

80

100

120

140

9mm
Plastic neutral axis

Initial neutral axis

D
is

ta
nc

e 
fr

om
 b

ot
to

m
 o

f t
he

 s
ec

ti
on

 (m
m

)

D
is

ta
nc

e 
fr

om
 b

ot
to

m
 o

f t
he

 s
ec

ti
on

 (m
m

)

−5,000 0 5,000 10,000 15,000
0

20

40

60

80

100

120

140

Strain (×10−6 )
 (a) MT-CFST2-P

31mm

Plastic neutral axis

-5,000 0 5,000 10,000 15,000
0

20

40

60

80

100

120

140

D
is

ta
nc

e 
fr

om
 b

ot
to

m
 o

f t
he

 s
ec

ti
on

 (m
m

)

16mm
Plastic neutral axis

Initial neutral axis

D
is

ta
nc

e 
fr

om
 b

ot
to

m
 o

f t
he

 s
ec

ti
on

 (m
m

)

-15,000 -10,000 -5,000 0 5,000
0

20

40

60

80

100

120

140

Strain (×10−6 )

 (d) MT-CFST3-N

12mm
Plastic neutral axis
Initial neutral axis

 (c) MT-CFST3-P

Strain (×10−6 )
 (b) MT-CFST2-N

Strain (×10−6  )

Initial neutral axis

M

0.5M
0.7M

0.2M

M

0.5M
0.7M

0.2M

M

0.5M
0.7M

0.2M

M

0.5M
0.7M

0.2M
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4. Comparison of Experimental Results against Predicted Results

Predicted results from the plastic stress distribution method (PSDM) and the proposed
formulation in line with Unified Theory are shown in Table 3. Comparison of the predicted
results against experimental results is shown in Figure 11, in which the number (1, 2, 3,
etc.) in the horizontal axis corresponds to the specimens shown in Table 3, for example,
1 representing MT-HST1-P, 2 representing MT-HST1-P, and so on. In Figure 11, Mu-exp,
Mu-PSDM and Mu-uni denote bending resistance obtained from the test, PSDM and the
Unified Theory-based formula, respectively; a value of Mu-PSDM/Mu-exp or Mu-uni/Mu-exp
larger than 1 means the predicted ultimate bending moments by PSDM or the Unified
Theory-based formula are overestimated compared against experimental results. µ and
COVs are mean value and coefficients of variation, respectively. ε+ and ε− are the max-
imum error of overestimation and the maximum error of underestimation, respectively.
Note that for the two MT-HST beams, Mu-PSDM, determined by the plastic section modulus
times the yield strength of steel, was equal to Mu-uni.
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Table 3. Predicted results from PSDM and the Unified Theory-based formula.

Specimen Group Mu-exp (kN·m) Mu-PSDM (kN·m) Mu-uni (kN·m) Mu-PSDM/Mu-exp Mu-uni/Mu-exp

MT-HST1-P
1

22.8 22.4 22.4 0.98 0.98
MT-HST1-N 23.9 22.4 22.4 0.94 0.94

MT-CFST2-P
2

34.7 29 33.2 0.84 0.96
MT-CFST2-N 33 28.6 31.1 0.87 0.94
MT-CFST3-P

3
27.3 20.8 27.8 0.76 1.03

MT-CFST3-N 26.9 21.9 25 0.81 0.93
MT-CFST4-P

4
42.6 39.8 35.8 0.93 0.86

MT-CFST4-N 38.7 34.1 37.6 0.88 0.97

µ 0.85 0.94
COV 0.09 0.06
ε+ – +3%
ε− −24% −14%
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It was seen that both Mu-PSDM and Mu-uni for MT-HST (hollow steel tubular) beams
were lower than the experimental results (Mu-exp). This may be attributed to the strain-
hardening effects of steel. For the MT-CFST beams, mean values (µ) of Mu-PSDM/Mu-exp
and Mu-uni/Mu-exp were 0.85 and 0.94, respectively, while the coefficients of variation (COV)
of Mu-PSDM/Mu-exp and Mu-uni/Mu-exp were 0.09 and 0.06, respectively. It demonstrated
that both PSDM and the Unified Theory-based formula gave conservative predictions.
Nevertheless, high values of conservative error were observed in the predicted results from
PSDM, in which the conservative error was higher than 15% for some MT-CFST specimens,
for example, up to a maximum of 24% for MT-CFST3-P. The conservative error for PSDM
may be resulted from neglecting the benefit of stress redistribution in steel and concrete
and strain-hardening effects of steel.

Compared to PSDM, the Unified Theory-based formula generally produced more
reasonable conservative predictions (errors of no more than 14%) for the studied beams
except for MT-CFST3-N. Although the proposed formula overestimated the bending re-
sistance of MT-CFST3-N by 3%, the unconservative error was low to a reasonable level.
This demonstrated that the Unified Theory-based formula provided improved estimation
for the studied MT-CFST beams. Since the accuracy of the Unified Theory-based formula
largely depends on the calculation of compressive strength (fsc) of an MT-CFST section, the
results also indicated that the proposed formulation (Equation (20)) for fsc, in which shape
effects on confinement to in-filled concrete were accounted for by means of introducing the
modified confinement effect factor, was reasonably accurate for the MT-CFST sections.
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5. Verification by Numerical Results

In conjunction with the experimental study, verification of the Unified Theory-based
formula and PSDM for predicting the flexural strength of MT-CFST beams was conducted
through finite element (FE) modelling. Numerical results from FE modelling were used to
evaluate the accuracy of the proposed formulations.

5.1. Development and Validation of the Finite Element Model

The structural behavior of MT-CFST beams subjected to pure bending was simulated
using the finite element (FE) software Abaqus 6.13 [33]. A four-node shell element with
reduced integration (S4R) was used to model the steel tube, while the in-filled concrete
was modeled using an eight-node brick element with reduced integration (C3D8R). The
interaction between steel tube and in-filled concrete was defined through a surface-to-
surface contact that used the “Hard contact” function in the normal direction and the
“Coulomb friction” function in the tangential direction. Since no weld failure was observed
in the test, “Tie constraint” was employed to model the interaction of steel tubes. Vertical
displacements were applied at the lines corresponding to the quartering points of the beam.
The displacements and relevant rotations were restrained at the two boundary lines of
the beam. An appropriate mesh size was selected based on mesh convergence studies. To
be consistent with the test specimens, corresponding stiffeners were created for the FE
models of the two T-shaped hollow steel tubular (MT-HST) beams, while the FE models for
T-shaped concrete-filled steel tubular (MT-CFST) beams did not have stiffeners. A typical
FE model for the MT-CFST beam is shown in Figure 12.
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Figure 12. A typical FE model for MT-CFST beam. Figure 12. A typical FE model for MT-CFST beam.

The stress–strain relationship of steel tube was modelled based on the five-stage
(elastic, elastic–plastic, plastic, hardening and fracture) curve suggested by Han et al. [34].
The Von Mises yield criterion in conjunction with plastic flow rules were used in multi-axial
stress states. Young’s modulus and the Poisson’s ratio were taken as 2 × 105 MPa and 0.3,
respectively. The adopted stress–strain curve for steel tubes is given by

σs =



Eεs εs ≤ εp (24)
−Aεs

2 + Bεs + C εp < εs ≤ εy (25)
fy εy < εs ≤ εuy (26)

fy +
fu− fy

εu−εuy

(
εs − εuy

)
εuy < εs ≤ εu (27)

fu εu < εs (28)

where σs and εs are the stress and strain of steel, respectively; E, fp, fy and fu are Young’s
modulus, proportional limit, yield strength and ultimate strength of the steel, respectively;
εp = 0.8fy/E; εy = 1.5εp; εuy = 10εy; εu = 100εy; A = 0.2fy/(εy − εp)2; B = 2Aεy; C = 0.8fy + Aεp

2

− BAεp.
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The concrete damaged plasticity model [35] combined with the stress–strain rela-
tionship suggested by Han et al. [34] were used to represent the mechanical behavior of
concrete. The adopted stress–strain curve for infilled concrete is given by

y =

{
2x− x2 (x ≤ 1) (29)

x
β(x−1)η+x (x > 1) (30)

where x = εc /ε0; y = σc /σ0; σ0 = fc’; ε0 = εc0 + 800ξ0.2 × 10−6; εc0 = (1300 + 12.5fc’) × 10−6;
η = 1.6 + 1.5/x; β = (fc’)0.1/[1.2× (1 + ξ)0.5]; σc and εc are the stress and strain of the concrete,
respectively; fc’ is the compressive strength of the concrete, and ξ is the confinement effect
factor.

To appropriately consider the confinement effect of the multi-cell T-shaped section,
the confinement effect factor (ξ) in the above equations was replaced by the modified
confinement effect factor (ξMT) proposed in the present paper. For the validation of created
FE models, stress–strain relationships obtained from material tests were used.

A comparison of numerical results from the developed FE models against test results
was shown in Figure 13. It is seen that the test results were generally replicated accu-
rately, though slight discrepancies in flexural stiffness (strength) can be seen between the
numerical results and test results.
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Figure 13. Comparison of numerical results with test results: (a) MT-HST1; (b) MT-CFST2; (c) MT-CFST3; (d) MT-CFST4. 
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5.2. Comparison of Predicted Results and Numerical Results

A series of FE models with a wider range of cross-section sizes, wall thicknesses (t),
yield stresses (fy) and compressive strengths (fc’) were studied. The height-to-width ratio
(a + b/2c) of the composite T-shaped section varied from 0.8 to 2.5, and t ranged from 3 to
7mm. Yield stress (fy) of 345–500 MPa and compressive strength (fc’) of 30–85 MPa were
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considered. Both positive and negative bending moments were considered for two identical
FE models. A total of 52 FE models were created. A summary of the FE models used for
verification is shown in Table 4. The primary variables in the first group were height-to-
width ratio, wall thickness, yield strength and compressive strength. The main differences
among numerical models in the second group were wall thickness and yield strength, while
the main variables were height-to-width ratio, wall thickness and compressive strength
for the third group. Details on the geometric and material properties of the FE models are
provided in Table A1 of Appendix B.

Table 4. A summary of the FE models used for verification.
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From Figure 14, the mean values of Mu-PSDM/Mu-FE and Mu-uni/Mu-exp were 0.81 and 0.97, 
respectively, while the COVs of Mu-PSDM/Mu-FE and Mu-uni/Mu-exp were 0.10 and 0.16, respec-
tively. This shows that the results determined by the Unified Theory-based formula had 
lower deviation from numerical results compared to PSDM. It was seen that PSDM gave 
safe predictions but produced large conservative errors for some cases, while the Unified 
Theory-based formula provided accurate and safe results for most FE models. The Unified 
Theory-based formula produced results with unconservative errors (within 14%) for a few 
FE models. From the perspective of practice, the unconservative errors were still accepta-
ble since safety factors of no less than 1.10 are commonly used in design. The maximum 
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based formula. The results indicate that the Unified Theory-based formula provided im-
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A comparison of the predicted results against the numerical results is shown in
Figure 14, where the number in the horizontal axis corresponds to the specific FE model
(for example, 10 representing the tenth FE model). In Figure 14, µ and COV denote mean
value and coefficients of variation, respectively; Mu-FE, Mu-PSDM and Mu-uni are ultimate
bending moments determined by FE modelling analysis, PSDM and the Unified Theory-
based formula, respectively; and ε+ and ε− are the maximum error of overestimation
and the maximum error of underestimation, respectively. A value of Mu-PSDM/Mu-FE or
Mu-uni/Mu-FE larger than 1 means that the ultimate bending moments determined by PSDM
or the Unified Theory-based formula are overestimated compared against numerical results.

From Figure 14, the mean values of Mu-PSDM/Mu-FE and Mu-uni/Mu-exp were 0.81 and
0.97, respectively, while the COVs of Mu-PSDM/Mu-FE and Mu-uni/Mu-exp were 0.10 and
0.16, respectively. This shows that the results determined by the Unified Theory-based
formula had lower deviation from numerical results compared to PSDM. It was seen that
PSDM gave safe predictions but produced large conservative errors for some cases, while
the Unified Theory-based formula provided accurate and safe results for most FE models.
The Unified Theory-based formula produced results with unconservative errors (within
14%) for a few FE models. From the perspective of practice, the unconservative errors
were still acceptable since safety factors of no less than 1.10 are commonly used in design.
The maximum error of underestimation of Mu-FE was 39% for PSDM and 21% for the
Unified Theory-based formula. The results indicate that the Unified Theory-based formula
provided improved estimations in comparison to PSDM.
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6. Conclusions

The flexural strength of MT-CFST beams was investigated in this paper. A Unified
Theory-based formula applicable to MT-CFST beams was developed by means of intro-
ducing a modified confinement effect factor that accounts for the geometry effects on
confinement to in-filled concrete. A series of experimental and numerical studies were
carried out. The accuracy of the Unified Theory-based formula and the plastic stress
distribution method (PSDM) was verified against the test results and numerical results.
Based on the experimental observations and numerical analysis, the following conclusions
were made:

(1) All the MT-CFST beams exhibited very noticeable ductile behavior. The flexural
strength of MT-CFST specimens under positive bending was higher than the counter-
parts under negative bending. This was aligned with the Unified Theory in which
the T-shaped cross section was taken as one new composite material whose compres-
sive strength was greater than its tensile strength. Increasing in-filled concrete and
cross-section sizes had an appreciable influence on the flexural strength of the studied
MT-CFST specimens.

(2) Both the Unified Theory-based formula and PSDM generally gave conservative
predictions. Predicted results from the Unified Theory-based formula were in good
agreement with both experimental results and numerical results. The Unified Theory-
based formula produced reasonably conservative predictions for most MT-CFST
beams and gave acceptable unconservative errors for few MT-CFST beams. PSDM
provided safe predictions but produced large conservative errors in some cases.
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Appendix A

The equilibrium equations used to obtain yp are given by

fy As = fy A′s + 0.85 fc A′c (A1)

where
As = 4t

(
yp − b− t

)
+ 2ct + [ab− (a− 2t)(b− 2t) (A2)
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A′s = 4t
(
a + b− yp − t

)
+ 2ct (A3)

A′c =
(
a + b− yp − t

)
(2c− 4t) (A4)

yc (in Figure 4) is given by

yc =
a + b + yp − t

2
(A5)

ys (in Figure 4) is given by
ys = y1 − y2 (A6)

where

y1 =

4t(yp−b−t)(b+t+yp)
2 + 2ct

(
b + t

2
)
+ [ab−(a−2t)(b−2t)]b

2
4t
(
yp − b− t

)
+ 2ct + [ab− (a− 2t)(b− 2t)]

(A7)

y2 =

4t(a+b−yp−t)(a+b−yp−t)
2 + 2ct

(
a + b− t

2
)

4t
(
a + b− yp − t

)
+ 2ct

(A8)

Appendix B

Table A1. Details of the geometric and material properties of the numerical models (P and N denote
positive and negative bending moment, respectively).

Group (a +
b)/2c

t
(mm)

fy
(MPa)

fc’
(MPa) M Group (a +

b)/2c
t

(mm)
fy

(MPa)
fc’

(MPa) M

1

0.8 3 235 30 P

2

1.5 4 425 45 P
0.8 3 235 30 N 1.5 4 425 45 N
0.8 3 235 65 P 1.5 4 500 45 P
0.8 3 235 65 N 1.5 4 500 45 N
0.8 3 345 30 P 1.5 6 300 45 P
0.8 3 345 30 N 1.5 6 300 45 N
0.8 3 345 65 P 1.5 6 425 45 P
0.8 3 345 65 N 1.5 6 425 45 N
0.8 4 235 30 P 1.5 6 500 45 P
0.8 4 235 30 N 1.5 6 500 45 N
0.8 4 235 65 P

3

1.2 5 450 60 P
0.8 4 235 65 N 1.2 5 450 60 N
0.8 4 345 30 P 1.2 5 450 85 P
0.8 4 345 30 N 1.2 5 450 85 N
0.8 4 345 65 P 1.2 7 450 60 P
0.8 4 345 65 N 1.2 7 450 60 N
2.0 3 235 30 P 1.2 7 450 85 P
2.0 3 235 30 N 1.2 7 450 85 N
2.0 3 235 65 P 2.5 5 450 60 P
2.0 3 235 65 N 2.5 5 450 60 N
2.0 3 345 30 P 2.5 5 450 85 P
2.0 3 345 30 N 2.5 5 450 85 N
2.0 3 345 65 P 2.5 7 450 60 P
2.0 3 345 65 N 2.5 7 450 60 N

2
1.5 4 300 45 P 2.5 7 450 85 P
1.5 4 300 45 N 2.5 7 450 85 N
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