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Abstract: In order to improve the toughness and reduce polymerization shrinkage of traditional
bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based
dental resin system, a hyperbranched thiol oligomer (HMDI-6SH) was synthesized via thiol-isocyanate
click reaction using pentaerythritol tetra(3-mercaptopropionate (PETA) and dicyclohexylmethane
4,4′-diisocyanate (HMDI) as raw materials. Then HMDI-6SH was mixed with 1,3,5-Triallyl-1,3,5-
Triazine-2,4,6(1H,3H,5H)-Trione (TTT) to prepare thiol-ene monomer systems, which were added into
Bis-GMA/TEGDMA resins with different mass ratio from 10 wt% to 40 wt% to serve as anti-shrinking
and toughening agent. The physicochemical properties of these thiol-ene-methacrylate ternary resins
including functional groups conversion, volumetric shrinkage, flexural properties, water sorption,
and water solubility were evaluated. The results showed that the incorporation of HMDI/TTT
monomer systems into Bis-GMA/TEGDMA based resin could improve C=C double bond conversion
from 62.1% to 82.8% and reduced volumetric shrinkage from 8.53% to 4.92%. When the mass fraction
of HMDI/TTT monomer systems in the resins was no more than 20 wt%, the flexural strength of the
resin was higher or comparable to Bis-GMA/TEGDMA based resins (p > 0.05). The toughness (it
was measured from the stress–strain curves of three-point bending test) of the resins was improved.
Water sorption and water solubility tests showed that the hydrophobicity of resin was enhanced with
increasing the content of thioester moiety in resin.

Keywords: toughness; volumetric shrinkage; hyperbranched thiol oligomer

1. Introduction

Dental resin composites that based on photosensitive dimethacrylate monomers,
such as bisphenol A-glycidyl methacrylate (Bis-GMA), triethylene glycol dimethacrylate
(TEGDMA), and urethane dimethacrylate (UDMA), have been used as dental restorative
materials for several decades due to their sufficient mechanical properties, acceptable
aesthetics properties, and good bond ability to tooth tissue. Unfortunately, volumetric
shrinkage and polymerization shrinkage stress of resin composites lead to restorations
marginal microleakage and secondary caries, which reduce the clinical performance of these
materials [1,2]. During the photopolymerization process, the distance between monomers
is reduced from Van der Waal force (~4 Å) to covalent bond distance (~1.5 Å), and the free
volume is reduced too. Simultaneously, shrinkage stress occurs when the contraction is
obstructed and the material is rigid enough to resist sufficient plastic flow to compensate
for the original volume [3]. The factors involved in the development of stress in dental
resin composites are complicated. It was found that inorganic fillers, resin matrix, coupling
agent, and polymerization process would affect the polymerization shrinkage stress [4].
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Among these factors, the resin matrix is considered one of the most important fac-
tors [3]. The researchers have developed many strategies to reduce volumetric shrinkage
and shrinkage stress. For instance, increasing the content of fillers is an easy strategy to
reduced volumetric shrinkage and shrinkage stress [5]. The principle of this strategy is that
the higher the content of filler, the lower content of the resin matrix prone to shrinkage.
However, the flowability of dental resin composites would be reduced too [6]. Similarly,
the increasing molecular weight of monomers to reduce the number of photo-activated
groups per molecular is a useful strategy to reduce volumetric shrinkage and shrinkage
stress. Still, the viscosity of these monomers would also be increased with high molecular
we1ight [7].

Ring-open monomers such as epoxy-functionalized siloxanes [8], spiro orthocarbon-
ates [9,10], cyclic ketene acetals [11], and vinylcyclopropanes [12,13] are usually used
as anti-shrinkage agents in dental resins to reduce volumetric shrinkage and shrinkage
stress. The mechanism is that they can undergo cation or radical ring open polymerization
wherein bonds are broken for each new bond formed. The broken bonds can result in
volume expansion to counter the volume contraction when the new bond formed [14].

Different from dimethacrylate based resins, the polymerization of thiol-ene based
resins is the step-growth mechanism, resulting in more homogeneous polymeric network
formation and high monomer conversion, delayed gel point, and lower polymerization
shrinkage and shrinkage stress [15]. Bowman’s group firstly reported thiol-ene resins used
as dental restorative materials in 2005 [16]. They found that the oligomers of thiol-ene
resins had lower volumetric shrinkage and shrinkage stress than Bis-GMA/TEGDMA
resin systems, while mechanical properties and glass transition temperature needed to be
improved. Subsequently, they incorporated thiol-ene mixture as diluents into conventional
dimethacrylate resins to prepare thiol-ene-methacryalte ternary resins. It was found that
shrinkage stress reduction while maintaining equivalent flexural modulus [17,18]. They
also prepared that ester-free thiol-ene dental restorative materials, and found that the
polymerization shrinkage stress and water uptake were dramatically reduced, and the
toughness of materials was increased [14,19]. He et al. [20] synthesized a novel fluorinated
allyl ether and mixed it with pentaerythritol tetra (3-mercaptopropionate) (PETMA) at a
molar ratio of 1:1 to form a new thiol-ene resin system. They incorporated these thiol-ene
monomer systems into Bis-GMA/TEGDMA resins and found that volumetric shrinkage
and shrinkage stress, as well as water sorption and solubility, reduced.

Hyperbranched and dendritic molecules are special topology structure molecules with
a central core, a high molecular weight, and many end groups. They have lower viscosity
with similar molecular weight compared to their linear analogous counterpart [21]. It is
beneficial to reduce volumetric shrinkage and shrinkage stress [22,23] by adding these
monomers into dental resins to reduce the content of C=C double bonds in resin without
increasing viscosity. Some researchers have reported that the incorporation of methacrylate
functional end groups hyperbranched or dendritic oligomers into dimethacrylate resins
systems to reduce polymerization shrinkage. In our previous study, we have synthesized
a dendritic methacrylate oligomer G-IEMA [24]. By adding this dendritic oligomer into
UDMA/TEGDMA resin systems, the volumetric shrinkage was reduced with the increasing
G-IEMA content in the resin. However, the synthesis process of these dendritic monomers
is always tedious and expensive.

Herein, a hyperbranched thiol oligomer was synthesized by thiol-isocyanate click
reaction and incorporated into Bis-GMA/TEGDMA based resin with the aim of reducing
volumetric shrinkage due to thiol-ene step-growth mechanism and reducing methacry-
late group concentrate on in the resin. The physicochemical properties such as me-
chanical properties, monomer conversion, water solubility, and water sorption were
also investigated.
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2. Materials and Methods
2.1. Materials

2,2-bis [4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane (Bis-GMA), triethy-
lene glycol dimethacrylate (TEGDMA), and Pentaerythritol tetra(3-mercaptopropionate)
(PETMP) were purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd. Shanghai,
China. Dicyclohexylmethane 4,4′-diisocyanate (HMDI), Phloroglucinol (TPX) were obtained
from Beijing InnoChem Science & Technology Co., Ltd. Beijing, China. 1,3,5-Triallyl-1,3,5-
Triazine-2,4,6(1H,3H,5H)-Trione (TTT), Camphorquinone (CQ), Triethylamine (Et3N) and
2-(Dimethylamino)ethyl methacrylate (DMAEMA) were purchased from Shanghai Titan
Scientific Co., Ltd. Shanghai, China. All chemicals were used without further purification.

2.2. Synthesis of Hyperbranched Thiol Oligomer HMDI-6SH

The synthesis route of hyperbranched thiol oligomer HMDI-6SH was shown in
Figure 1. 400 mL of Dichloromethane (DCM) was added into a 1000 mL three-necked
round-bottomed flask equipped with a teflon-coated magnetic stir bar, and then PETA
(76.64 g, 152.47 mmol, 2.00 equiv.) and Et3N (0.077 g, 0.76 mmol, 0.01 equiv.) were added
into the flask and dissolved in DCM under nitrogen atmosphere. Afterwards, HMDI
(20.00 g, 76.23 mmol, 1.00 equiv.) dissolved in 20 mL of DCM was adding into the mixture
dropwise for 30 min. The reaction mixture was stirred at room temperature and monitored
by FT-IR spectrum. It was completed until the peak of -NCO groups at 2230 cm−1 disap-
peared. After completing the reaction, DCM was removed on a rotary evaporator under
vacuum, and the crude product was precipitated using petroleum ether for three times to
remove Et3N. After removing the solvent under vacuum, the product was obtained as a
colourless oil with a yield of 95%. The chemical structure of the thiol oligomer was charac-
terized by FT-IR spectrophotometer ((Nicolet 6700, Thermo Fisher Scientific, Madison, WI,
USA, KBr, film) and proton nuclear magnetic resonance (1H NMR) (AVANCE 400 MHz,
Bruker, Berlin, Germany, CDCl3, 400 MHz). The average number of molecular weights (Mn)
and the polydispersity of index (PDI) was measured by gel permeation chromatography
(GPC) (PL-GPC50, Agilent, Santa Clara, CA, USA), equipped with a low-angle laser light
scattering (LALLS) detector. THF was used as the mobile phase at a flow rate of 1 mL/min
at 30 ◦C.

Figure 1. Synthesis route of hyperbranched thiol oligomer HMDI-6SH.

FT-IR (neat, KBr): 3455 cm−1, 3358 cm−1, 2927 cm−1, 2853 cm−1, 2567 cm−1, 1738 cm−1,
1671 cm−1, 1509 cm−1, 1469 cm−1, 1389 cm−1, 1354 cm−1, 1248 cm−1, 1196 cm−1, 1152 cm−1,
1051 cm−1, 935 cm−1. 1H NMR (400 MHz, Chloroform-d): δ 5.33 (s, 1H), 4.48–3.98 (m),
3.25–2.88 (m), 2.73–2.64 (m), 1.93–1.48 (m), 1.37–0.81 (m). Mn: 5530, PDI: 1.83.

2.3. Preparation of Resin Systems

The synthesized thiol oligomer HDMI-6SH were mixed with (1H, 3H, 5H)-Triallyl-
1,3,5-Triazine-2,4,6(1H,3H,5H)-Trione (TTT) (The mole ratio of -SH groups in HMDI and
C=C groups in TTT was kept at 1:1). Then, the thiol-ene mixture was added into Bis-
GMA/TEGDMA resins (Bis-GMA/TEGDMA 60 wt%/40 wt%) with a series of mass ratio
(10 wt%, 20 wt%, 30 wt%, and 40 wt%). The CQ and DEMEMA were served as photo-
initiator and co-initiator, and their mass ratios in resin were both 0.7 wt%. The resins
were marked as 10%HMDI/TTT, 20%HMDI/TTT, 30%HMDI/TTT, and 40%HMDI/TTT.
Bis-GMA/TEGDMA resin without thiol-ene mixture was used as a control. The chemi-
cal structure of monomers, photo-initiator and stabilizer used in this study was shown
in Figure 2. Photoactivation procedures were performed using a dental lamp (X-cure,
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Woodpecker, Guilin, China) with an irradiation intensity of 1000 mW/cm2. The uncured
resins were injected into stainless steel mold (size 2 mm × 2 mm × 25 mm), which were
sandwiched between two glass slides. Both sides were irradiated for 60 s to ascertain
uniform conversions throughout the sample thickness. A total of 18 specimens of each
model resins was made for flexural properties (n = 10), volumetric shrinkage (n = 3), and
water sorption and solubility analyses (n = 5). The specimens were randomly allocated
into test groups.

Figure 2. The chemical structure of monomers, photo-initiator and stabilizer used in this study.

2.4. Functional Groups Conversion Measurement

The degree of functional groups conversion (DC%) during and after the photoinitiation
of polymerization was monitored by Fourier transform infrared spectroscopy (FT-IR)
(Nicolet 6700, Thermo Fisher Scientific, Waltham, MA, USA). Resin sample was coated
on KBr Pellets to form a very thin film, and the absorbance peak of uncured samples
was obtained. Then photo-polymerization of the sample was carried out by irradiation
of a dental light source (1000 mW/cm2, X-cure, Woodpecker, Guilin, China) at room
temperature. Spectra during the irradiation process were recorded every 10 s for 1 min.
The DC% was calculated from the aliphatic C=C peak at 1636 cm−1, thiol group peak at
2530 cm−1 normalized against the benzene C=C double bond peak at 1608 cm−1, according
to formula (1)

DC% =

( A f un
Abenzene

)
0
−

( A f un
Abenzene

)
t( A f un

Abenzene

)
0

(1)

where Afun and Abenzene are the absorbance peak areas of functional groups (C=C double
bond groups at 1640 cm−1, thiol groups at 2230 cm−1), and benzene at 1608 cm−1, respec-

tively.
( A f un

Abenzene

)
0

and
( A f un

Abenzene

)
t

are the normalized absorbance of the functional groups at
radiation time of 0 and t, respectively; DC(t)% is the conversion of functional groups as a
function of radiation time.

2.5. The Determination of Glass Transition Temperature (Tg)

The glass transition temperature (Tg) of the cured resins was determined by dynamic
mechanical analysis (Q800, TA, New Castle, DE, USA) using an in tensile mode. Bars of
30 × 10 × 3 mm were heated from −30 to 120 ◦C at 3 K/min under a nitrogen atmosphere,
using a frequency of 1 Hz.
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2.6. Flexural Properties

Ten specimens with a size of 2 mm × 2 mm × 25 mm were prepared for every resin
formulation. Five specimens were kept dry until the start of testing, and the other five
samples were stored in distilled water at 37 ◦C until the start of testing (the storage time
was as long as the time for water sorption and solubility test). Three points bending test
(span 20 mm) was carried out to evaluate the flexural strength (FS) and modulus (FM)
according to ISO 10477:92 standard with a universal testing machine (Model Z010, Zwick
GmbH & Co. KG, Ulm, Germany) at a cross-head speed of 1.00 mm/min [25]. The FS in
MPa, FM in GPa, and toughness (TS) in KJ/m2 were then calculated as:

FS =
3pL
2bh2 (2)

FM =
SL3

4bh3 (3)

TS =
A
bh

(4)

where p stands for load at fracture (N), L is the span length (20 mm), b and h are the width
and thickness of the specimens in mm, respectively.

S is the stiffness (N/m). S = F/d, d is the deflection corresponding to load F at a point
in the straight-line portion of the trace. The FM was also determined from the slope of the
initial linear part of stress–strain curve.

A is the area under load-deflection cure and is the energy applied on specimens in
Joules (J).

2.7. Volumetric Shrinkage

The volumetric shrinkage (VS%) was measured using the variation of densities before
and after polymerization according to Equation (5).

VS% =
ρpolymer − ρmonomer

ρpolymer
× 100 % (5)

where ρpolymer was the densities of cured resin and ρmonomer was the densities of the un-
cured resins. ρpolymer and ρmonomer were measured by densitometer (MDJ-300M, Xiongfa
Instrument, Xiamen, China), according to Archimedes’s principle. Each resin formulation
was measured for three times.

2.8. Water Sorption and Water Solubility

To measure water sorption (WS%) and water solubility (SL%) of cured resin, the
rectangular beam specimens (size 2 mm × 2 mm × 25 mm, five specimens for each resin
formulation) used as three-point bending test were prepared. The dry weight (M1) of
specimens was measured by a balance (MDJ-300M, Xiongfa Instrument, Xiamen, China)
with an accuracy of 0.1 mg.

Then, every specimen was immersed in 30 mL of distilled water at 37 ◦C. At a fixed
time interval, they were removed out from the water and dried to remove excess water
with absorbent paper, re-weighed, and returned to the water. Equilibrium mass (M2) was
obtained until there was no significant change in mass at 30th day immersion.

The specimens were dried at 60 ◦C until their mass was constant, and the result was
recorded as M3. Water sorption (WS%) and solubility (SL%) were then calculated using the
following formula.

WS% =
M2 −M1

M1
× 100 % (6)

SL% =
M1 −M3

M1
× 100 % (7)
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2.9. Statistical Analysis

The experiments results were analyzed using one-way analysis of variance (ANOVA).
Multiple pair-wise comparisons were further conducted using Tukey’s test with a signifi-
cance level of 0.05.

3. Result and Discussion
3.1. Hyperbranched Thiol Oligomer (HMDI-6SH) Synthesis

Hyperbranched oligomers do not have an accurate chemical structure with polydis-
persity compared to their dendritic molecules, but their synthesized process is easier than
dendritic molecules without a tedious purified process. We synthesized HMDI-6SH using
thiol-isocyanate click reaction via one-pot without further purification. Thiol groups can
react with isocyanate groups quantitatively with Lewis bases in a dipolar solvent such as
dimethyl sulfoxide (DMSO) or acetonitrile (ACN). After the reaction competition, the peak
at 2230 cm−1 attributed to -NCO group in FT-IR spectrum was disappeared accompanied
with the appearance of -SH group at 2560 cm−1. The chemical structure of HMDI-6SH had
been confirmed by FT-IR (Figure 3) and 1H-NMR (Figure 4) spectrum. The average number
of molecular weight (Mn) of HMDI-6SH was 5530 and PDI was 1.83 (Figure 5).

Figure 3. FT-IR spectrum of hyperbranched thiol oligomer HMDI-6SH.

Figure 4. 1H-NMR spectrum of hyperbranched thiol oligomer HMDI-6SH.



Materials 2021, 14, 2817 7 of 13

Figure 5. GPC traces of HMDI-6SH.

3.2. Degree of Conversion

High final functional groups conversion for dental monomers was beneficial to the
long-term material properties of dental resin systems [26]. The degree of functional groups
conversion was usually monitored by real-time FTIR technology. Figure 6 showed the
degree of conversion (DC%) versus irradiated time curves of methacrylate and thiol groups.
It could be observed that the DC% for these two functional groups increased obviously for
the first 20 s irradiation time, and the variation became slower after 20 s.

Figure 6. The degree of conversion of methacrylate (a) and thiol groups (b).

As shown in Table 1, DC% at 60 s irradiation time for methacrylate increased with the
increasing of thiol-ene content in thiol-ene-methacryalte ternary resin system. A similar
tendency was also observed for thiol conversion. It was indicated that HDMI/TTT thiol-
ene resin system enhanced polymerization rate and significantly increased final function
group conversion.
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Table 1. The degree of conversion C=C double bond and thiol group at 60 s.

Resins C=C Double Bond
Conversion at 60 s (%)

Thiol (-SH) Conversion
at 60 s (%)

Control 62.1 ± 1.1 a -
10%HMDI-6SH/TTT 63.8 ± 1.8 a 42.8 ± 2.0 a

20%HMDI-6SH/TTT 68.1 ± 2.0 b 50.4 ± 2.3 b

30%HMDI-6SH/TTT 82.8 ± 1.5 c 54.1 ± 1.4 b

40%HMDI-6SH/TTT 80.1 ± 1.9 c 50.3 ± 1.4 b

a The same lower case letters indicated no statistical differences within a column (Tukey’s test, p = 0.05).

3.3. Volumetric Shrinkage

As seen from Table 2, after adding 10 wt% to 40 wt% of HMDI-6SH/TTT resin
system into Bis-GMA/TEGDMA system, the volumetric shrinkage of dental resin was
decreased from 8.52% to 4.92%. According to statistical analysis, the volumetric shrinkage
of 10%HMDI/TTT systems had no statistical difference between 20%HMDI/TTT and 30%
HMDI/TTT systems (p > 0.05), but lower than control (p < 0.05), and higher than 40%
HMDI/TTT resin systems (p < 0.05).

Table 2. The volumetric shrinkage of the unfilled resins.

Resins Volumetric Shrinkage (%)

Control 8.53 ± 0.22 a

10%HMDI-6SH/TTT 6.59 ± 0.25 b

20%HMDI-6SH/TTT 6.72 ± 0.23 b

30%HMDI-6SH/TTT 6.50 ± 0.26 b

40%HMDI-6SH/TTT 4.92 ± 0.13 c

a The same lower case letters indicated no statistical differences within a column (Tukey’s test, p = 0.05).

3.4. Water Sorption and Water Solubility

The chemical degradation of dental resin would be accelerated by water through
the oxidation process and hydrolysis [27]. Excessive water sorption and water solubility
of dental resin resulted in reduced service lifetime [14]. As shown in Table 3, with the
increasing amount of HDMI/TTT resin system, the water sorption of the resin was in a
trend of decreasing. Compared with control resin, only 40% HMDI/TTT had higher water
solubility (p < 0.05), all the other ternary resin systems had comparable water solubility
(p > 0.05).

Table 3. Water sorption and water solubility of unfilled resins.

Resins Water Sorption (%) Water Solubility (%)

Control 2.15 ± 0.09 a 1.33 ± 0.03 a

10%HMDI-6SH/TTT 2.05 ± 0.08 a,b 1.11 ± 0.09 a

20%HMDI-6SH/TTT 1.93 ± 0.04 b,c 1.04 ± 0.11 a

30%HMDI-6SH/TTT 1.60 ± 0.09 d 1.29 ± 0.10 a

40%HMDI-6SH/TTT 1.41 ± 0.12 d 1.79 ± 0.12 b

a The same lower case letters indicated no statistical differences within a column (Tukey’s test, p = 0.05).

3.5. The Determination of Glass Transition Temperature (Tg)

As shown in Figure 7, the Control group exhibited one broad peak at around
100 ◦C, suggesting that it was a heterogeneous polymeric network. With the concen-
tration of HDMI-6SH/TTT thiol-ene monomers system increased, the peak of tan δ was
narrowed, it was attributed to the step-growth reaction process of thiol monomers with
methacrylate monomers (Bis-GMA or TEGDMA) and ene monomer (TTT) to obtain the
more homogeneous network [28]. Simultaneously, the deceasing tendency of Tg was ob-
served as given in Table 4. It was resulting from the lower crosslink density due to chain
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transfer reaction to thiol from ene monomer to reduce the molecular weight of the polymer
and high flexible thioether moieties incorporated into the polymer network [29].

Figure 7. The tan δ versus temperature curves of the cured resin systems.

Table 4. The glass transition temperature (Tg) of the cured resins systems determined by DMA.

Resins Tg (◦C)

Control 100
10% HMDI-6SH/TTT 89
20% HMDI-6SH/TTT 63
30% HMDI-6SH/TTT 57
40% HMDI-6SH/TTT 55

3.6. Flexural Properties

The results of flexural strength (FS), flexural modulus (FM), and toughness of dental
resins were shown in Table 5, It was shown that FS of 10% HMDI-6SH/TTT resin and 20%
HMDI-6SH/TTT resin was equivalent to that of control resin (p > 0.05) and higher than
those of 30% HMDI/TTT resin and 40% HMDI/TTT resin (p < 0.05). However, when the
content of HMDI-6SH/TTT monomer systems in resins was exceed 10 wt%, the FM of resin
decreased from 2.52 GPa (10% HDMI/TTT) to 0.39 GPa (40% HDMI/TTT) (p < 0.05). It
was in good agreement with several previous reports that incorporation of thiol-ene resin
into methacrylate resin would decrease FS and FM [16,17,20,30].

Table 5. The flexural strength (FS), flexural modulus (FM) and toughness of unfilled resins before and after water immersion.

Resins
Before Water Immersion After Water Immersion

FS (MPa) FM (GPa) TS (KJ/m2) FS (MPa) FM (GPa) TS (KJ/m2)

Control 92.5 ± 5.9 a,A 2.53 ± 0.23 a,A 4.76 ± 0.92 a,A 76.7 ± 8.7 a, B 2.44 ± 0.02 a,A 3.40 ± 0.41 a,B

10%HMDI-6SH/TTT 93.4 ± 4.0 a,A 2.52 ± 0.25 a,A 5.46 ± 0.31 a,A 88.8 ± 2.9 b,A 2.54 ± 0.16 a,A 5.07 ± 0.59 b,A

20%HMD-6SH/TTT 91.4 ± 2.0 a,A 2.20 ± 0.05 b,A 9.75 ± 0.97 b,A 76.0 ± 5.3 a,B 1.90 ± 0.25 b, B 8.09 ± 1.32 c,A

30%HMDI-6SH/TTT 79.3 ± 5.9 b,A 1.95 ± 0.18 c,A 10.52 ± 1.93 b,A 58.9 ± 3.5 c,B 1.35 ± 0.13 c,B 7.96 ± 1.68 c,A

40%HMDI-6SH/TTT 21.4 ± 1.2 c,A 0.39 ± 0.06 d,A 8.22 ± 1.29 b,A 17.7 ± 4.0 d,A 0.26 ± 0.09 d,A 5.90 ± 1.24 b,B

a The same lower case letters indicated no statistical differences within a column (Tukey’s test, p = 0.05). A The same upper case letters
indicated no statistical differences between the same property before and after water immersion (Tukey’s test, p = 0.05).

Toughness of the resin was increased obviously after the incorporation HDMI-6SH/TTT
resin (p < 0.05). The FS and FM of 20% HMDI-6SH/TTT resin was comparable to the Con-
trol resin (p > 0.05), but WF of it was about two times more than control resin (p < 0.05),
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which demonstrated that the toughness of resin was increased. Stress/displacement curves
as shown in Figure 8a also indicated the remarkable increase in toughness when HDMI-
6SH/TTT resin system was added into Bis-GMA/TEGDMA resin system.

Figure 8. Stress/displacement curves of unfilled resins systems in three-point bending test: (a) before water immersion; (b)
after water immersion.

With increasing the content of thiol monomers in thiol-ene-methacrylate ternary
system, the molecular weight of the methacrylate oligomers decreased because of increasing
the chain transfer rate for the thiol group, which could lead to the reduction of flexural
modulus, hardness as well as glass transition temperatures (Tg) due to the flexibility of
polythioethers moieties generated from thiol-ene reaction [31,32]. As a result, the flexibility
of the polymer network was increased with the increasing of polythioethers moieties,
which allowed the polymer network to absorb more stress generated from flexural tests,
leading to the improvement in toughness of resin [25].

4. Discussion

In this study, thiol groups conversion (~50%) (Table 1) was not achieved as high as
expected. To our acknowledge, the thiol group conversion was mainly affected by the
structure of ene monomers. Our result was in agreement with Li et al.’s research [29].
Thiol group conversion can be high as C=C double bond conversion when thiol monomer
copolymerized with allyl ether monomers, divinyl ether monomers, and triallyl triazine
monomers expect acrylate monomers. That’s because the thiol group conversion was
suppressed by the high homopolymerization propensity of methacrylate groups.

After adding HDMI-6SH/TTT resin system into traditional Bis-GMA/TEGDMA
resin, the ternary resin would have mainly three types of a chemical reaction during pho-
topolymerization: (i) thiol-methacrylate chain transfer reaction; (ii) thiol-methacrylate
and thiol-allyl triazine step-growth propagation; (iii) methacrylate-methacrylate chain
propagation. The reaction rate of the thiol-methacrylate chain transfer reaction was higher
than the latter two reactions, delaying the gel-point until high functional groups con-
version [33]. The results of DC% in this study were consistent with previous studies on
thiol-ene-methacrylate systems [14,20].

Previous studies have demonstrated that thiol-ene based resin had lower shrink-
age than methacrylate-based resin [16,26]. With the increase of concentration of HMDI-
6SH/TTT resin systems, the trendy of volumetric shrinkage of dental resins was decreas-
ing. Although the conversion rate of monomers of thiol-ene-methacrylate ternary resin
was higher than methacrylate-based resin, but volumetric shrinkage was still lower than
methacrylate based resin, the result was in good agreement with the previous study [16].
The step-growth mechanism of thiol-ene and thiol-methacrylate polymerization led to
lower volumetric shrinkage than traditional methacrylate-based resin. On the other hand,
hyperbranched oligomers HMDI-6SH with a lower concentration of functional groups and
lower free volume might also decrease volumetric shrinkage further [24].



Materials 2021, 14, 2817 11 of 13

The mole ratio of thiol to ene functional groups play an essential role in the physical
properties of thiol-ene-methacrylate ternary resins such as flexural properties, volumetric
shrinkage, and Tg. At low mole ratio of thiol to ene (5~20%), flexural modulus, and Tg com-
pare to pure methacrylate resins. Simultaneously, the polymerization rate of methacrylate
was enhanced [15]. However, at a high mole ratio of thiol to ene functional groups, more
chain transfer occurs throughout the network formation leading to reduced methacrylate
chain length and lower crosslink density and glass transition temperature while enhancing
structure homogeneity and final methacrylate groups conversion [28].

In this study, when the content of HMDI-6SH/TTT thiol-ene reached 40 wt%, the
crosslink density of the resin system was reduced due to chain transfer through the network
formation leading to lower crosslink density. The polymer chains become looser, and the
resin changes from a glassy state to a rubbery state. The dramatical reduction of flexural
strength and flexural modulus of 40%HDMI-6SH/TTT also confirmed the hypothesis
(Table 5). It was the reason why the volumetric shrinkage of 40%HDMI-6SH/TTT reduced
dramatically compared to other resins systems.

Several factors would influence water uptake value [34]. Among them, the hydrophilic-
ity of the polymer matrix affected the water absorption of resin. Polar functional groups in
a polymer matrix, such as hydroxyl groups, which created hydrogen bonds with water,
would increase the water sorption [35]. On the contrary, Hydrophobic functional group
such as thiol groups or thioether moieties reduced the water sorption of resin [36]. In
the present work, there were two hydroxyl groups in one Bis-GMA molecular, so with
increasing of HMDI-6SH/TTT thiol-ene system in resin, the content of hydroxyl groups
in resin was reduced. At the same time, the content of thiol groups or thioether moieties
in resins increased, leading to the enhancement of resin hydrophobicity. As a result, the
reducing trendy of water sorption of resins was observed.

The water solubility of dental resins was affected by the type of monomers [37], DC%,
the type of fillers, and fillers concentration [38]. In general, the lower DC%, the easier for
residual monomers leaching out from dental resin. Although the ternary resin system had
comparable or higher double bond DC% than Bis-GMA/TEGDMA based resin as shown
in Table 1, their water solubility still had no significant difference, except for 40%HMDI-
6SH/TTT resin system, which had the highest water solubility. It should be explained that
the molecular weight of the resin was decreased with the increasing chain transfer rate due
to increasing the concentration of thiol oligomer HMDI-6SH. Furthermore, the flexibility
and free volume of the polymeric network were increased with increasing the content
of thioethers moieties and HMDI-6SH, which led to maximation of network expansion,
increasing the mobility of residual monomers or oligomers [37].

In order to evaluate the flexural properties of resin in the oral environment, the three-
point bending test specimens were immersed in water at 37 ◦C for at least 30 days. As
shown in Table 5 and Figure 8b, the decreasing trendy of flexural strength (FS), flexural
modulus (FM), and toughness of the resins were observed due to the plasticization effect of
water molecules after water immersion, because water molecules penetrated the polymer
network [37]. The lower water sorption of the resin that reduces the plasticization effect of
water in the polymer matrix was beneficial for keeping flexural properties of dental resin in
the oral moist environment [14]. As shown in Table 3, the water sorption value and water
solubility value of 10%HMDI-6SH/TTT resin system and 20%HMDI-6SH/TTT resin system
were lower or comparable to Bis-GMA/TEGDMA control and their FS and WF shown
higher or equal than Bis-GMA/TEGDMA based control after water immersion. According
to the results shown in Table 5, when the content of HMDI-6SH/TTT was not more than
20 wt% in the ternary resin system, flexural properties after water immersion, water
sorption, and solubility were all not influenced negatively. These results indicated that
the stability of the resins was not sacrificed after adding a certain amount of HDMI/TTT
monomer systems into Bis-GMA/TEGDMA based resin.
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5. Conclusions

In Summary, a hyperbranched oligomer HMDI-6SH was synthesized via thiol-isocyanate
click reaction without further purification. Its chemical structure was characterized by FT-
IR and 1H NMR spectrum. The result showed that when the mass ratio of HDMI-6SH/TTT
thiol-ene monomers in the resins was not more than 20 wt%, the higher DC%, higher
toughness, lower volumetric shrinkage, lower water sorption, and lower solubility for
the resins were obtained. These advantages were a benefit to improve the service life for
Bis-GMA/TEGDMA based resins.

With limitation of this study, although the volumetric shrinkage of Bis-GMA/TEGDMA
resin systems have been reduced by adding HMDI-6SH/TTT resin system, shrinkage stress
of the resins would be investigated in future. The odor of thiol monomers should be
considered in the practical applications, some other properties such as biocompatibility
should be also studied in future.
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