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Abstract: The literature in the area of material fatigue indicates that the fatigue properties may change
with the number of cycles. Researchers recommend taking this into account in fatigue life calculation
algorithms. The results of simulation research presented in this paper relate to an algorithm for
estimating the fatigue life of specimens subjected to block loading with a nonzero mean value. The
problem of block loads using a novel calculation model is presented in this paper. The model takes
into account the change in stress–strain curve parameters caused by mean strain. Simulation tests
were performed for generated triangular waveforms of strains, where load blocks with changed
mean strain values were applied. During the analysis, the degree of fatigue damage was compared.
The results of calculations obtained for standard values of stress–strain parameters (for symmetric
loads) and those determined, taking into account changes in the curve parameters, are compared
and presented in this paper. It is shown that by neglecting the effect of the mean strain value on
the K′ and n′ parameters and by considering only the parameters of the cyclic deformation curve
for εm = 0 (symmetric loads), the ratio of the total degree of fatigue damage varies from 10% for
εa = 0.2% to 3.5% for εa = 0.6%. The largest differences in the calculation for ratios of the partial
degrees of fatigue damage were observed in relation to the reference case for the sequence of block
n3, where εm = 0.4%. The simulation results show that higher mean strains change the properties of
the material, and in such cases, it is necessary to take into account the influence of the mean value on
the material response under block loads.

Keywords: block loads; cyclic stress–strain curve; mean load; fatigue damage accumulation

1. Introduction

Material fatigue properties are described by means of standard characteristics (e.g.,
S–N curve or ε–N curve and cyclic stress–strain curve). They are usually obtained under
laboratory testing conditions for constant-amplitude loads. Other factors affecting fatigue
life, such as mean load value, notch performance, complex load conditions, and others,
also require separate testing and mathematical modeling. In engineering practice, it is
assumed that such factors are treated as material properties with fixed values. Studies
proving the variability of these factors with the number of fatigue cycles are also available
in the literature [1,2]. This effect is characteristic for cyclically unstable materials, and
the literature indicates that the calculation algorithms, e.g., for fatigue life estimation,
should take into account the phenomena related to the strengthening or weakening of
such materials [3–6].

Block loads are a special case of operational loads. During the operation of a structure
or machine, it is possible to clearly distinguish fragments with significantly different levels
of repeated cyclic load. As an example, we can indicate the diametrically different loads on
the wings of aircraft during flight, where several phases (stop–takeoff–cruise–landing) can
be distinguished or, as another example, the diametrically different loads on large trucks
when transporting minerals and aggregates. There are clearly phases of variable loads with
different mean loads.
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It becomes important to determine the impact of individual sequences on fatigue
processes occurring in the material in terms of both load levels and their order. For
example, the influence of Lo/Hi and Hi/Lo load sequences on material fatigue life is well
known. This effect is most often studied using block loads, where the life cycle of the tested
components is most often divided into two parts with significantly different levels of stress
σ (Figure 1). The expression ni/Nf represents the proportion of cycles ni with respect to the
life of the Nf sample. The index i (here, i = 1, 2) denotes the step in the load block.
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Figure 1. The scheme of block loads.

Usually, two-state tests are carried out (Figure 1), where, for a certain number of cycles
n1, the material is loaded with stress σ1 and, then, the second phase of the number of cycles
n2 with stress σ2 is applied. Such tests are carried out in two ways:

1. After the first phase of loading, the second phase of testing is carried out to obtain the
criterion of sample failure.

2. The sequence of cycles n1 and n2 is determined, and this load sequence is repeated
until the criterion of sample failure is not reached.

The main purpose of the research is to determine the cumulative damages in the
material in individual loading phases. The results of the durability tests are related to the
standard fatigue characteristics of the materials obtained under constant load conditions.

The use of nonlinear fatigue damage accumulation models is well described in the
literature [7,8], and these results are very often the basis for more detailed analyses in
the case of block loads, in which individual sequences are formed by symmetrical load
cycles [9]. It is commonly recognized that the appearance of a high level of load in the first
cycle increases the fatigue life as compared to the case where the stress increase occurs
in the second load block. The different behaviors of the material are explained by the
nonlinearity of the fatigue failure accumulation curves, where the change in the stress level
is related to the change in the failure accumulation curve, as shown in Figure 2.
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As shown in Figure 2, we can determine the following Equation (1):

DLo−Hi =
n1

N1
+

n2

N2
> 1 DHi−L0 =

n2

N2
+

n1

N1
< 1 (1)

Despite the fact that the load parameters in the Hi/Lo and Lo/Hi paths are the same,
the sequence of load affects the value of accumulated damage. As a result, we obtain
different fatigue lives. Without taking into account block loads in the design, we can
affect the safety of the structure if the load path method causes greater damage than that
determined from the models ignoring the influence of the load history.

Equation (2) presents a basic relationship for a nonlinear model of fatigue
damage accumulation.

D = ∑ Di = ∑
(

ni
Ni

)a
(2)

where α is the exponent depending on the load level, ni is the number of cycles in a load
block with stress σi, and Ni is the number of cycles to failure determined from the base
fatigue characteristics under constant-amplitude loads.

It is worth pointing out that, for such loads, instability of the parameters of the cyclic
strain curve was also observed [10].

Additionally, the basic research problems under fatigue conditions of block loads refer
to symmetrical loads, where the mean value is zero. This allows, above all, for assessments
of the impact of the load sequence on the course of fatigue phenomena and to verify
the calculation models of fatigue life estimation. An interesting extension of research in
block conditions was presented in [11,12], whereby load blocks create a complex state of
alternating bending and torsion. The authors proposed the nonlinear damage accumulation
aggregation hypothesis based on material memory.

There are few studies in the literature on block loads considering asymmetric cycles
(mean load). In the case of block loads involving different mean values in each load
sequence, different trends underlying the changes in fatigue life are observed. In a study
by Memon et al. [13], the results of fatigue tests under two-stage block loads in Lo/Hi
and Hi/Lo sequences were presented for different sequences of amplitude and mean load.
The authors investigated the possibility of applying the Palmgreen–Miner hypothesis of
accumulation of fatigue damage for such loads. The results of this research indicate that,
while the differences in load amplitudes for subsequent blocks are large, a significant
impact on the level of accumulated fatigue damage for Hi/Lo and Lo/Hi sequences can be
observed and, thus, significant differences in fatigue life are obtained. Gołoś and Dębski [14]
took into account the mean strain value using the total strain energy density parameter.
It was observed that the mean strain values affect the energy fatigue characteristics of
the material. The authors proposed a fatigue damage accumulation model using these
modified characteristics. Test results on St5 steel samples showed that the additional mean
strain reduces the fatigue life under block load conditions, and the authors proposed a
fatigue damage accumulation model, which successfully described the test results. Some
studies available in the literature [15–18] presented a wide range of fatigue tests on S355J0
steel under three-stage bending block loads. It is indicated that the effect of mean load
depends on the load level and is more important for higher load amplitude values. When
plastic deformation in the material is limited, the mean load value has little effect. It has
also been observed that fatigue life in the case of block loads is greater compared to tests
under constant-amplitude conditions.

The purpose of this work was to perform simulation tests and to assess the impact of
changes in the parameters of the cyclic strain curve caused by mean strain on the degree of
fatigue damage in relation to the strain amplitude.
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2. Stress–Strain Analysis Model

For the analysis of the state of stress and strain, an algorithmic method is proposed,
whereas a function of stress time histories, the calculation of the degree of fatigue damage,
is based on standard fatigue characteristics.

The stress–strain hysteresis loop model from the literature [19], described in Figure 3,
was adopted. It was assumed that the shape of the stable hysteresis loop remains un-
changed under the same strain amplitude instead of presenting different mean strain
values. Additionally, the stable hysteresis loop shifts in accordance with the value of
the mean strain. This results in symmetry of the hysteresis loop according to the point
described by mean strain εm and mean stress σm (see Figure 3).

Figure 3. Hysteresis loop model with mean load.

It was assumed that, after changing the load conditions in the block, the current state
of the material is the starting point for further operation in the subsequent load sequence.
This then causes additional material deformations as a result of the increase in mean value.
A graph of hysteresis loop positions is presented in Figure 4 [17].
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In the general case, when the actual loop changes position, εm2 represents the deforma-
tion related to the state of the material previously achieved. However, to take into account
the previous load history, it was assumed that the starting point for the deformation analy-
sis is the level of permanent deformation after the previous load blocks. Hence, for further
analysis, the strain was marked as εm2z.

By taking into account the assumptions presented above (Figures 3 and 4), an algo-
rithm to compute the stress history was defined, where all steps must be repeated for
each sequence in the block load for the entire recorded history of strains. The algorithm
is presented in Table 1. The values of stress amplitude and mean value are taken as the
input data to determine fatigue failure and to estimate fatigue life with the use of standard
fatigue characteristics.

Table 1. Algorithm to calculate the stress history.

Step No. Description of Operation Equation

1. Material properties:
E, Young’s modulus; K′, cyclic strength coefficient; n′, cyclic strain-hardening exponent.

2. Input data: εA, εB, εa, and εm

3.
alculation of σA for given K′ and n′ (*) εa = σA

E +
( σA

K′
) 1

n′

(*) Values of the coefficients K′ and n′ depend on the current values of the average strain εm. However, this requires
additional tests to determine the functions K′ = f (εm) and n′ = f (εm).

4. alculation of εApl εApl = εA − σA
E

5. alculation of σa for given K and n obtained for εm = 0 εa = σa
E +

( σa
K
) 1

n

6. alculation of εapl εapl = εa − σa
E

7. Calculation of mean stress σm
σm = E

(
εmiz + εap − εApl

)
i refers to the next load sequence

8. Resulting parameters (σa, σm)

3. Analytical Simulation

Material data were taken from the literature. Chiou and Yip [19] presented the effect
of mean strain level on the cyclic stress–strain behavior of AISI 316 stainless steel. Typical
applications of 316 stainless steel include the design of exhaust manifolds, heat exchangers,
valve and pump parts, chemical processing equipment, and parts exposed to the marine
environment. Table 2 presents the parameters of cyclic strain curves obtained for different
levels of mean strain.

Table 2. K′ and n′ factors for different mean strain levels.

εm (%) 0 0.2 0.4

K′ (MPa) 722.6 693.1 587.7

n′ 0.1507 0.1424 0.117

Figure 5a graphically depicts the results in Table 2. It is shown that, for a higher value
of the mean strain, the effect is stronger. Stress–strain curves according to the data in
Table 2 are presented in Figure 5b. For mean strains equal to 0% and 0.2%, there are no
significant differences in the values of stress–strain curve parameters.
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In the simulation tests, the degree of accumulated fatigue damage was calculated
for block loads consisting of three sequences with different values of mean strain. As a
baseline, a sawtooth strain waveform was used, as shown in Figure 6, where the strain
amplitude has a fixed value.

Figure 6. Time sequence of the simulated strains.

The mean strain values were adopted according to Table 2, i.e., εm1 = 0, εm2 = 0.2%, and
εm3 = 0.4%. Each load block consisted of n1 = n2 = n3 = 1000 cycles. The strain amplitude
was made to vary in the range εa = 0.2–0.60%. The fatigue life N was estimated by using the
approximate relationship log(N) = −12.88·log(σa) − 36.38 on the basis of the data presented
by Lei et al. [20].

For each level of the strain amplitude, the amplitude and mean value of the stress were
calculated. Then, the fractional damage accumulation degree Di = ni/Ni was computed
(i = 1, 2, and 3 for each block load sequence), where Ni is the expected fatigue life for the
obtained stress state, assuming a constant-amplitude load. Then, the total degree of the
damage accumulation was calculated as a sum of the partial degrees.

The calculations were made according to the algorithm in Table 1 for two cases:

- Case A, where the change in K′ and n′ parameters was taken into account for different
values of the mean strain em,
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- Case B, where the influence of mean strain em on the values of the coefficients K ‘and
n′ was omitted, assuming their values to be em = 0.

In Table 3, the results of calculations obtained for Case A and Case B are listed. In the
tables, indices 1, 2, and 3 refer to n1, n2, and n3 in Figure 6, while letters A and B refer to
Cases A and B.

Table 3. Case A: Result of simulation considering the effect of mean strain.

εa
σa1

(MPa)
σa2

(MPa)
σm2

(MPa)
σa3

(MPa)
σm3

(MPa) D1A D2A D3A DA

0.0020 246 249 3 253 7 0.0026 0.0028 0.0032 0.0086

0.0030 275 278 3 277 2 0.0109 0.0117 0.0115 0.0341

0.0040 294 296 2 292 −2 0.0258 0.0270 0.0248 0.0776

0.0050 308 309 1 303 −5 0.0470 0.0480 0.0426 0.1376

0.0060 319 320 1 312 −7 0.0739 0.0753 0.0650 0.2142

In the second simulation, the influence of mean strain on the change in n′ and K′

values was omitted in the calculations. Table 4 presents the results of these simulations.

Table 4. Case B: Result of simulation with the effect of mean strain omitted.

εa
σa1

(MPa)
σa2

(MPa)
σm2

(MPa)
σa3

(MPa)
σm3

(MPa) D1B D2B D3B DB

0.0020 246 246 0 246 0 0.0026 0.0026 0.0026 0.0078

0.0030 275 275 0 275 0 0.0109 0.0109 0.0109 0.0328

0.0040 294 294 0 294 0 0.0258 0.0258 0.0258 0.0775

0.0050 308 308 0 308 0 0.0470 0.0470 0.0470 0.1411

0.0060 319 319 0 319 0 0.0739 0.0739 0.0739 0.2218

In Figure 7, a comparison of the calculated degrees of damage accumulation for both
cases is shown. In this figure, the ratio DiB/DiA of the partial degrees of fatigue damage
and the ratio DB/DA of the total degree of fatigue damage for both cases are shown.

Materials 2021, 14, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 7. The ratio DiB/DiA of the partial degrees of fatigue damage and the ratio DB/DA of the total 
degree of fatigue damage. 

Not much data exist for the problem analyzed above. Thus, it was necessary to per-
form an experiment to obtain Ramberg–Osgood curve parameters for different mean 
strains or stresses, thereby allowing the identification and evaluation of possible alterna-
tive combinations of these parameters. Taking into account the data for the analyzed ma-
terial, an array of the coefficients is presented in Figure 8. It was also assumed that the 
cases in which the parameters K’ and n’ change according to the paths specified as Case 
S1 to Case S6 in Figure 8 would be analyzed. The line ABC in Figure 8, marked Study Case 
A, presents the previously analyzed Case A. For further simulations, this case was used 
as a reference. 

 
Figure 8. Graph of parameters for simulation cases. 

The simulated Ramberg–Osgood graphs for Cases S1–S6 defined above are shown in 
Figure 9. The results of the simulations are presented in Figure 10. The graphs in Figure 
10a–c shows cases where the cyclic strength coefficient K’ is independent of the mean 
strain, and the cyclic fatigue exponent n’ changes for each block sequence n1, n2, and n3 
(see Figure 6) depending on the mean strain. By increasing the value of the K’ coefficient, 

Figure 7. The ratio DiB/DiA of the partial degrees of fatigue damage and the ratio DB/DA of the total
degree of fatigue damage.



Materials 2021, 14, 2738 8 of 12

The dotted line, at level 1.0, denotes that the degrees of fatigue damage are the same
for both cases and that the mean strain value has no effect. The chart indicates that, upon
increasing the mean strain value, the calculation inaccuracy also increases, up to ±20%
for the third part of the load sequence, where εm = 0.4%. Meanwhile, the ratio DB/DA of
the total degree of fatigue damage varied from −10% to 3.5%. The biggest inaccuracies in
fatigue life estimations were expected for stress states approaching the fatigue limit. Thus,
under these conditions, the influence of mean strain value cannot be neglected.

Not much data exist for the problem analyzed above. Thus, it was necessary to
perform an experiment to obtain Ramberg–Osgood curve parameters for different mean
strains or stresses, thereby allowing the identification and evaluation of possible alternative
combinations of these parameters. Taking into account the data for the analyzed material,
an array of the coefficients is presented in Figure 8. It was also assumed that the cases
in which the parameters K′ and n′ change according to the paths specified as Case S1 to
Case S6 in Figure 8 would be analyzed. The line ABC in Figure 8, marked Study Case A,
presents the previously analyzed Case A. For further simulations, this case was used as
a reference.
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The simulated Ramberg–Osgood graphs for Cases S1–S6 defined above are shown
in Figure 9. The results of the simulations are presented in Figure 10. The graphs in
Figure 10a–c shows cases where the cyclic strength coefficient K′ is independent of the
mean strain, and the cyclic fatigue exponent n′ changes for each block sequence n1, n2,
and n3 (see Figure 6) depending on the mean strain. By increasing the value of the K′

coefficient, it can be noted that the largest changes in relation to the reference case (Case A,
Table 3) were observed for the third load sequence n3, where the mean strain value was
the largest (εm = 0.4%). For K′ = 722.6 MPa, the ratio of the total degree of fatigue damage
was D/DA = 1.5–17, which gives a good approximation to the reference case. In the
case of K′ = 587.7 MPa, the accumulated fatigue damage was four times smaller than the
reference value.
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The graphs in Figure 10d–f show the opposite situation. Here, it was assumed that the
coefficient n′ is independent of the mean strain, while K′ decreases with increasing mean
strain values in sequences n1, n2, and n3.

It can be seen that the best results of calculations in relation to the reference Case
A were obtained when n′ = 0.1507 for ratios of both the total degree of fatigue damage
(D/DA = 0.9–1.04) and the partial degrees of fatigue damage. Decreasing the value of n′

for cases S5 and S6 caused a decrease in the effect on the accumulation of fatigue damage
for the n3 block sequence (εm = 0.4%). For the S5 sequence, the total damage ratio was
determined to be D/DA = 1.1–1.3, whereas, for Case S6, this ratio was D/DA = 7.5–8.0.

4. Summary and Conclusions

This paper presented the results of simulation tests of block loads with a nonzero
mean strain value. The calculations were made using an algorithmic method, which took
into account the changes in the cyclic strain curve parameters depending on the mean strain
value. The calculations were made on the basis of research available in the literature on
AISI 316 steel. The material response for various combinations of cyclic strength coefficient
K′ and cyclic fatigue exponent n′ was analyzed. According to the results, the following
conclusions can be drawn:

- When neglecting the effect of the mean strain value on the K′ and n′ parameters and
considering only the parameters of the cyclic deformation curve for εm = 0 (symmetric
loads), the ratio of the total degree of fatigue damage varied from 10% for εa = 0.2% to
3.5% for εa = 0.6%. The largest differences in the calculation of the ratio of the partial
degrees of fatigue damage in relation to the reference case were observed for sequence
block n3, where εm = 0.4%.

- When assuming the independence of parameter K′ from the mean strain value,
the worst calculation results in relation to the reference Case A were obtained for
K′ = 587.7 MPa, where the total degree of fatigue damage was, on average, four times
lower than the reference case. For these simulations, the largest calculation inaccuracy
was also related to the n3 block load sequence, where the mean strain value was the
largest (0.4%).

- When considering the independence of parameter n′ from the mean strain value, the
best results in terms of the degree of fatigue damage calculation were achieved for
n′ = 0.1507 (obtained for a symmetric load, εm = 0). The differences in the ratios of
partial and total degrees of fatigue damage compared to the reference case were in the
range of −20% to 4%. Similar results were obtained for Case B, where parameters K′

and n′ characterized the cyclic strain curve for symmetric loads.
- It can be concluded that the third sequence n3, where the biggest mean strain value

was applied (εm = 0.4%), led to the largest inaccuracy. A higher value of mean strains,
thus, increases the sensitivity of the algorithm toward applied parameters K′ and n′.
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