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Abstract: Technological and material issues in 3D printing technologies should take into account
sustainable development, use of materials, energy, emitted particles, and waste. The aim of this
paper is to investigate whether the sustainability of 3D printing processes can be supported by
computational intelligence (CI) and artificial intelligence (AI) based solutions. We present a new
AI-based software to evaluate the amount of pollution generated by 3D printing systems. We input
the values: printing technology, material, print weight, etc., and the expected results (risk assessment)
and determine if and what precautions should be taken. The study uses a self-learning program that
will improve as more data are entered. This program does not replace but complements previously
used 3D printing metrics and software.

Keywords: optimization; 3D printing; sustainable development; neural networks

1. Introduction

The ability to handle advanced technologies requires increased attention to education,
shaping the technological awareness of the public, and a high level of organizational
capacity to manage such emerging complexity. Sustainability within three-dimensional
(3D) printing technology (also known as additive manufacturing) should consider the use
of materials, energy, emitted particles, and waste. The lower prices of 3D printers (even
under $100) and materials make these devices and related technologies accessible and
useful to many people. Various authors have mentioned that the possibilities of digital
fabrication [1,2] are enhanced by a widespread use of technology. It can be predicted
that many people will use this technology, generating a lot of waste in the near future.
Therefore, the novel problems of 3D printer energy consumption, improperly disposed or
recycled materials, and harmful emission rates require urgent diagnosis, monitoring, and
effective solutions. Environmental pollution of plastic waste is a serious problem due to its
non-degradability [3–5].

The overall problem is much deeper: with such novel emerging technologies, we
cannot assume that the current level of use of particular materials is the critical variable
determining the development of a given state of affairs. On the contrary, we must be aware
that the fundamental issue will be relatively new values based on the evolving competencies
of people and the ability of companies to design unique, cutting-edge technology products
and services. Intellectual property (IP) rights and know-how for such innovative solutions
offering an advantage in the market will be difficult to achieve. Instead of developing
the technology ourselves, we can buy it, but that market is usually created by a narrow
community that gathers both the knowledge of the technology and the opportunities
for its purposeful use. There is a strong link between inventions and their application
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and commercialization. The market synergy between competencies and components
requires a complex solution supported by computational intelligence (CI)-based analytics to
manage such complexity. Other factors that increase the aforementioned system complexity
include: the need for a deeper understanding of the productive collaboration and hidden
dependencies of interdisciplinary teams, the rationale for overcoming communication
barriers that limit transparency, simultaneous production of complementary solutions
based on a (seemingly) unified architecture and a decentralized collaboration system, and
management methods based on task mapping and easy data sharing [6].

New approaches, including 3D technologies, the Internet of Things (IoT), Industry 4.0,
etc., are bringing continuous development and change, shaping our current approach to
technology as a simple factor in changing the way we live our daily lives [7,8]. Products
are shaped by communities or individuals according to their needs to improve their quality
of life, and once they achieve that—they immediately start looking for something more
advanced, helpful, interesting, etc.

The amount of data in itself does not matter much; only consciously interpreted
and processed data become information and, only in some cases, new knowledge. Using
the right tools to analyze 3D printing reverse engineering data allows you to gather
information that is important to scientific progress or the operation of your business: to
gain valuable insights, support important decisions, and develop new or significantly
improved products or services. In some cases (technical inspection) they help to avoid
losses. The mentioned data analysis is thus an answer to the research problem posed.
It can be explicitly formulated, as well as stated more generally, e.g., in the form of a
hypothesis [9].

Organizations that efficiently collect and use data are doing better and better on the
market, and in some industries it is essential for market success. Establishing quantitative
relationships between phenomena allows you to draw more accurate conclusions and,
based on them, make decisions with fewer errors in the areas of quality control, monitoring
error rates, improving operational efficiency, reducing costs, analyzing product lines,
increasing revenue, evaluating sales, analyzing and reporting compliance, and evaluating
projects to identify new opportunities or hidden problems [10].

“Manual” data analysis required extensive knowledge of statistics and programming.
Automated or semi-automated data analysis based on artificial intelligence is much easier,
faster, cheaper, and more efficient. In the case of 3D printing, we are dealing with multi-
criteria optimization, which involves finding an optimal solution that is acceptable from
the point of view of each of the selected criteria. In principle, the optimization problem can
be formulated in a rigorous manner as long as we are able to define the objective function,
also known as the quality criterion, a model of the phenomenon with distinctive decision
variables, and constraints. Here, there are, among others:

• optimization of business processes—involves designing improvements in the func-
tioning and management of the enterprise by reorganizing the processes taking place
inside the company,

• construction optimization—deals with issues related to the selection of the parameters
of the physical features and shape,

• optimization of logistics processes—concerns the maximum use of the company’s
logistics resources, with particular emphasis on time, costs, efficiency, and flexibility
of processes,

• production optimization—is based on reducing production costs, mainly due to
the reduction of its duration, and is also an opportunity to gain better control over
the production process, reduce the number of defective products, and use the full
production potential more effectively,

• cost optimization—helps the company to save as much money and resources as
possible so that the company does not run at a loss and benefits as much as possible,
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• software optimization—is an activity consisting of the analysis and improvement of a
computer program by increasing the efficiency of operation and reducing the use of
computer power [11,12].

Three-dimensional printers are becoming more and more economical as the technology
evolves. Therefore, we introduce a new AI-based software to assess the amount of pollution
generated by 3D printing systems. We enter input values: printing technology, material,
print weight, etc., and predict the results (risk assessment) and determine if and what
precautions should be taken.

1.1. Optimization of 3D Printing

The idea of optimizing 3D printing is central to the development of this group of
technologies by relying on new printing technologies, new mechanical properties of mate-
rials, and automation of their use in 3D printing (including multi-material printing) [13].
Automation allows for more accurate consideration of input parameters and requirements
for printed object properties and applications [14]. It is important to determine the relation-
ship that exists between 3D printing process parameters, performance and durability, the
quality of the printed object, and its structural properties [15].

Optimization of 3D printing parameters allows for cost and time reduction of additive
manufacturing and associated processes (e.g., reverse engineering) [16]. Three-dimensional
printing optimization typically reduces the cost of short production runs, tooling, and,
most importantly, prototypes [17]. To achieve this, many parameters must be taken into
account: the volume and dimensions of the object(s), the amount and type of material
used, the working time during the entire process, etc. [18]. This can make 3D printing
much cheaper compared to parallel technologies: milling, mold-making, and mass produc-
tion [19]. Generally, the cost of the printed part is affected by the following factors:

• costs of preparing a 3D print—including preparation of the printer for work, measure-
ments required for providing the appropriate 3D printing environment, implemen-
tation of printing material [20], choosing optimal temperature settings (for a given
material, sample size, and other requirements such as direction of working for the
best durability, etc.) [21], speed [22], and additional process parameters [23],

• model volume [24]—including size of the object(s) [25], amount of space inside the
device to be printed [26], time required for a complete printout [27],

• time cost of 3D printing [28]—including the number of working hours of the 3D
printer using a given technology, production capacity, printer depreciation cost, and
all service activities or expenses related to the proper operation of the 3D printer [29],
and sometimes availability and occupancy of the data of the 3D printers (e.g., quicker
printing may cost extra) [30],

• costs of finishing the 3D print—including grinding, impregnation (e.g., with epoxy
resin), joining with metal components, painting, gluing [31]—additional processing of
the model may be possible at the customer’s special request [30],

• cost of electricity [31],
• cost of the operator and post-processing technician [32].

The average 3D printing time depends primarily on the technology used and the
material chosen. Due to the above issues, industrial 3D printers can sometimes be replaced
by cheaper printers with a lower initial purchase cost.

The literature on 3D printing process optimization is abundant, especially in the last
10 years. Many important advances have been made in the aforementioned studies, but
few of them address the problem of CI (Computational Intelligence)-based energy and
environmental optimization.

The default settings of printing process parameters in some cases do not guarantee
the quality (as described by the dimensions of error, strength, etc.) of the printed objects.
In a study by Pawar et al. [33], three parameters of the FDM (Fused Deposition Modelling)
printing process (layer thickness, layer speed, and fill density) were optimized using the
Taguchi L9 Orthogonal Array method. More layers will result in a high temperature gradi-
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ent toward the bottom of the part, which will increase diffusion between adjacent rasters
and improve strength [33]. A low layer height of 0.14 mm allows for the shortest printing
time, assuming print quality assurance [34]. New possibilities for material optimization are
opened by composite materials with specific mechanical properties. Thus, several materials
can be used in one manufacturing process. Researchers aim to create a database for the
analysis and implementation of material properties in order to develop a proper common
approach for the selection of material(s), and also in terms of the geometric perfection of
printed objects [35]. Camposeco-Negrete [36] proposed a unified approach to optimize
five FDM-related responses: power consumption of the 3D printer, processing time, di-
mensional accuracy of the part, amount of material used to print the part, and mechanical
strength of the samples.

1.2. Energy Consumption due to 3D Printing

The gradual greening of the 3D printing industry continues to grow, driven by the
optimization of the energy efficiency of the machines used to print various objects and
the worldwide trend to make 3D printers environmentally friendly devices. The main
advantages expected from 3D printing include reduced environmental impact, including
lower material and energy consumption compared to traditional manufacturing methods.
This is mainly due to better adaptation of the aforementioned technology to the single end
user of the items produced in this way, without the need to produce components in other
sizes or spare parts for them. It is also assumed that there will be less waste, and some or
even all of it will be recycled. Simon et al. experimentally investigated energy consumption
and air emissions during 3D printing (FDM). In FDM, most of the electricity is used to heat
the print bed and maintain its temperature. It is possible to reduce particulate emissions
during FDM printing by changing procedures and process parameters [37].

The average power consumption of a traditional 3D printer usually does not exceed a
few hundred watts. In general, values for 3D printers printing with PLA (polylactic acid),
PLA + (160–222 ◦C) are lower than those for 3D printers printing with ABS (Acrylonitrile
butadiene styrene) due to the lower melting point of the former two materials. Other
melting points are as follows: polyhydroxyalkanoates (PHA): 190–210 ◦C; polyvinyl alcohol
(PVA): 160 ◦C; polyethylene terephthalate (PET): 190–210 ◦C; and high impact polystyrene
(HIPS): 210–230 ◦C. Higher power consumption can be expected in machines with a larger
heated bed or more extruders. Moreover, 3D printers with a closed working chamber can
be considered more energy-efficient. The upper limit of a printer’s power consumption is
set by the power of the power supply itself, but the printer does not run at full power all
the time. Various components of the 3D printer consume different amounts of electricity at
different times, depending on the work stage, i.e., from the most power-consuming parts
of the 3D printer to the least:

• the heated bed creates the highest power consumption: up to more than approximately
60% of the limit of the power supply,

• less electricity is needed to melt the filament in the head,
• even less for the stepper motors,
• less for fans,
• and at the end are the electronic devices.

Power consumption during the work cycle is usually as follows (mean values with
SD compared to the power of the power supply with SD):

• 3 ± 0.5%—when the only printer is powered,
• 65 ± 10.1%— with only the table heating on,
• 23 ± 2.2%—with hotend heating on (and the extruder cooling fan on),
• 5 ± 0.8%—with its own fans for cooling the print, set to the maximum speed,
• 6.5 ± 1.2%—during operation of all of the stepper motors,
• 85 ± 13.2%—while heating the table and nozzle, and all of the fans are on.

The same relative to the highest consumption (mean ± SD):
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• 3.5 ± 0.6%—when only the printer is powered,
• 76.5 ± 11.9%— with only the table heating on,
• 27 ± 2.6%—with hotend heating on (and the extruder cooling fan on),
• 5.9 ± 0.9%—with its own fans for cooling the print, set to the maximum speed,
• 7.6 ± 1.4%—during operation of all of the stepper motors,
• 100 ± 15.5%—while heating the table and nozzle, and all of the fans are on.

The average cost of electricity for 3D printing is a few zlotys per hour (about EUR
1= 4.47 PLN-Polish zloty)—thus 3D printing seems to be one of the more cost-effective
methods of manufacturing objects. You have to take into account the lack of production
facilities beyond a computer with a design and a 3D printer (sometimes also a 3D scanner).
Energy-efficient printers are still being developed—there are at least a few solutions that
make this possible: reduction of energy losses, reduction of the extruder weight, which
allows for faster and more precise printing, better distribution of heat from the heating
element to the printer compartment, and use of a curtain to divide the working chamber—
the heated air is used only in the area where the model is being printed—or even the option
to change the size/volume of the working chamber [37,38]. The last option is considered
the most efficient and optimal, for printing both larger and smaller objects, for prototyping,
short and very short runs, and for mass production.

To facilitate the energy consumption decision-making process, we tried to generalize
the precautions using our artificial neural network (ANN)-based reasoning system.

1.3. Air Pollution due to 3D Printing

Being in and breathing in rooms where 3D printers work can have harmful effects on a
person’s respiratory system. During 3D printing, plastic is melted and then layered to form
the desired shape of objects. The material is heated, which releases volatile compounds
into the surrounding air. There is no doubt that both short- and long-term exposure to the
particles released during the melting of the filament(s) can have negative health effects
similar to those from exposure to urban air pollution. The toxic effects of the various
filaments used in 3D printing technologies can seriously affect cell cultures of the human
respiratory system and immune system cells. Both of the most common materials (ABS and
PLA/PLA+) negatively affect cell viability, but PLA shows even more toxicity. The higher
temperature needed to melt the filament implies stronger emissions of these compounds.
PLA molecules are more toxic than ABS molecules, but the emission of ABS by printers is
much higher.

It is clear that 3D printer rooms should be well and frequently ventilated, no one
can stand close to the 3D printer while the 3D printers are running, and 3D printers
should additionally have special safety chambers. In order to facilitate decision-making
processes in the area of 3D printing-related air pollution, we have attempted to generalize
the precautions using our artificial neural network (ANN)-based reasoning system.

Thermoplastics have been recycled since the 1970s, so there is already considerable
knowledge and experience with the recycling process. Recycling by converting waste
into new filaments is considered an effective recycling method, but the homogeneity of
the source and similar resin properties are important. On the other hand, this recycling
also means further degradation of the properties of the resulting filament, hence its full
utilization is still a challenge. Despite the right attitude of manufacturers and consumers,
the management, recycling, and disposal of materials in the 3D printing sector still need
support and regulation, also in the area of state influence.

3D printing saves more material than traditional manufacturing processes. Other
biodegradable plastics used for filaments (e.g., for Fused Deposition Modelling—FDM
purposes) include PLA, and PLA+, PHA (polyhydroxyalkanoates, PVA (polyvinyl alcohol),
PET (polyethylene terephthalate), HIPS (high impact polystyrene), and biocomposites (e.g.,
a biodegradable polymer matrix and about 40% by volume of bio-based fillers). It should
be taken into account that the mechanical properties of biodegradable 3D-printed plastics
or composites are not as good as pure matrix materials [39]. Thus, it can be concluded for
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the moment that sometimes the transformation of a material implies its degradation, and
it should be used very carefully. From another point of view, this may be an opportunity
for environmentally friendly applications of 3D printing with short life cycle. A novel
framework for sustainability assessment and improvement of 3D printing processes by
integrating computer-aided design (CAD) and life cycle assessment (LCA) was proposed
by Liu et al. [40]. It seems that further research efforts should be focused on improving the
feasibility of 3D printing using novel compostable or bio-based fibers.

Users may know little about the effects or impacts of pollutants (organic compounds
and ultrafine particles) generated by equipment [41]. Moreover, the physical and chemical
properties of the emitted dust remain unclear. Ultrafine particles and other hazardous
materials are emitted during 3D printing, but the effect of temperature on these particles
has not been systematically studied [41]. It is recommended to reduce particle emissions
from 3D printing, print at the lowest possible temperature, and use low emission materials.

Measurement of the particle concentration with direct reading devices in the chamber
at various temperatures (185–290 ◦C in steps of 15 ◦C) using four filament materials during
3D printing by FDM, taking into account the operating conditions recommended by the
manufacturer, showed that:

• temperature was the key factor influencing the amount of emission by filament type,
• emission increased gradually with increasing temperature for all types of filament,
• emission value at the lowest operating temperature was 107–109 particles/minute,
• emission value at the highest temperature was 100–10,000 times greater [42].

ABS is much more toxic than PLA:

• emission of volatile organic compounds (VOCs) fluctuated within 0.50 µmol/h,
• styrene was responsible for over 30% of the total VOC emission from ABS,
• methyl methacrylate was responsible for over 44% of the total VOC emission from

PLA [41].

Therefore, low emission materials are strongly recommended. However, recommen-
dations for reducing particle emissions include not only using lower temperatures and
using low-emitting materials, but also implementing control measures, using an enclo-
sure/chamber around the printer, and using HEPA (high-efficiency particulate air) filters
during 3D printing.

More stringent adherence to the manufacturer’s recommendations can result in a
reduction in airborne particle counts; the nanoparticle emission factor is at least one
order of magnitude higher for all fibers tested at a higher constant extruder temperature
than at the lower temperature recommended by the manufacturer [43]. Long-term use
of the printer also led to higher emission factors (factor 2 with PLA and factor 4 with
ABS (Acrylonitrile butadiene styrene), measured after seven months of sporadic use) [44].
Furthermore, a single 3D print—even a long one (165 min) in a large, well-ventilated
room—did not result in a significant increase in the concentration of harmful particles in
the air, whereas such elevated concentrations of harmful particles were detectable indoors
up to 20 h after printing in a small, unventilated room [45]. Even a 40-min 3D print can
produce a harmful dose [45]. Aerosol emissions from nanoclusters (NCA) can account for
9–48% of total emissions, so up to half of particulate emissions may have been previously
overlooked [46]. Diffusivity and extrusion rate are considered the most important variables
in predicting environmental concentrations in the near field [47]. The aforementioned
computational model would be useful for estimating worker exposure and for determining
whether respiratory protection is necessary. The particles started to evaporate intensively
at 150 ◦C, but only 25% of the particle number remained at 300 ◦C [48].

The growing concern about noise has accelerated the development of sound-absorbing
devices [49]. VAT polymerization printers (SLA—stereolithography, DLP—digital light pro-
cessing technologies) emitted nanoparticles containing potentially carcinogenic, allergenic,
and reactive metals and carbonyl vapors. The observed differences in emissions between
printers/technologies suggest that the technology used is an important factor in reducing
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exposure to harmful particles in the air [50]. Inhalation of fumes and organic particles
containing metals is possible even when using 3D printing toys intended for children.
Such toys should not be used in rooms with poor ventilation and/or placed near a child’s
breathing zone [51]. In vitro cell studies and in vivo exposure in mice have shown toxic
reactions induced by both PLA- and ABS-emitting particles (higher reaction levels) [52].
Emission rates can also be affected by printer failure, the type of filament used, and to a
lesser extent the color of the filament [53]. Emissions released under non-industrial condi-
tions can be potentially harmful. They can be mitigated by the use of a 3D printer shield,
ventilation, and appropriate choice of filament composition and color. The simple use of a
shield on a 3D printer reduces emissions by a factor of two [54]. There is no doubt that the
concentration of particles reaches the highest values during heating and printing of the
solid layer [55], for both ultrafine particles (UFP, <100 nm) and volatile organic compounds
(VOCs) [56]. Average aerosol emissions range from 108 to 1011 particles per minute and
vary during printing [57]. It is necessary to identify an objective marker that can accurately
indicate the frequency, duration, and magnitude of exposure, such as measurement by
optical particle counter (OPC) and condensation particle counter (CPC) [58]. However,
even a high-efficiency particulate air filter installed in a 3D printer can be very useful [59],
also for a laser printer [60] and to counter noise pollution [61]. Moreover, air pollution can
be observed even after printing is completed. Training and developing proper habits and
controls can be helpful.

The aim of this paper is to investigate whether the sustainability of 3D printing
processes can be supported by computational intelligence (CI)- and artificial intelligence
(AI)-based solutions.

2. Materials and Methods

The further development of 3D printing within the network-based Industry 4.0
paradigm requires the use of the IoT for semi-automated or automated real-time data
analysis. An effective solution to the problem is hampered by the fact that due to the
complexity of the system, and there may be several potentially optimal solutions. The
use of CI (Computational intelligence) methods opens up the possibility of reconciling
individual approaches to 3D printing while partially standardizing the procedure. The use
of the ANN model as a support system enables the generation of an optimal parameter
layout while increasing the efficiency of the 3D printing planning process as part of the 3D
pre-press procedure. The huge number of data sets and the expected high efficiency of their
analysis despite the generation of a complex, controlled, multi-sensory information flow
across the assembly line (in space), process (in time), and hierarchy (in the organizational
structure) require new, more advanced computational models of the 3D printing process.
New, more advanced features may also be required due to a new global approach focused
on the environment, waste management, and a smaller carbon footprint. The number of
key factors will grow, and despite the comprehensive approach to 3D printing technology,
managing them all simultaneously will be beyond the capabilities of an engineer or even a
group of engineers. Reasonable, user-friendly software should support this.

The most important hypothesis is that the sustainability of 3D printing processes can
be supported by CI- and AI (Artificial intelligence)-based solutions. The authors have
experience using AI methods to solve technical problems (e.g., in developing classifier
models [62] and predictive models [63], in materials selection in ecodesign [64] and material
compatibility [65], and in the form of decision trees and neural networks).

Artificial neural networks, which are an approximate simulation of the brain’s informa-
tion processing ability, are gaining interest as modern and highly advanced computational
techniques. ANNs are a machine learning method for mapping and predicting complex
relationships between inputs and outputs. They reflect nonlinear relationships between
input data that cannot be recognized by conventional methods. There are several types
of ANNs, such as feed-forward networks, back-propagation neural networks (BP-NNs),
radial function networks, and probabilistic neural networks.
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In terms of a theoretical basis, the ANN first consists of an input layer, a hidden layer,
and an output layer of neurons with connections between neurons in subsequent layers
that are enhanced by similarities in measured inputs. Complex, large, incomplete, noisy
datasets can be easily analyzed for different groups based on similarities of measured
parameters. The ANN begins its operation by presenting the pattern of the process variable
and continues through the activation level to propagate through the hidden layers. The
processing unit aggregates the input data and uses the hidden layer transfer function to
calculate the response. The generated result is an estimate, but due to better optimization
to the function (due to the identified learning process) it is even more accurate than other
analogous statistical procedures. Moreover, such multivariate programs greatly increase
the sensitivity and specificity of the evaluation/prediction.

In terms of practical applications, this interest is also manifested in the study of mate-
rials and technologies used in 3D printing, hence, the use of neural networks as effective
tools for solving various problems, especially those characterized by multidimensional
and nonlinear dependencies. Thanks to AI, new optimization decision rules are emerging.
The huge explosion of data, materials, technologies, and their features in the practical
application of the IoT and Industry 4.0 paradigms requires effective analysis methods to
deal with inference and prediction of hidden cause–effect relationships between a large set
of properties and single or multiple responses, including those based on digital twins. It is
possible to find an optimal and innovative way to solve these problems. Practice will show
how to develop appropriate predictive models for changing passive and active prevention.

To achieve the goal of our work, we used our own experience in modeling 3D printing
processes using artificial neural networks. Despite the considerable emphasis on objecti-
fication of 3D printing processes, modeling them with ANNs is rare. So far, ANNs have
been popular in the areas of data analysis, prediction, control, clustering, classification and
optimization in physics, mechanics, geology, medicine, economics, etc. They usually pro-
vide approximate (estimated) results, but allow mapping of complex nonlinear functions,
control of multivariate problems including a large number of independent variables, and
limited theoretical knowledge is needed for model building.

Many 3D printing parameters are optimized to improve the quality of manufactured
objects and their features, but the use of an ANN for this purpose is still limited. Even
less common is the use of ANNs to optimize the environmental characteristics of 3D
printing. This paper aims to make up for the abovementioned shortcomings. Based on
previous publications and our own data sets, two ANNs were constructed: ANN1 to assess
electricity consumption, and ANN2 to assess air pollution (risk assessment).

Due to the lack of a model or mathematical representation in both of the above
cases, we used a feed-forward neural network with a back-propagation algorithm, the full
formulation of which is unknown, to solve these types of problems. We took into account
that logistic models, etc., often predict more accurately than neural network models in
terms of mean squared error, but such ANN models are better suited to the loss functions
associated with the desire to more accurately predict certain combinations of categorical
responses than others.

We calculated the mean square error (MSE) as the mean squared difference between
estimated and actual values Equation (1):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (1)

where n is number of data points, yi—observed values, and ŷi—predicted values.
A multilayer perceptron (MLP) is a class of feed-forward ANNs. We checked both the

sigmoidal activation function Equation (2):

y(x) =
(
1 + e−x)−1 (2)
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and the hyperbolic tangent Equation (3):

y(x) = tanh(x). (3)

MATLAB 16.0 (MathWorks) software was used for training and optimization purposes,
including the Statistics and Machine Learning Toolbox, and the Deep Learning Toolbox.
The explanatory variables (process characteristics) used in the predictive models are shown
in Figure 1 (for ANN1) and Figure 2 (for ANN2). We used data sets from industrial and
research practice with 3D printers, in particular, those described in the Introduction of
energy consumption during the 3D printing work cycle and air pollution measurements.
The input variables were rescaled using the same maximum and minimum values from the
sample data. The initial values of the network weights were estimates ranging from –1 to 1.
To prevent bias in the weights at start-up, weights randomly selected at initialization were
normalized. Two different stopping points were included in the learning process: after
1000 iterations and after 2000 iterations. The samples were divided into three groups: 70%
(learning), 20% (testing), and 10% (validation).
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3. Results

The models selected in the selection process were simpler to construct than they could
have been. All results were achieved after 1000 iterations. The best results for ANN1 were
achieved for n = 9, m = 1, and 27 neurons in the hidden layer (i.e., MLP 9-27-1), but we
found that other ANN1 structures were also effective, such as MLP 9-18-1, MLP 9-36-1,
and MLP 9-45-1 (Table 1).
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Table 1. The best MLP (MultiLayer Perceptron) network models for diagnostic measures (bolded is
the best, see also Tables 2 and 3 for more results).

NS AH AO

9-18-1 Sigmoid Sigmoid

9-27-1 Sigmoid Sigmoid

9-36-1 Sigmoid Sigmoid

9-45-1 Tanh Sigmoid
NS—ANN1 Structure, AH—Activation function in the hidden layer, AO—Activation function in the output layer.

Table 2. Selected ANN1 quality assessment (bolded is the best).

Network Name Quality
(Learning)

Quality
(Testing)

MLP 9-18-1 0.9011 0.9232
MLP 9-27-1 0.9395 0.9554
MLP9-36-1 0.9230 0.9327
MLP 9-45-1 0.9194 0.9332

Table 3. (R - root) MSE (Mean squared error) values for three-MLP (MultiLayer Perceptron) neural
networks (bolded is the best).

Network Name MSE

MLP 9-18-1 0.01
MLP 9-27-1 0.001
MLP 9-36-1 0.02
MLP 9-45-1 0.02

ANN1 was able to minimize the MSE for the data in the training set to very small
values (0.001–0.01) (Tables 2 and 3).

The number of learning epochs ranged from 500 to 1000 (Figure 3).
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Linking the results of the ANN1 model to 3D printing technology allowed easier
evaluation and prediction of energy consumption for different types of 3D printers and
related entire 3D printing processes within Industry 4.0. Its short computation time, very
good quality (0.9554), and very low MSE (0.001) allowed optimization of the real-world 3D
printing process toward greater environmental friendliness.

The best results for ANN2 were achieved for n = 9, m = 6, and 35 neurons in the
hidden layer (i.e., MLP 9-35-6), but we found that other ANN2 structures were also
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effective, such as MLP 9-18-6, MLP 9-27-6, and MLP 9-45-6 (Table 4). Agreeing with our
expectations, a higher number of neurons in the hidden layer was necessary to achieve
results similar to ANN1 due to the more complicated connectivity to the output layer
(6 neurons instead of 1).

Table 4. The best MLP network models for diagnostic measures (bolded is the best, see also
Tables 5 and 6 for more results).

NS AH AO

9-18-6 Sigmoid Sigmoid

9-27-6 Sigmoid Sigmoid

9-35-6 Sigmoid Sigmoid

9-45-6 Sigmoid Sigmoid
NS—ANN2 Structure, AH—Activation function in the hidden layer, AO—Activation function in the output layer.

Table 5. Selected ANN2 quality assessment (bolded is the best).

Network Name Quality
(Learning)

Quality
(Testing)

MLP 9-18-6 0.8813 0.9091
MLP 9-27-6 0.9112 0.9275
MLP 9-35-6 0.9231 0.9445
MLP 9-45-6 0.9111 0.9223

Table 6. (R)MSE values for three-MLP neural networks (bolded is the best).

Network Name MSE

MLP 9-18-6 0.01
MLP 9-27-6 0.01
MLP 9-35-6 0.001
MLP 9-45-6 0.01

The number of learning epochs ranged from 500 to 1000 (Figure 4).
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Linking the results of the ANN2 model to 3D printing technology allowed for easier
assessment and prediction of air pollution (risk assessment) for different types of 3D print-
ers and associated entire 3D printing processes within Industry 4.0. Its short computational
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time, very good quality (0.9445), and very low MSE (0.001) allowed for optimization of the
real-world 3D printing process toward greater environmental friendliness.

Based on all the ANN models developed, the best network performance was deter-
mined: one for each of the individual solutions. In both cases, the best learning quality and
best testing efficiency were obtained by the same network, MLP 9-27-1 and MLP 9-35-6,
respectively, which also obtained the lowest (R)MSE values.

There are still some limitations that need to be explored, but they need to be tested in
practical application(s). The self-learning program will improve the performance of the
ANN due to more data input. The proposed solutions do not replace but complement the
existing 3D printing meters and software.

4. Discussion

The main objective of this paper was to build two proprietary ANN models. The
work tested whether an advisory program based on artificial intelligence methods could
propose an optimal distribution of 3D printing parameters from the point of view of
energy consumption and air pollution, while standardizing the 3D printing planning
process. Models developed in this way can be a tool to support the work of engineers in
the selection of parameters necessary to plan the 3D printing process. The advantage of
the above solution is the possibility to use the knowledge and experience gained so far
concerning a diverse group of 3D printing procedures and technologies.

The novelty of the solution stems from the fact that, despite a number of advantages,
ANN-based computer-based advisory systems are not routinely used in everyday practice
in 3D printing systems. To date, a limited number of publications have investigated the use
of ANNs in 3D printing parameter selection and optimization. Research on the sustainable
characteristics of materials [66], including polymers used as 3D printing material [67], is
ongoing, but the number of studies is so far small. We view our results as preliminary.
They lead to further implications: in the broadest context, CI-based optimization of 3D
printing processes within the Industry 4.0 paradigm is possible [68]. This requires not only
efficient technical solutions, but also correct consumer behavior and attitudes toward the
mentioned waste management [69]. Global conclusions regarding the sustainability of 3D
printing vary with time and research [70]. A simple calculation of the energy consumption
of a 3D printer was proposed by Annibaldi and Rotilio [70], but this research represents
another breakthrough in the aforementioned area. Limitations potentially minimizing
the use of 3D printing for environmental reasons include high production costs and high
energy consumption during the process [71–74]. The continuous development of 3D
printing means that the various printers, technologies, materials, etc., used to evaluate
3D printing technologies may lead to different conclusions within the environmental
impact assessment [75]. In our view, this may support our point that CI-based assessment
and control can significantly improve safety and reduce the environmental impact of 3D
printing. Undoubtedly, there is a need for a more objective environmental profile of 3D
printing based on novel assessment models capable of quantitatively reflecting the actual
and future environmental burden caused by emerging technologies [76].

Our results confirm the usefulness of CI-based solutions from the perspective of sus-
tainability in 3D printing. They can be interpreted as one of the first steps toward broader
automation of additive manufacturing processes. The impact of CI-based approaches
may be greater than we previously assumed due to the unique paradigms of Industry
4.0, including the need for technical oversight of products throughout the manufacturing
process and rapid response to any failure or unexpected sensor signal. The advanced
sensor infrastructure will require not only distributed signal processing, but also flexible
real-time response. The required IT infrastructure must be based on CI solutions that can
be useful to optimize the whole process [76].

References to global achievements in the field under review highlight the main benefits
of 3D printing in terms of sustainability:
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• improved resource efficiency achieved by “just in time” products near the point
of consumption,

• capacity to produce less waste,
• possibility of printing parts in a shorter period of time,
• extended life of the product thanks to the possibility of the creation of spare parts

“on demand”,
• shorter and more local supply chains,
• a reduced carbon footprint of product manufacturing [77].

Potential industrial applications of the proposed software range from early warning
systems for potentially harmful air pollution to systems that optimize material consump-
tion, environmental pollution, and energy consumption of entire production lines.

Future research directions in CI-based solutions to sustainability in 3D printing
should cover:

• optimization and automation of the whole process [78], e.g., by including an automatic
function in the 3D printer software,

• simulation of the whole product life cycle, including filament recycling, and short life
cycle applications,

• development of a distributed recycling platform for 3D printing, e.g., that proposed
by Chong et al. to achieve the goal of zero waste production [79].

5. Conclusions

The 3D printing market is growing at about 25% per year, so the sustainability of 3D
printing materials is of great importance for the future. There is a need for further research
on selected aspects of 3D printing sustainability, including more complex solutions that
take into account entire manufacturing processes within the Industry 4.0 paradigm.

The proposed effective ANNs with simple structures (MLP-9-27-1 and MLP 9-35-6)
can contribute to the understanding of the release mechanisms of chemical contaminants
from materials used in 3D printers. This is essential to develop effective strategies for
exposure assessment and control, prevention of health hazards and risks associated with
3D printing.

The proposed CI-based software is powerful, and it does not replace but rather
complements existing 3D printing metrics and software. Its short computation time, very
good quality, and very low (R)MSE (0.001 for both MLP-9-27-1 and MLP 9-35-6) allow the
real-world 3D printing process to be optimized toward greater environmental friendliness
reflected in lower air pollution and energy consumption.

Further CI-based optimization solutions should be more complex, involving more steps
in the 3D printing processes—this can more significantly (even up to more than 10%) reduce
air pollution, energy, and material consumption during additive manufacturing processes.
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