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Abstract: In the 2016 experiment by Crossno et al. the electronic contribution to the thermal
conductivity of graphene was found to violate the well-known Wiedemann-Franz (WF) law for
metals. At liquid nitrogen temperatures, the thermal to electrical conductivity ratio of charge-neutral
samples was more than 10 times higher than predicted by the WF law, which was attributed to
interactions between particles leading to collective behavior described by hydrodynamics. Here, we
show, by adapting the handbook derivation of the WF law to the case of massless Dirac fermions,
that significantly enhanced thermal conductivity should appear also in few- or even sub-kelvin
temperatures, where the role of interactions can be neglected. The comparison with numerical results
obtained within the Landauer-Biittiker formalism for rectangular and disk-shaped (Corbino) devices
in ballistic graphene is also provided.

Keywords: graphene; thermal conductivity; electrical conductivity; Wiedemann—Franz law;
Corbino disk

1. Introduction

Soon after the advent of graphene, it became clear that this two-dimensional form of
carbon shows exceptional thermal conductivity, reaching the room temperature value of
~5000 W/m/K [1], being over 10 times higher than that of copper or silver [2]. Although
the dominant contribution to the thermal conductivity originates from lattice vibrations
(phonons), particularly these corresponding to out-of-plane deformations [3,4] allowing
graphene to outperform more rigid carbon nanotubes, the electronic contribution to the
thermal conductivity (x.j) was also found to be surprisingly high [5] in relation to the
electrical conductivity (o) close to the charge-neutrality point [6]. One can show theo-
retically that the electronic contribution dominates the thermal transport at sub-kelvin
temperatures [7], but direct comparison with the experiment is currently missing. Starting
from a few kelvins, up to the temperatures of about T < 80K, it is possible to control
the temperatures of electrons and lattice independently [5], since the electron—-phonon
coupling is weak, and to obtain the value of x| directly. Some progress towards extending
the technique onto sub-kelvin temperatures has been reported recently [8].

The Wiedemann-Franz (WF) law states that the ratio of «, to ¢ is proportional to the
absolute temperature [9]

Kel _
o= LT, 1)

where the proportionality coefficient £ is the Lorentz number. For ideal Fermi gas, we have

2 2
L=Ly= % (keB> ~2443x 1078 W.-Q - K2 2)

For metals, Equation (1) with £ ~ L (2) holds true as long as the energy of thermal
excitations kpT < e, with e being the Fermi energy. Moreover, in typical metals close to
the room temperature x| > Kpp, with x,, being the phononic contribution to the thermal
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conductivity, and even when approximating the Lorentz number as £ ~ (kej + kpp) /0T
one restores the value of £y (2) with a few-percent accuracy.

In graphene, the situation is far more complex, partly because ko < «pp, (starting
from few Kelvins) but mainly because unusual properties of Dirac fermions in this system.
Experimental results of Crossno et al. [5] show that the direct determination of ) leads to
L/Ly=10—-20for T = 50 — 75K near the charge-neutrality point. Away from the charge-
neutrality point, the value of £ ~ L is gradually restored [10]. In addition, the Lorentz
number is temperature-dependent, at a fixed carrier density, indicating the violation of the
WE law.

High values of the Lorentz number (£/ Ly > 10) were observed much earlier for semi-
conductors [11], where the upper limit is determined by the energy gap (A) to temperature
ratio, Limax = (A/2¢T)?, but for zero-gap systems strong deviations from the WF law are
rather unexpected. Notable exceptions are quasi one-dimensional Luttinger liquids, for
which £/ Ly > 10* was observed [12], and heavy-fermion metals showing £ < L [13].

The peak in the Lorentz number appearing at the charge neutrality point for relatively
high temperatures (close to the nitrogen boiling point) can be understood within a hydro-
dynamic transport theory for graphene [14-16], which can be regarded as adaptation of
a universal theory of interacting, themalizing physical systems to this specific material.
Hydrodynamic theory also allows one to design novel terahertz devices in graphene [16],
supplementing earlier studies in this direction [17,18]. However, it is worth stressing that,
for clean samples and much lower temperatures, where the ballistic transport prevails, one
may still expect Lorentz number peaks with the maxima reaching Lmax/ Lo ~ 2 — 3 and
the temperature-dependent widths.

In this paper, we show how to adapt the handbook derivation of the WF law [9]
in order to describe the violation of this law due to peculiar dispersion relation and a
bipolar nature of graphene. The quantitative comparison with the Landauer—Biittiker
results is also presented, both for toy models of the transmission-energy dependence, for
which closed-form formulas for £ are derived, and for the exact transmission probabilities
following from the mode-matching analysis for the rectangular [19-21] and for the disk-
shaped [22,23] samples.

The remainder of the paper is organized as follows. In Section 2, we recall the key
points of the WF law derivation for ideal Fermi gas, showing how to adapt them for mass-
less fermions in graphene. In Section 3, the Landauer-Biittiker formalism is introduced,
and the analytical results for simplified models for transmission-energy dependence are
presented. The Lorentz numbers for mesoscopic graphene systems, the rectangle, and the
Corbino disk, are calculated in Section 4. The conclusions are given in Section 5.

2. Wiedemann-Franz Law for Ideal Fermi and Dirac Gases
2.1. Preliminaries

The derivation of the WF law for metals [9] starts from the relation between thermal
conductivity of a gas with its heat capacity per unit volume (C) derived within kinetic
theory of gases [24], which can be written as

K= % Co/, 3)
where d = 1, 2,3 is the system dimensionality, v is a typical particle velocity, and ¢ is the
mean-free path (travelled between collisions with boundaries or other particles). Figure 1
presents the key points necessary to obtain Equation (3). It is worth noticing that the
definition of C in Equation (3), used instead of a familiar specific heat (per unit mass),
allows generalizing the reasoning onto the massless particles easily.
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Ax = v, T

Figure 1. Relation among the thermal conductivity (x), heat capacity per unit volume (C), average
particle velocity (v), and the mean-free path (¢). The non-equilibrium heat flow occurs between
Interfaces (1) and (2), with local temperatures T and T + AT, separated by a distance Ax = v, T (with
vy the mean velocity in x direction and 7 the relaxation time) and can be quantified by AQ = CSAxAT.
The corresponding thermal conductivity is k = AQ(STAT/ Ax)71 = Co27. Substituting v2 = v /d
and ¢ = vT, we obtain Equation (3) in the main text.

Next, the electrical conductivity in Equation (1) is expressed via the Drude formula

ne>t

'
My

(4)

where n = N/V is the carrier density (to be redefined later for a bipolar system containing
electrons and holes) and m, is the carrier effective mass. We skip here the detailed deriva-
tion of Equation (4), which can be found in [9]; we only mention that it follows from Ohm’s
law in the form j = ¢E, with j the current density and E the electric field, supposing that
carriers of the e charge and the 1, mass accelerate freely during the time 7 = ¢/v [with
the symbols ¢ and v the same as in Equation (3)]. This time, a generalization for massless
particles is more cumbersome; we revisit this issue in Section 2.3.

The system volume, referred to in the definitions of C and 7, can be denoted as V = L4,
with L being linear dimension of a box of gas. In SI units, the dimension of C is J/(m?K),
and the unit of thermal conductivity is

(k] = — T o ©)
Similarly, the unit of electrical conductivity is

_ 1
T mi2.0°

[o] ©6)

In turn, the unit of length (m) vanishes in the x /¢ ratio occurring in Equation (1) and
the WF law remains valid for arbitrary d (provided that the suppositions given explicitly
in Section 2.2 are satisfied). Unfortunately, in the literature on graphene, ¢ is commonly
specified in Q! (=S), as follows from Equation (6) for d = 2, but the values of « are
reported in W/m/K, as for d = 3 [2]. Such an inconsistency can be attributed to the fact
that, for the thermal conductivity of multilayer graphene, linear scaling with the number of
layers remains a reasonable approximation [25], but the behavior of electrical conductivity
is far more complex [26,27] even for bilayers [28].
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2.2. The Fermi Gas in Metals

The calculation of C in Equation (3) employs the free Fermi gas approximation for
electrons in a metal. In this approximation, one assumes that leading contributions to
thermodynamic properties originate from a thin layer around the Fermi surface. For
instance, a contribution to the internal energy can be written as

AUy = /:F:\A deD(e)f(e)e

X

(o]
~ const. +2D(ep) (ke T)” [ dx-" 7
const. +2D(er) (kgT) y o @)
where er is the Fermi energy, 2A is the relevant energy interval considered (ep > A > kpT),
D(e) is the density of states per unit volume (i.e., the number of energy levels lying in the

interval of ¢, ..., e + de is VD(e)de), and f(¢) is the Fermi-Dirac distribution function

1
ele—n)/kgT +1 ’

fle) = ®)
In a general case, the chemical potential in Equation (8) is adjusted such that the
particle density

n(w) = [ deD(e)f(e) ©

takes a desired value n(y) = n, defining the temperature-dependent chemical potential

u = u(T). Here, the constant-density of states approximation, D(¢) ~ D(ef) for e — A <

€ < €r + A imposed in the rightmost expression in Equation (7), is equivalent to u ~ ef [29].
The definite integral in Equation (7) is equal to

/O dx g = 2@ = T (10)
where the Riemann zeta function,
> 1
{(z)=), —, Rez>1, (11)
p=1?

is introduced to be used in forthcoming expressions.
Differentiating AU, (7) over temperature, one gets approximating expression for the

electronic heat capacity
2

7T
Co ~ ?D(ep)k%T. (12)

In fact, the factor of 7r%/3 in Equation (12) is the same as the one appearing in the
Lorentz number L (2), which is shown in a few remaining steps below.
For an isotropic system with parabolic dispersion relation

72K2
- 2m,’

€k (13)

bounded in a box of the volume V = L? with periodic boundary conditions, the wavevector
components k = (k;) take discrete values of k; = 0, izT”, j:%”, ... (withi = x,y,z for
d = 3). Calculation of the density of states in d = 1, 2, 3 dimensions is presented in
numerous handbooks [30]; here, we use a compact form referring to the particle density on
the Fermi level

_ dn(er)
- E EF

D (EF) ’ (14)
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where n(ep) = [F D(¢)de representing the T — 0 limit of Equation (9). Substituting D(eF),
given by Equation (14), into Equation (12), we obtain

2d nk:T
Coyre — —B~ 1
el 6 er ( 5)
Now, taking er = %m*v% with the Fermi velocity
1 ask hkp
U = — = , 16
PR ok |, me (16)

and the Fermi wavevector kr = 1/ 2mer/ 72, we further set v = vF in Equation (3), obtaining

2 nk%T
3 myop

Kel == (17)

It is now sufficient to divide Equations (4) and (17) side-by-side to derive the WF law
as given by Equations (1) and (2).

As mentioned above, the result for free Fermi gas is same for arbitrary dimensionality
d. More careful analysis also shows that the parabolic dispersion of Equation (13) is not
crucial, provided that the Fermi surface is well-defined, with an (approximately) constant
D(ge) > 0 in the vicinity of ¢ — ¢p| < kT, and that the effective mass 0 < m, < +o0. In
the framework of Landau’s Fermi-liquid (FL) theory, the reasoning can be extended onto
effective quasiparticles, and the validity of the WF law is often considered as a hallmark of
the FL behavior [31,32].

The suppositions listed above are clearly not satisfied in graphene close to the charge-
neutrality point.

2.3. The Dirac Gas in Graphene

The relation between thermal conductivity and heat capacity given by Equation (3)
holds true for both massive and massless particles. A separate issue concerns the Drude
formula (4), directly referring to the effective mass, an adaptation of which for massless
Dirac fermions requires some attention.

The Landauer—Bittiker conductivity of ballistic graphene, first calculated analyti-
cally employing a basic mode-matching technique [19-21] and then confirmed in several
experiments [33,34], is given solely by fundamental constants

_ 4¢?

Remarkably, for charge-neutral graphene both the carrier concentration and the effec-
tive mass vanish, a finite (and nonzero) value of oy (18) may therefore be in accord with the
Drude formula, at least in principle.

To understand the above conjecture, we refer to the approximate dispersion relation
for charge carriers in graphene, showing up so-called Dirac cones,

E = thogk. (19)

The value of the Fermi velocity vp ~ 10°m/s is now energy-independent, being
determined by the nearest-neighbor hopping integral on a honeycomb lattice (ty = 2.7eV)
and the lattice constant (2 = 0.246 nm) via

hop = ?toa. (20)
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Charge carriers in graphene are characterized by an additional (next to spin) quantum
number, the so-called valley index. This leads to an additional twofold degeneracy of
energy levels, which needs to taken into account when calculating the density of states,

2

D@:mﬁp (1)

Subsequently, the carrier concentration at T = 0 is related to the Fermi energy (and
the Fermi wavevector) via

n= /SD(S')ds’ __e K (22)
o - n(hop)2
In the above, we intentionally omit the F index for symbols denoting the Fermi energy
and the Fermi wavevector to emphasize that they can be tuned (together with the concentra-
tion) by electrostatic gates, while the Fermi velocity vr (20) is a material constant [35].
Despite the unusual dispersion relation, given by Equation (19), the relevant effective
mass describing the carrier dynamics in graphene is the familiar cyclotronic mass

L IPoA(e) _ hk
CT 21 9 op’

(23)

where A(e) denotes the area in momentum space (ky, k,) bounded by the equienergy
surface for a given Fermi energy (¢). It is easy to see that, for a two-dimensional system,
with fourfold degeneracy of states, we have d.4(g) /de = 2D(¢); substituting D(e) given
by Equation (21) leads to the rightmost equality in Equation (23). Remarkably, the final
result is formally identical with the rightmost equality in Equation (16) for free Fermi gas
(albeit now the effective mass, but not the Fermi velocity, depends on the Fermi energy).

Assuming the above carrier density n (22), and the effective mass m, (23), and compar-
ing the universal conductivity oy (18) with the Drude formula (4), we immediately arrive to
the conclusion that mean-free path for charge carriers in graphene is also energy-dependent,
taking the asymptotic form

2 2hv
Logr(€) ~ — neF' for ¢ —» 0. (24)

Strictly speaking, the ¢ — 0 limit has n — 0, i.e., no free charge carriers, and the
transport is governed by evanescent waves [6]. The universal value of oy (18) indicates a
peculiar version of the tunneling effect appearing in graphene, in which the wavefunction
shows a power-law rather then exponential decay with the distance [22], resulting in the
enhanced charge (or energy) transport characteristics. Therefore, the mean-free path should
be regarded as an effective quantity, allowing one to reproduce the measurable characteris-
tics in the ¢ — 0 limit. Away from the charge-neutrality point, i.e., for |¢| > mhop /L (with
the geometric energy quantization ~ 7thop/L), graphene behaves as a typical ballistic
conductor, with £ ~ L. We revisit this issue in Section 4, where the analysis starts from
actual o (e) functions for selected mesoscopic systems, but now the approximation given
by Equation (24) is considered as a first.

We further notice that the form of /. (¢) in Equation (24) is formally equivalent to the
assumption of linear relaxation time on energy dependence in the Boltzmann equation,
proposed by Yoshino and Murata [36].

In the remaining part of this section, we derive explicit forms of the thermal conductiv-
ity x and the Lorentz number £, pointing out the key differences appearing in comparison
to the free Fermi gas case (see Section 2.2).

The calculations are particularly simple for charge-neutral graphene (n = ¢ = 0),
which is presented first. Although we still can put v = vr in Equation (3), since the Fermi
velocity is energy-independent, the constant-density of states approximation applied in
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Equation (7) in now invalid. (In addition, for T > 0, we cannot put er >> kgT now.) In turn,
the expression for heat capacity C needs to be re-derived.

For charge-neutral graphene at T > 0, contributions from thermally excited electron
and holes are identical; it is therefore sufficient to calculate the former:

[ _ 2(kgT)® [ x2
_/0 deD(e)f(e) e = n(hBUp)Z/o dxm. (25)

Again, the integral in the rightmost expression in Equation (25) can be expressed via
the Riemann zeta function, and is equal to

o x2
/Odﬁ fg() 1.8031. (26)

Differentiating Equation (25) with respect to T, and multiplying by a factor of 2 due to
the contribution from holes in the valence band, we obtain the heat capacity

18¢(3) k3T

= x (hop)?

(27)

It remains now to calculate the effective mean-free path ¢ to be substituted into Equation (3).
We use here the asymptotic form of /() (24), replacing the ¢! factor by its overage over
the grand canonical ensemble, namely

fooo deD(e)f(e)e™ ! ~ 12In2
Jo deD(e)f(e)  mkpT

(e ) rs0 = (28)

Substituting the above, together with the heat capacity C (27), into Equation (3), we get

4327(3)In2
and )
k  108Z(3)In2 ka N
T — ( . ~ 2.7714 x Ly, (30)

with £y being the Fermi-gas result given by Equation (2).

A simple reasoning, presented above, indicates that the x /¢ ratio is significantly
enhanced in charge-neutral graphene, comparing to the free Fermi gas. However, the
WEF law is still satisfied, since the Lorentz number given by Equation (30) is temperature-
independent. The situation becomes remarkably different for graphene away from the
charge-neutrality point, which is studied next.

Without loss of generality, we suppose y > 0 (the particle hole-symmetry guarantees
that measurable quantities are invariant upon y — — ). The internal energy U(T) now
consists of contributions from majority carries (electrons), with e > p, and minority carriers
(holes), with e < p,

U(T) = U, + U,

_ H—e
/ deD exp [(e— /kBT +/ exp [(p—e)/kpT) + 1’ S

where D(¢) is given by Equation (21). The heat capacity can be written as

ou 1 e (e—p)?
- = deD(e
oT  4kpT? /— ( cosh?[(e — u) /kpT]

- 2% F(y), (32)
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where we define
©  dxxd v dxx?
F = _— B ———
) /y coshx +1 +]//O coshx +1
2
= 2y~ + P In2coshy +2) ~8Lig(—e ) ~ 12Lis(—¢ ), (33)
with y = u/kgT > 0 and Lis(z) being the polylogarithm function [37].
Similarly, the mean-free path can be calculated as
o 2?12)1: -1 o ZhZ)F
(bett) = = (1e™) o0 = ekp SO (34)

where

*® x vodx \ 7
-1
=1n2 x {yz +yln(e™¥ +1) —Lip(—e¥) —yIn(e¥ +1) +yIn2| , (35

and y = u/kpT again.
Hence, the Lorentz number for u > 0 is given by

K

2
L= —Fw6w (kB) , 36)

e

with F(y) and G(y) given by Equations (33) and (35). The Lorentz number given by
Equation (36) is depicted in Figure 2. It is straightforward to show that in the y — 0 limit
one obtains the value given by Equation (30) for u = 0; in addition, for y — oo, we have
L — Ly, restoring a standard form of the WF law for metals. However, for 0 < y < 40, a
fixed value of u (or n) corresponds to y (and thus £) varying with temperature; namely, the
violation of the WL law occurs.

3

-10 -5 0 5 10
w/ksT

Figure 2. The Lorentz number £ = x/(cT) for massless Dirac fermions as a function of the
chemical potential. Solid lines represent the approximations given by Equation (36) (blue line)
and Equation (39) (red line). Dashed lines (top to bottom) depict the two corresponding 1 = 0
values, and the value of £y = (72/3) k%; /€2 representing the Wiedemann-Franz law restored in the
|| > kgT limit.
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3. Landauer-Biittiker Formalism and Simplified Models
3.1. The Formalism Essential

In the Landauer-Biittiker description transport properties of a mesoscopic system,
attached to the leads, are derived from the transmission-energy dependence 7 (¢), to be
found by solving the scattering problem [38—41]. In particular, the Lorentz number can be
written as [42]

¥e _ LoLa —LF

L=or= o

(37)
where L, (with n = 0,1, 2) are given by

Ly =880 [ g T(s)(—%{) (e— )", (38)

with g5 = ¢» = 2 denoting spin and valley degeneracies in graphene, and the Fermi-Dirac
distribution function f(¢) given by Equation (8). It is easy to show that energy-independent
transmission (7 (¢) = const) leads to £ = L (2).

3.2. Simplified Models

Before calculating 7 (¢) directly for selected systems in Section 4, we first discuss basic
consequences of some model T (¢) functions for L.

For instance, the linear transmission-energy dependence (i.e., 7 (¢) « |e| ) allows one
to obtain a relatively short formula for £ at arbitrary doping [7], namely

£— { 72y +y —12Lig(—e V)

In(2coshy +2)
[ A%/3+ 12 +4Lip(—e ) 7] (ks> (39)
In(2coshy + 2) e )’
with y = u/kpT. For y = 0, the Lorentz number given by Equation (39) takes the value of
_980) (k)
£(0) =575 ( 2} ~ 23721 % L, (40)

being close to that given in Equation (30). The approximation given in Equation (40) was
earlier put forward in the context of high-temperature superconductors also showing the
linear transmission-energy dependence [43].

Numerical values of £(y) are presented in Figure 2. Remarkably, £(y) obtained from
Equation (36) (blue line) is typically 20-30% higher than obtained Equation (39) (red line).
The deviations are stronger near |u|/kpT ~ 4.5, where the latter shows broad minima
absent for the former. Above this value, £(y) obtained from Equation (36) approaches L
from the top, whereas £(y) obtained from Equation (39) approaches £y from the bottom.
In addition, the right-hand side of Equation (36) converges much more quickly to £y for
|1t| > kpT than the right-hand side of Equation (39).

In both cases, the Lorentz number enhancement at the charge-neutrality point (¢ = 0)
is significant, and the violations of the WF law for u # 0 is apparent. The relatively good
agreement between the two formulas is striking: although both derivations have utilized
the linear dispersion of the Dirac cones, being link to D(e) given by Equation (21) in the
first case, or to the T(¢) o |¢| assumption in the second case (see Section 4 for further
explanation), only the derivation of Equation (36) incorporates the information about the
universal conductivity (o = 0p). We can therefore argue that the £ enhancement occurs in
graphene due to the linear dispersion rather then due the transport via evanescent waves
(being responsible for o = oy at 4 = 0).
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We now elaborate possible effects, on the Lorentz number, of toy-models of transmission-
energy dependence
T (e)  [e™, m> —1, (41)

where the proportionality coefficient is irrelevant due to the structure of Equation (37).
For some cases, integrals can be calculated analytically, leading, e.g., to £ = L for
m = 0 (the constant transmission case) or £ = L(y) given by Equation (39) for m = 1
(the linear transmission-energy dependence). Numerical results for selected values of
m = —0.5 ... 2.5 are displayed in Figure 3.

m=25

n/ksT

Figure 3. The Lorentz number for model transmission-energy dependence 7 (¢) given by

Equation (41) with m varied from —0.5 to 2.5 with the steps of 0.5 displayed as a function of the
chemical potential. Solid (dashes) lines mark integer (non-integer) m.

The violation of the WF law appears generically for m # 0 away from the charge-
neutrality point (i.e., for u # 0).

For u = 0, the Lorentz number reaches a global maximum (with £ > Ly)if m > Oora
global minimum (with £ < Lg) if —1 < m < 0. A close-form expression can be derived for
both cases, namely

) m—+2
x>
L(n=0) _/0 xcoshz(%) _oomtl g , 2 &(m+2) 0
kg 2 _/-oodx XM _2m+174(m+ )(m+ )W! ( )
(2) b s

and is visualized in Figure 4. It is clear that 7 (&) models given by Equation (41) may lead
to arbitrarily high Lmay; in particular, the value of 10 £ is exceeded starting from m =~ 4.1.

Hence, for m > 1, the model grasps the basic features of one-dimensional Luttinger
liquids, showing both the power-law transmission energy dependence, with nonuniversal
(interaction dependent) exponents, and the significantly enhanced Lorentz numbers [12].

On the other hand, the suppression of L is observed for —1 < m < 0, due to the
integrable singularity at ¢ = 0, constituting an analogy with heavy fermion systems [13].

Both the above-mentioned scenarios were described theoretically for quantum dot
systems, which may be tuned from the suppression of £ due to Breit-Wigner resonance, to
the enhancement of £ due to Fano resonance [44—-46].
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Figure 4. Maximal (solid blue line for 7 > 0) or minimal (dashed red line for —1 < m < 0) values of
the Lorentz number £ (reached at ;1 = 0) obtained from Equation (42). [The analytic continuation for
m — 0and m — 1 is assumed in the righmost expression in Equation (42).] Insets visualize the 7 ()
function given by Equation (41) for m = 0 and m = 1, with contributions from the valence band (p)
and the conduction band (n).

3.3. Gapped Systems

For completeness, we show here how the energy (or transport) gap may enhance the
Lorentz number. Instead of 7 (&) given by Equation (41), we put

T(e) x ©(Jel — 1) (Jel - %A)m, m> 1, (43)

where O(x) is the Heaviside step function.
For A > kgT and A >> |u|, the integrals occurring in Equation (37) can be approxi-
mated by elementary functions [47] and for the maximal £ (reached for y = 0) we have

Emax ~ A
<k3)2 2kgT

e

2
+m+1) +m+1. (44)

This time, the result given in Equation (44) can be simplified in the m — — 1 limit and
takes the form of Lmax & (A/2¢T)?. Physically, such a limit is equivalent to the narrow
band case, namely, 7 (¢) « &(e + 3A) + 6(e — 3A), with §(x) being the Dirac delta function.

An apparent feature of Equation (44) is that Lmax shows an unbounded growth with a
gap (with the leading term being of the order of ~A?), in agreement with the experimental
results for semiconductors [11]. Similar behaviors can be expected for tunable-gap systems,
such as bilayer graphene or silicene, which are beyond the scope of this work. We only
notice that compact formulas, such as Equation (42) for A = 0 or Equation (44) for A > kpT,
are unavailable if A ~ kgT (which may also by relevant for graphene with a small substrate-
or deformation-induced gap). In such a case, numerical integration generically leads to the
enhanced Lmax (compared to the A = 0 case) at a fixed m.

A different behavior appears near the band boundary, i.e., fory =~ A/2 (oru =~ —A/2).
Assuming A >> kgT again, we arrive to the limit of an unipolar system, for which only
the contribution from majority carries to integrals L, (38) matters. In effect, the Lorentz
number can be approximated as

£l 10> keT) ~ [?(’”f” . (Jumfy)ﬂ y (’<B>2 )
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where y = (u — 3A)/kpT and

TIn(m;y) = /oodxxni(x+y)m

—y cosh?(x/2)’ #6)

Closed-form expressions for J,(m;y) are not available; a few numerical examples for
m = 0...3 are presented in Figure 5. Since now L; o« J7 # 0 (in contrast to the bipolar
case studied above), the Lorentz number is significantly reduced and relatively close to £,
which is approached for y > 1.

m=3
) R
| L=Cy L
.3 L
[a]
)
2 | L
oﬁ
= o L
Q - F
17 m=0 i
0 \ \ \ \
-10 -5 0 5 10 15

(v —34) /ksT

Figure 5. The Lorentz number as a function of chemical potential for the limit of an unipolar system,
corresponding to 7 (¢) given by Equation (43) with A > kgT and p ~ A/2 (see also Equation (45)).
The exponent m is varied from 0 to 3 with the steps of 1 (solid lines). Dashed line marks the
Wiedemann-Franz value (£ = Ly).

Asymptotic forms of J;,(m; y) can be derived for |y| > 1, namely
Tn(m; y— —o0) =~ 4ey/ dt(t —y)"t"e !
0
L /n
=4e/ ) <k> ()T (m+k+1), (47)
k=0

where I'(z) denotes the Euler gamma function and

n

o b
;Y — F00) ~ m/ ax————
Tl y )=y —o0 xcoshz(x/Z)
1 for n =0
_ ’ ! 48
e {2(121—”)r(n+1)g(n), for n > 1. (48)

Substituting the above into Equation (45), we obtain

2
£—>(m+1)(kf> for y — — oo, (49)

or

2 2
L — % <k€B> = Ly, for y — oo. (50)
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Both limits are closely approached by the numerical data in Figure 5 for |y| 2 5. In all
cases considered, the values of £ are now much lower than the corresponding Lmax for a
gapless model with the same m (see Figure 4).

Therefore, it becomes clear from analyzing simplified models of 7 (¢) that a bipolar
nature of the system, next to the monotonically-increasing transmission (the m > 0 case), is
essential when one looks for a significant enhancement of the Lorentz number £ (compared
to Eo)

Both conditions are satisfied for graphene.

4. Exactly Solvable Mesoscopic Systems
4.1. Transmission-Energy Dependence

The exact transmission-energy dependence 7 (¢) can be given for two special de-
vice geometries in graphene: a rectangular sample attached to heavily-doped graphene
leads [19-21] and for the Corbino disk [22,23]. Although these systems posses peculiar
symmetries, allowing one to solve the scattering problem employing analytical mode-
matching method (in particular, the mode mixing does not occur), both solutions were
proven to be robust against various symmetry-breaking perturbations [48-51]. More impor-
tantly, several features of the results have been confirmed in the experiments [33,34,52,53]
showing that even such idealized systems provide valuable insights into the quantum
transport phenomena involving Dirac fermions in graphene.

For a rectangle of width W and length L, the transmission can be written as [20,22]

T) =Y Ta (51)
n=0

where the transmission probability for nth normal mode is given by
-1

2
T, — 1+(Z") sin2(knL)] , (52)

with g, = t(n + %) /W the quantized transverse wavevector (the constant % corresponds
to infinite-mass confinement; for other boundary conditions, see [20]),

r = VK2 —q2, for k> qy, (53)
" i/q: — k2, for k< qy,

and k = ||/ (hvr). The two cases in Equation (53) refer to the contributions from propagat-
ing waves (k > g, so-called open channels) and evanescent waves (k < g;).
For the Corbino disk, with its inner (R1) and outer (R;) radii, we have [22]

Te= Y T, (54)
j=%1/2,£3/2,...

where j is the half-odd integer angular momentum quantum number, with a corresponding
transmission probability

Tj= 7r2k21f{1R2 [@ﬁ“}zi [9(7)}2' (55)
] ]

where k is same as in Equation (53), and

(kRy) + HY

(2
(kR1)H ) j+1/2

&) _ [
o = 1m[H 2

ji—1/2 (le)H(Z) (kR2>} ’ (56)

j+1/2

with Hﬁl'z) (p) the Hankel function of the (first, second) kind.



Materials 2021, 14, 2704

14 of 20

4.2. The Conductivity

A measurable quantity that provides a direct insight into the 7 (¢) function is zero-
temperature conductivity
o(e) = goQxT (e), (57)

with the conductance quantum gy = 4¢?/h and a shape-dependent factor

L/W, for rectangle,

=N L Ry/Ry), for disk
27T 2 1), .

(58)

For T > 0, Equation (57) needs to be replaced by () = e? QxLg, where L is given
by Equation (38) with n = 0.

Numerical results, for T = 0, are presented in Figure 6. The data for both systems,
displayed versus a dimensionless quantity eL/hivr (with L = Ry — Ry for a disk), closely
follow each other up to |e|L/hvp =~ 3. For larger values of |¢|, the results become shape-
dependent and can be approximated, for |¢| > hvp/L, as

U(‘C') ~ gOQXNopen(S) <T>open/ (59)

where the number of open channels

|kW/m|, for rectangle,

. (60)
2|kRq],  for disk,

Nopen(e) = {

with | x| being the floor function of x, and the average transmission per open channel
(T)open =~ 1/4 < 1 (for the derivation, see Appendix A). Remarkably, numerical values of
o(¢) for a rectangle with W/L = 5 (solid blue line in Figure 6) match the approximation
given by Equation (59) with a few-percent accuracy for |e| 2 5hvr/L, whereas for a disk
with Ry/R; = 2 (dashed red line) a systematic offset of ~ (1/7)go occurs, signaling an
emphasized role of evanescent waves in the Corbino geometry. This observation coincides
with a total lack of Fabry—Perrot oscillations in the Corbino case.

3

o [4€*/h]

0 ‘ ‘ ;
-10 -5 0 5 10

EL/h’UF

Figure 6. Zero-temperature conductivity as a function of the Fermi energy for a rectangular sample
with width-to-length ratio W/L = 5 (solid blue line) and the Corbino disk with radii ratio Ry /Ry =2
(dashed red line). Both systems are shown schematically. Dashed black line marks the universal
conductivity oy = (4/7) €%/ h.
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4.3. The Lorentz Number

The exact transmission-energy functions 7 (¢), discussed above, are now substituted
into Equation (37) for the Lorentz number. Calculating the relevant integrals numerically,
we obtain the results presented in Figures 7 and 8.

Close to the charge-neutrality point, i.e., for || < max(hvpL~1,kgT), both systems
show a gradual crossover (with increasing T) from the Wiedemann-Franz regime, with a
flat £ ~ Ly, to the linear-transmission regime characterized by £(y) close to the predicted
by Equation (39) (see Figure 7). For higher j, some aperiodic oscillations of £(j) are visible
if kgT < hop/L, being particularly well pronounced for a rectangular sample. For higher
temperatures, the oscillations are smeared out, leaving only one shallow minimum near
\u|/kpT =~ 4 — 5, in agreement with Equation (39).

L/Lo

0 5 10 15 0 5 10 15
pL/hvp w(Ry—Ry)/hop

Figure 7. The Lorentz number for a rectangular sample (left) and the Corbino disk (right) displayed
as a function of the chemical potential. The temperature, specified in the units of hop/(kgL) ~
6.67K - um x L™, is varied between the lines and same in both panels. The remaining parameters
are the same as in Figure 6.

Maximal values of £ for the two systems (reached at = 0) are displayed, as functions
of temperature, in Figure 8. It is clear that a crossover between low and high temperature
regimes takes place near kgT ~ hvr/L (corresponding to ~6.67 K for L = 1um): For
lower temperatures (and near p = 0), thermally-excited carriers appear in the area where
T (¢) ~ const (leading to £ ~ L), whereas, for significantly higher temperatures, the
detailed behavior of 7 (¢) near ¢ = 0 becomes irrelevant, and the linear-transmission
approximation (7 (¢) o« |¢|) applies. Remarkably, the convergence to the value given
in Equation (40) is much slower (yet clearly visible) in the Corbino disk case, due to a
higher (compared to a rectangular sample) contribution from evanescent waves to the
transmission away from the charge-neutrality point.
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kBTL/h’UF

0 5 10 15
kBTL/hUF

Figure 8. Maximal Lorentz number (corresponding to ¢ = 0) for same systems as in Figure 6

o

versus temperature. Inset shows the data replotted from the main panel with the abscissa scaled
logarithmically. Dashed horizontal line marks the prediction given in Equation (40).

5. Conclusions

We calculate the Lorentz number (£ = «./0T) for noninteracting massless Dirac
fermions following two different analytic approaches: first, adapting the handbook deriva-
tion of the Wiedemann-Franz (WF) law, starting from the relation between thermal conduc-
tivity and heat capacity obtained within the kinetic theory of gases, and, second, involving
the Landauer—Biittiker formalism and postulating simple model of transmission-energy
dependence, T (¢)  |e|. In both approaches, the information about conical dispersion
relation is utilized, but the universal value of electrical conductivity, c ~ ¢?/h ate = 0, is re-
ferred only in the first approach. Nevertheless, the results are numerically close, indicating
the violation of the WF law with maximal Lorentz numbers Lax/ Ly =~ 2.77 and 2.37 (re-
spectively) and £ — Lo = (72/3) k3 /¢? for high doppings (|e| > kpT). This observation
suggests that violation of the WF law, with Lmax/ Lo ~ 2 — 3, should appear generically
in weakly-doped systems with approximately conical dispersion relation, including mul-
tilayers and hybrid structures, even when low-energy details of the band structure alter
the conductivity. In principle, one can expect similar results for three-dimensional Weyl
semimetals [54,55], but experimental separation of the electronic part of thermal conductiv-
ity for such systems may be more difficult compared to two-dimensional systems.

Moreover, a generalized model of power law transmission-energy dependence, 7 (¢)
le|™ (with m > —1), is investigated to address the question whether the enhancement of
L is due to the bipolar band structure or due to the conical dispersion. Since £ > Ly
shows up for any m > 0, and the maximal value grows monotonically with m, we conclude
that the dispersion relation has a quantitative impact on the effect. On the other hand,
analogous discussion of gapped systems, with the chemical potential close to the center
of the gap (the bipolar case) or to the bottom of the conduction band (the unipolar case),
proves that the bipolar band structure is also important (no enhancement of £ is observed
in the unipolar case up to m = 2).

Finally, the Lorentz numbers, for different dopings and temperatures, are elaborated
numerically from exact solutions available for the rectangular sample and the Corbino
(edge-free) disk in graphene, both connected to heavily-doped graphene leads. The results
show that £, as a function of the chemical potential y, gradually evolves (with growing T)
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as expected for a model transmission energy dependence, 7 (¢) o |¢|™, with the exponent
varying from m = 0 to m = 1. The upper bound is approached faster for the rectangular
sample case, but in both cases £/ Ly > 2 is predicted to appear for T > 13K - pm x L™}
with L the sample length.

Our results complement earlier theoretical study on the topic [36] by including the
finite size-effects and the interplay between propagating and evanescent waves, leading to
the results dependent, albeit weakly, on the sample geometry.
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Appendix A. Average Transmission per Open Channel and the Enhanced Shot Noise
Away from the Dirac Point

In this Appendix, we explain why the average transmission per open channel, oc-
curring in Equation (59) in the main text, is <T>0pen ~ 1 /4 instead of 1 (being the value
expected for typical ballistic systems). Implications for the shot-noise power are also
briefly discussed.

A closer look at Equation (52) for the transmission probability allows us to find out
that, for high energy, k,L > 1 (typically), whereas g, and k;,, for open channels, are
bounded by k. Therefore, the average transmission can be approximated by replacing
the argument of sine by a random phase 0 < ¢ < 7, and taking averages over ¢ and
n independently,

T ! 7Td 1d !
Thoen =2 |, 40 | 45 o,

1—x2
1
:/ dxv/1—x2 = i
0

Zr

(A1)

where we further introduce a continuous parameterization x = g, /k, V1 — x2 = k, /k. In
an analogous way, we obtain

(T?) ! /nd 1d
T%)open = — (p/ x 5
’ " (1 1fo2 Sinzgg)

1

_n

=% (A2)

The Fano factor [20], quantifying the shot-noise power, can now be approximated, for
kL > 1, as
_ Zn Tn(l - Tn) ~ 1 . <T2>0pen _ 1 (A3)

Yo Tn < T> open 8

The last value in Equation (A3) indicates that shot-noise power in highly-doped
graphene is noticeably enhanced compared to standard ballistic systems, which are charac-
terized by F ~ 0 (as T;; = 0 or 1 for all modes).

F
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Exact results, obtained from first equality in Equation (A3), taking both propagating
and evanescent modes into account, are presented in Figure A1l. The average transmission,
displayed in the inset, is defined as

1) = O

= "7, A4
N, open (5) (A9

where Nopen(s) is calculated from Equation (60) in the main text, in which we omit the
floor function (in general, Nopen(e) > Nopen (£)).
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Figure A1. Fermi energy dependence of the Fano factor (main panel) and the average transmission
per channel (inset), defined in Equation (A4), for same systems as in Figure 6.

Figure A1 clearly shows that a stronger role of evanescent modes for the Corbino case
results in elevated F and (T) (comparing to a rectangle), but a gradual convergence with
growing ¢ to the values given by last equalities in Equations (A3) and (A1) (respectively) is
also visible.

It is worth noticing that experimental values of F ~ 0.15 for highly-doped graphene
samples [34] are close, but slightly elevated in comparison to F ~ 1/8 in Equation (A3).
This can be attributed to the tunneling assisted by charged impurities, or other defects,
which may amplify the role of evanescent modes also for rectangular samples.
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