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Abstract: Laser powder bed fusion (LPBF) of Zn-based metals exhibits prominent advantages to
produce customized biodegradable implants. However, massive evaporation occurs during laser
melting of Zn so that it becomes a critical issue to modulate laser energy input and gas shielding
conditions to eliminate the negative effect of evaporation fume during the LPBF process. In this
research, two numerical models were established to simulate the interaction between the scanning
laser and Zn metal as well as the interaction between the shielding gas flow and the evaporation
fume, respectively. The first model predicted the evaporation rate under different laser energy
input by taking the effect of evaporation on the conservation of energy, momentum, and mass into
consideration. With the evaporation rate as the input, the second model predicted the elimination
effect of evaporation fume under different conditions of shielding gas flow by taking the effect of the
gas circulation system including geometrical design and flow rate. In the case involving an adequate
laser energy input and an optimized shielding gas flow, the evaporation fume was efficiently removed
from the processing chamber during the LPBF process. Furthermore, the influence of evaporation
on surface quality densification was discussed by comparing LPBF of pure Zn and a Titanium alloy.
The established numerical analysis not only helps to find the adequate laser energy input and the
optimized shielding gas flow for the LPBF of Zn based metal, but is also beneficial to understand the
influence of evaporation on the LPBF process.

Keywords: laser powder bed fusion; Zn; evaporation; numerical analysis; shielding gas flow

1. Introduction

Laser powder bed fusion (LPBF), also referred to as selective laser melting (SLM),
is an appropriate additive manufacturing method for fabricating metal bone implants of
customized geometry, since it allows the precise melting of discrete fine metal powders
layer upon layer under computer programming with high efficiency and high quality [1,2].
Bones are capable to repair themselves, and on many occasions, bone implants are expected
to degrade gradually and dissolve completely with the reconstruction of new bones [3,4].
Zn plays a vital role in bone metabolism and has a moderate corrosion rate in the human
body, which tends to match the bone healing rate, as compared to fast-degrading Mg
or slowly degrading Fe [5,6]. The strength of pure Zinc is not enough for load-bearing
implants. Yang et al. made a comprehensive study on the biodegradable application
of Zn alloys, and both in-vitro and in-vivo results were quite promising regarding me-
chanical strength, biocompatibility, biodegradation, and osteogenesis [7]. Considering
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the customized geometry of bone implants, LPBF of Zn-based metals (pure Zn and Zn
alloys) has also been attempted [8–10]. The Young’s modulus of pure Zn porous scaffolds
produced by the LPBF decreased to as low as 0.7–1.0 GPa, which fell within the range of
trabecular bones, and the strength did not decrease even after 4 weeks of immersion in
revised simulated body fluid [9]. Therefore, the LPBF of biodegradable Zn-based metals
is expected to solve the dual technical difficulties, including the fact that “conventional
manufacturing processes are inadequate to fabricate personalized implants of complicated
structure” and “conventional medical metals are biologically inert and exist in the human
body permanently”. It may provide a novel clinical treatment for large bone defects [11].

Evaporation is a very significant phenomenon during the LPBF process considering the
utilization of a focused laser beam with high energy intensity over 106 W/cm2, fine powder
of 20~60 µm, and a long running time of hours in a closed chamber. With X-ray visualization
of the molten pool, Cunningham et al. found out that strong evaporation actually occurs
in most LPBF processes, which was proved by the formation of a keyhole resulted from
the recoil force of evaporation [12]. The keyhole, also named vapor depression, is a cavity
of metal vapor inside the metal caused by the movement of the liquid/vapor interface
and driven by the recoil force of evaporation. Khairallah et al. pointed out that the
keyhole behavior directly influenced the absorption of laser energy and the formation
of defects such as porosity and spatter during the LPBF process [13,14]. Verhaeghe et al.
found that the temperature evolution was considerably affected by the heat loss from
evaporation, explained by the fact that the latent heat of evaporation is dozens of times that
of fusion [15]. Wu et al. found that the calculated peak temperature of the molten pool was
considerably reduced by taking the recoil force of evaporation into account, since the recoil
force accelerated the fluid flow and enhanced the heat convection in the molten pool [16].

Klassen et al. established a model to predict the element loss due to evaporation
during the electron beam melting process [17,18]. The condensation flux associated with
the formation of a Knudsen layer can significantly reduce the vaporization mass flux, thus
also the recoil pressure. With considering the Mach number of the vapor at the Knudsen
layer, they used the coefficients 0.82 and 0.56 for the evaporation and recoil pressure for
electron beam powder bed fusion. When the evaporation rate of the contained alloying
elements is varied, the chemical compositions of the produced parts become very different
from the starting powder, namely with more loss of elements that have relatively high
evaporation rates [19–21]. The metal vapor cools down and forms fumes of very fine
particles in the closed processing chamber. The evaporation fume blocks the irradiation of
the laser beam and attenuates the absorbed energy on the powder bed, which results in
deteriorated formation quality. Ferrara and Ladewiga et al. made use of the shielding gas
flow to eliminate the evaporation fume, and numerically investigated the influence of gas
circulation system on the shielding gas flow [22,23]. They pointed out that a forceful and
uniform shielding gas flow was beneficial to eliminate the evaporation fume and to stabilize
high formation quality. However, the effect of laser energy on the evaporation fume has
not been considered so far. With increasing the laser energy input, higher temperature
and more evaporation are expected. Few studies have been found on how to design the
shielding gas flow based on the volume of the generated evaporation fume under different
laser energy input.

Besides the laser energy input, the evaporation volume is also determined by the
evaporation tendency of materials. The melting and boiling temperature of pure Zn are as
low as 420 and 907 ◦C, respectively. Zn is much more likely to evaporate than most metals
due to the relatively low boiling temperature and narrow temperature range between
fusion and evaporation. Montani et al. made an early study on the LPBF of pure Zn [24–26].
Massive evaporation fumes occurred during the laser melting of pure Zn powder and the
highest relative density was only 88% [24]. The relative density indicates the densification
degree and can evaluate the percentage of formation defects like pores and insufficient
fusion. Grasso et al. found that the formation of porosity was directly related to the
evaporation fume by in-situ infrared imaging [25]. Stable melting during the LPBF of Zn
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powder could be achieved only when the negative effect of the evaporation fume was
eliminated [26]. The evaporation fume was efficiently blown away and suctioned out from
the processing chamber by a customized gas circulation system during the LPBF of pure
Zn [27]. The relative density remained stable above 99.5% and the tensile properties of LPBF
pure Zn parts approached those obtained by hot extrusion [28]. The evaporation becomes
the most critical issue accordingly regarding the processing and quality control during the
LPBF of Zn-based metals. So far, the question remains of how to accurately evaluate the
influence of the laser energy input and the shielding gas flow on the evaporation fume for
the LPBF of Zn-based metals, as well as how to efficiently select the optimal parameters to
achieve stable formation quality.

In this paper, the evaporation rate under different laser energy input was calculated
during the LPBF of pure Zn. The interaction of the shielding gas and the evaporation
fume was simulated using the calculated evaporation rate as the input. The effect of Zn
evaporation on the melting and densification behavior was characterized, and compared
with the LPBF of TC4 titanium alloy (Ti6Al4V), which has been widely used as the material
of non-degradable metal implants and shows a much lower evaporation tendency. It
is important to understand the influence of laser energy input and shielding gas flow
on the evaporation fume during the LPBF of Zn metal and efficiently achieve a stable
formation quality to promote the application of biodegradable Zn bone implants produced
by the LPBF.

2. Numerical Simulation Methods
2.1. Numerical Modeling of the Interaction between the Laser and Metal
2.1.1. Conservation Equations and Assumptions

A numerical model was established to simulate the interaction between the laser and
metal by using the commercial software ANSYS Fluent 16.0. The calculation was performed
in a domain with dimensions of 1.5 × 0.6 × 0.5 mm3. The domain was meshed into
hexahedral elements sized 0.01 × 0.01 × 0.01 mm3. The finite volume method was utilized
to solve the three conservation equations, i.e., the energy, momentum, and mass [29].

Energy equation :

ρ

(
∂T
∂t

+
⇀
V · ∇T

)
= ∇ · (λ∇T) + SE

(1)

Momentum equation :

ρ

∂
⇀
V

∂t
+

⇀
V · ∇

⇀
V

 = µ∇2
⇀
V −∇p + Ms ·

⇀
V + SF

(2)

Continuity equation :

∂ρ

∂t
+∇ ·

(
ρ
⇀
V
)
= SM

(3)

where λ, ρ, µ, and p indicate the heat conductivity, density, viscosity, and pressure; t and

T denote the time and temperature, respectively.
⇀
V represents the velocity of the liquid

metal, SE is the energy source, SF is the force source, and SM is the mass source.
In this calculation, gas/liquid/solid phases were coupled, and a moving heat source

was considered. A solid metal plate, rather than powder bed, was used in this model
based on the following reasons. Firstly, the mass loss of the Zn powder caused by the
evaporation is difficult to evaluate experimentally. Secondly, the present powder scale
model is regarded as inappropriate under conditions of intense vaporization [13]. Last
but not the least, the laser energy input and the material properties are the driving force
of the evaporation, while the presence of a layer of powders results in only a second-
order effect [12]. The following simplification and assumptions were also applied to the
numerical model according to reference [13].
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(a) The powder bed was treated as a dense continuum with isotropic properties.
(b) The fluid model was treated as incompressible Newtonian flow.
(c) The atmosphere in the LPBF chamber was pure argon with the temperature of

300 K and the pressure of 1.07 bar.
(d) The influence of the Knudsen layer on the gas parameters near the keyhole

was omitted.
(e) The interaction between the metal vapor and the incoming laser beam was omitted.

2.1.2. Treatment of Source Items and the Interface between Liquid and Gas

If the temperature of the molten pool exceeded the boiling point Tb, the evaporation
occurred and led to heat loss, recoil force, and mass loss, all of which were considered in
source items and were coupled in the iterative computation. For the energy transfer, SE
was calculated considering the efficient energy input from the laser source (Sq) and the
latent heat from the phase transformation (SH). The heat flux from the laser was distributed
in the form of the Gaussian distribution at the planes perpendicular to the z-axis, and was
simulated by a three-dimensional rotating body heat source, as given in Equation (4) [30,31].
Once the temperature exceeded the boiling point, the additional energy input contributed
to vaporize a fraction of the metal. Therefore, it was reasonable to assume that the peak
temperature in the molten pool was just a bit higher than the boiling point for a stable
melting during the LPBF. The mass fraction of the vaporized material was calculated
from the temperature range beyond the boiling point, as expressed in Equation (5) [32].
With knowing the temperature and the evaporation mass, the latent heat SH including
solid to liquid and liquid to gas was considered in the numerical model, as expressed in
Equation (6).

For the momentum transfer, SF was calculated considering the recoil pressure Pr, the
surface tension Pσ, and the buoyancy force PB, as expressed in Equations (7)–(10) [30,31].
For SM in the mass transfer, the change of mass m′ was a result of the evaporation between
the liquid and gas. The gain in the mass of gas equaled the loss in the mass of the liquid in
the form of evaporation. During the LPBF, the laser moves so fast that the computation
domain needs to be large enough to achieve the constringency, which consumes enormous
computing resources. To improve calculation efficiency, the laser beam was fixed in the
coordinate system, and the work piece moved relatively to the laser beam as the scanning
speed. The source terms related to the scanning were also incorporated into the model.

q(x, y, z) =
9ηP

πhr2(1− e−3)
exp

−9
(
x2 + y2)

r2 ln
(

h
z

)
 (4)

m′ =
cp(T − Tb)

Hb
· me

dt
(5)

SH = ρ

(
∂

∂t
Hm +∇ ·

(
⇀
VHm

))
+ m′Hb (6)

Pr = 0.54P0exp
(

Hb
T − Tb
RTbT

)
(7)

Pσ = kγ (8)

γ =
(

1.557− 1.5 · 10−4 · (T − Tm)
)

(9)

PB = ρgϕ(T − Tm) (10)

∂F
∂t

+
→
V · ∇F = 0 (11)

The free surface between liquid and gas in the computation domain was constructed by
the Volume of Fraction (VOF) method as Equation (11) shows. F is the function indicating
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the phase status. The gradient of the volume fraction was obtained by comparing the
calculated F values of adjacent elements, which distinguished the free surface between
liquid and gas. All the source items were written by C coding and put into the mode by
user-defined functions (UDF) [30,31]. The thermal physical properties employed in this
work were presented as the Table S1.

2.2. Numerical Modeling of the Interaction between the Shielding Gas and Evaporation Fume

Figures 1 and 2 respectively show the geometrical design and numerical model of the
LPBF processing chamber. They were in the same dimensional size of 150 × 275 × 100 mm3.
A gas circulation system was utilized, in which shielding argon gas was fed into the cham-
ber through a blow-off inlet and pumped out through a suction outlet. Ventilation screens
were used to adjust the shielding gas flow. For the blow-off screen, small holes with a
diameter of 1 mm were vertically staggered to rectify the gas flow. The suction screen
was shaped like a horn mouth to force the flow and to collect the evaporation products.
The effect of the geometrical design of ventilation screens on the shielding gas flow had
been numerically simulated in previous studies [33] and was thus not discussed here.
The performance of the shielding gas flow was determined by the velocity of gas flow at
the inlet (Vb) and the suction pressure at the outlet (Ps). Figure 2b shows the numerical
model after meshing. Two million hexahedron elements were used, and the element size
exhibited a graded distribution. The minimum element size was set to 1 mm at the gas
inlet, outlet, and evaporation zone, and the size was increased to 4 mm gradually in order
to get balanced performance between calculation accuracy and efficiency.

The interaction between the shielding gas and the evaporation fume was simulated
in three steps. At first, the evaporation rate was calculated according to the interaction
between the laser and the metal. The laser energy input and material properties were set
as the input variables. Then, the flow behavior of the shielding gas inside the processing
chamber was calculated. The parameters of gas flow Vb and Ps were set as the input
variables. Finally, the evaporation fume was released from the bottom of the processing
chamber as the mass flow according to the evaporation rate. ANSYS Fluent 16.0 was used
for the simulation of the gas flow and the mass flow. The k-epsilon standard model was
used to solve the Reynolds-averaged Navier–Stokes (RANS) equation.
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3. Materials and Experiments

Pure Zn plates with a thickness of 25 mm were used to verify the calculation accuracy
by comparing the penetration shape and the evaporation mass loss. A customized LPBF
machine was used to perform laser melting in a closed chamber as Figure 1 shows. The
optical system consists of a single mode continuous ytterbium fiber laser (YLR-400, IPG,
Oxford, MA. USA) with the laser spot diameter of 75 µm and the maximum power of 400 W
at wavelength of 1070 µm, a galvanometric scanner (hurry SCAN 20, SCANLAB, Puchheim,
Germany) and a f-theta focusing lens (SILL S4LFT 3254/126. Sill Optics, Wendelstein,
Germany). The laser was guided into the processing chamber through a transparent mirror
and selectively melted the pure Zn plates on the platform. The gas atmosphere of the
chamber was kept in pure Argon (>99.999%), and was continuously monitored by an
oxygen meter (<100 ppm). More information can be found in our previous work regarding
the LPBF process [27,28].

Laser melting was performed on three pieces of pure Zn plates in the LPBF processing
chamber. The spot diameter of laser was 75 µm; the scanning speed was fixed as 500 mm/s;
and the laser power was varied as 70, 80, and 90 W. Parallel single tracks with a length of
25 mm were melted on the pure Zn plates. The offset between two tracks was set as 200 µm
to ensure that no overlap occurred between the tracks. It took 1.75s to melt 35 tracks in the
total length of 875 mm. The evaporation rate equaled the mass loss divided by the scanning
time. Figure 3 shows the Zn plates before and after the laser melting. The plates were
weighed using a precision balance (±0.1 mg) to calculate the mass loss after the melting.
The measurement was repeated 3 times under each condition to obtain the average value.
Ultrasonic cleaning was performed to remove any impurities before melting and weighing.
The cross-section of a single track on the pure Zn plate was cut, polished, and etched to
observe the penetration shape. A solution of 2 mL nitric acid and 100 mL deionized water
was used as the etchant.
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4. Results and Discussion
4.1. Penetration Shape

Figure 4 shows the comparison of the penetration shape in the Zn plates and the
calculated temperature contours corresponding to the laser powers of 70, 80, and 90 W.
Porosity was not observed at the cross-sections of the laser melted plate, indicating a
satisfactory formation quality. The penetration shape agreed with the calculated isothermal
line of the melting point. With the elevated laser power, the depth and width increased
owing to the increased energy input, as shown in Figure 5. The penetration shape changed
from a semi-ellipse to a pyramid cone. The depth-to-width ratio of the penetration was
0.34, 0.54, and 0.67 for a laser power of 70, 80, and 90 W, respectively. The penetration depth
increased more rapidly than the width as the depth was more sensitive to the increase of
laser power.

Besides the laser power, the material properties also influenced the penetration shape.
Figure 6 shows the comparison between the calculated temperature contours for TC4
and pure Zn under the same laser energy input. The isothermal line of the melting point
indicates the penetration shape, the velocity vector indicates the flow behavior inside the
molten pool, and the length of the vector indicates the magnitude of the velocity. The liquid
metal in the molten pool flowed from the center to the surrounding and from the surface
to the bottom for both the materials. Compared with the flow velocity for TC4, the flow
velocity of pure Zn was considerably higher. A strong downward flow was observed for
pure Zn, and consequently, the molten pool of pure Zn was wider and deeper than those of
the TC4.

4.2. Evaporation Rate

Pure Zn plates were melted continuously in the LPBF processing chamber. During the
melting process, the evaporation fume was suctioned out by the gas circulation system,
resulting in mass loss of the plates. The evaporation rate was determined as the mass
loss divided by the scanning time. Table 1 presents the evaporation rate under different
laser power, as obtained by measurement and calculation. Based on the experimental
measurement, the corresponding evaporation rates were 0.23, 0.29, and 0.57 mg/s for laser
powers of 70, 80, and 90 W, respectively. With enhancing laser power, the evaporation rate
increased. A substantial increase occurred when the laser power went up to 90 W. The same
tendency was noted in the calculated values. The largest deviation in the evaporation rates
obtained using the measurement and calculation was approximately 10%. The calculated
evaporation rates exhibited satisfactory accuracy.

According to the theoretical analysis based on the Langmuir model in Equation
(12) [34], the evaporation flux of element i of a certain alloy Ji (g·cm−2·s−1) is dependent
on the temperature of the molten pool T, the saturated vapor pressure Pi

0, and the mole
mass Mi. As Figure 7a shows, the Pi

0 of the pure element increased with increasing the
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temperature according to equation 13 [35]. Pure Zn shows the highest saturated vapor
pressure. As Figure 7b shows, Ji also increases with increasing the temperature. Thus,
the evaporation loss of alloying elements rises with increasing the laser energy input,
which causes an increased temperature in the molten pool. The evaporation loss tendency
of different materials ranks as Zn > Mg > Fe > Ti. Besides the evaporation flux, the
compositional change of a specific alloy is also related to the original concentration of an
alloying element. For example, a lower concentration tends to lead to a higher relative loss
regarding the similar evaporation rate [34]. Moreover, the Langmuir model reveals the
maximum evaporation loss during melting in the vacuum. Actually, there is a Knudsen
layer with several mean free paths at the surface of the molten pool during the LPBF, which
is not in translational equilibrium [36]. The Knudsen inhibits the continuous evaporation,
and the condensation of metal vapor may fall back to the molten pool, both of which reduce
the evaporation loss in total [37,38].

Ji =
P0

i√
2πMiRT

(12)

log P0
i = AT−1 + B log T + C (13)
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Table 1. Evaporation rate by experiment and calculation.

Material Laser Power
(W)

Mass Loss
after Scanning

(mg)

Experimental
Evaporation
Rate (mg/s)

Calculated
Evaporation
Rate (mg/s)

Deviation
(%)

70 0.4 0.23 ± 0.05 0.225 2.17
Zn 80 0.5 0.29 ± 0.07 0.317 9.31

90 1.0 0.57 ± 0.10 0.513 10.00
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4.3. Effect of the Shielding Gas on the Evaporation Fume

Figure 8 shows the flow behavior of the shielding gas in the processing chamber, as
obtained by the simulation with Vb = 0.75 m/s and Ps = −500 Pa. The argon gas was fed
into the processing chamber through a blow-off screen at the right side and suctioned
out at the left side by pumping. According to the calculation, the velocity of the gas flow
adjacent to the powder bed was as low as 0.3 m/s. The low velocity near the powder bed is
necessary for LPBF processing as a strong gas flow may denudate the powder. The velocity
was enforced at a height ranging from 5 to 20 mm, and no significant turbulence was
observed throughout the chamber. The maximum velocity was 0.88 m/s, and it appeared
near the blow-off inlet. The minimum velocity was 0.74 m/s, and it occurred near the
suction outlet at the two sides. The velocity contour indicated that a homogeneous gas flow
field was achieved, and the experimental measurement validated the calculation accuracy
with the biggest error less than 10% for the velocity [33].
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A coupled model was established to predict the effect of the shielding gas on the
evaporation fume during the LPBF of pure Zn by considering both of the evaporation rate,
which is dependent on the laser energy input and material properties, and the shielding
gas flow, which is dependent on the gas circulation system and gas flow parameters. An
inlet of mass flow was added at the bottom of the processing chamber to simulate the
evaporation fume. The inlet mass flow was set as the evaporation rate. Three different
typical shielding conditions were simulated based on experimental results: Vb = 0 and
Ps = 0 indicating no shielding gas flow; Vb = 0.4 m/s and Ps = −500 Pa representing the
insufficient shielding gas flow; Vb = 0.75 m/s and Ps = −500 Pa expressing the adequate
shielding gas flow. The calculation results are shown in Figure 9, and the corresponding
videos are presented as Video S1–S3.

According to Figure 9a, the evaporation fume erupts and rises directly when no
shielding gas flow is used. Shortly, the closed processing chamber is occupied by the
saturated evaporation fume, which was observed by Montani and Grasso et al. during
the LPBF of pure Zn [24,25]. When the insufficient shielding gas flow is used as shown
in Figure 9b, the evaporation fume is blown away. A part of the evaporation fume is
suctioned out, and the residual remains in the chamber. With increase in the scanning time,
the residual evaporation fume enhances and accumulates inside the chamber. Figure 10a
shows a captured image of the evaporation fume during the LPBF of Zn powder with the
same setting of the shielding gas flow. The movement of the evaporation fume is similar
to that observed in the simulation result. The residual evaporation fume cools down and
gradually condenses into small particles that aggregate to different orders of scales. The
particles scatter the irradiation of the laser beam, and attenuate the real energy input on the
powder bed, which leads to an unstable molten pool and high porosity. Moreover, some
of the overheated particles may reach the transmission mirror at the top of the processing
chamber. In the extreme case, the mirror may get damaged owing to thermal distortion
resulting from the attached smudges.
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gas flow.

When the adequate shielding gas flow is used, as shown in Figure 9c, the evaporation
fume is efficiently removed from the processing chamber. No residual evaporation product
exists in the atmosphere inside the chamber with the passage of time. Figure 10b shows the
captured image of the evaporation fume during the LPBF of Zn powder under the same
shielding conditions. The simulated movement of the evaporation fume corresponds well
with the experimental observation. Under suitable shielding conditions, a clean processing
atmosphere is maintained during the LPBF process even though the strong evaporation
fume erupts. Further enforcing the shielding gas flow is not recommended since it leads
to a turbulent gas flow that may result in a disordered distribution of the flow velocity.
Moreover, the appropriate shielding condition should be selected depending on the laser
energy input and material properties.
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4.4. Discussion

Evaporation influences the penetration shape during the LPBF primarily in two
aspects. On one hand, the particles inside the evaporation fume attenuates the laser energy
input on the powder bed, and results in unstable penetration shape. Stable melting and
high densification can be obtained only if the evaporation fume is removed efficiently
from the processing chamber [26]. On the other hand, the recoil force of the evaporation
leads to the occurrence of the keyhole, which considerably elevates the absorptivity of
the laser energy and results in a deep penetration [13]. Figure 6 shows the comparison
between the penetration shapes of TC4 and pure Zn under the same laser energy input
without considering the attenuation effect. Zn owns much higher saturated vapor pressure
and more evaporation compared to Ti as Figure 7 shows. The strong recoil force of the
evaporation drives the liquid metal away from the laser-metal-interaction zone to the
surrounding and results in a wider and deeper penetration for the LPBF of pure Zn. The
downward flow is particularly strong, which considerably increases the penetration depth.

The evaporation rate rises up with the increase of the temperature of the molten pool.
With increasing the laser energy input, the temperature of the molten pool rises up sharply.
However, when the temperature exceeds the vaporization point, massive evaporation
occurs and the temperature cannot continue to rise up. The increased laser energy will
cause more evaporation, and the evaporation will carry excess heat away from the molten
pool. Therefore, it is reasonable to assume that the temperature of the molten pool is
a bit higher than the vaporization point, and many simulation results have proved this
assumption [13,14,32]. In our model, the peak temperature of the molten pool was set to
the vaporization point and the evaporation loss was considered according to equation 5.
However, this method cannot reflect the compositional change of different elements for
alloys. Klassen et al. simulated multi-component evaporation during electron beam pow-
der bed fusion by using the Langmuir model, which was appropriate for the melting in
vacuum [17,18]. Debroy et al. proposed to simulate the composition change resulted by
evaporation loss with considering the effect of Knudsen layer during laser welding [37,38].
The total evaporation loss included two parts: One part driven by the excess pressure and
the other part caused by diffusion. This model was appropriate to consider conduction
mode laser welding only [39]. According to recent findings, the keyhole generally exists
during most LPBF process [12]. So far, most LPBF models have paid more attention to
the effect of recoil force due to the evaporation on the melt flow, rather than the composi-
tional change since the evaporation loss during the LPBF of commonly used metals are
considered not noticeable [13]. However, regarding the LPBF of biodegradable Zn and Mg
alloys, the massive evaporation loss of Zn and Mg element caused substantial composi-
tional change [11]. More work is expected in the future for the numerical simulation of
compositional change during the LPBF process.

The metal vapor cools down and turns into evaporation fume that consists of tiny
particles with a diameter at 10–150 nm, which plays a detrimental role in scattering the
laser beam and contaminating the processing chamber [40]. Customized shielding gas flow
system, including blow-off and suction-out gates, was used to eliminate the evaporation
fume [22,23]. For the LPBF of Zn-based metals, the elimination effect contributed by the
shielding gas flow determines the formation quality due to the occurrence of massive
Zn evaporation [27,28]. As Figure 8 shows, powerful and uniform shielding gas flow
was obtained. It was necessary to keep the height of the gas flow some distance away
from the powder bed. The action region was kept 5 mm away from the powder bed
and lasted for a range of 15 mm. If this distance was too low, the gas flow disordered
the stacked powder, and disturbed the fluid flow inside the molten pool. If the distance
was too high or the range was too small, the gas flow missed the evaporation fume and
weakened the elimination effect. If the range was too big, it became difficult to maintain a
uniform distribution of powerful gas flow. It was necessary to adjust the shielding gas flow
according to the processing condition and the used materials. As Figure 9b shows, if the
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shielding gas flow was insufficient, the residual evaporation fume spread into the upper
space of the processing chamber and gradually disturbed the melting process.

In order to further understand the effect of evaporation, the LPBF of pure Zn powder
was carried out with efficiently eliminating the evaporation fume. Figure 11a,b show
surface images of single tracks with laser power 80 W under different scanning speeds
from left of right: 200, 400, 600, 800, and 1000 mm/s [28]. Plenty of molten liquid was
ejected out from the molten pool due to the severe evaporation. They fell down under
gravity and transformed into spherical balls due to surface tension. The ejection disturbed
the adjacent powders, and also pushed them away from the molten pool. The solidified
spatters and partially melted powders attached to the surface of single tracks. The molten
pool showed violent movement due to the recoil force of evaporation. Under the rapid
cooling rate, the turbulent molten metal solidified with a rugged surface and twisted shape.
Figure 11c shows the top surface of pure Zn cubes built by the LPBF. Although the surface
quality of single tracks was poor, the surface quality of pure Zn cubes was improved and
comparable to those obtained by the LPBF of common metals. A lot of overlap melting
occurred accordingly when the powder bed was melted track by track and layer by layer
during the LPBF process. The numerous melting and wetting produced a smooth surface
and enhanced the surface quality.
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The processing window of high density over 99.5% was obtained in our previous
work [27], represented by the gray area in Figure 12. The optimal linear energy input (laser
power P divided by scanning speed V) was in the range of 127–289 J/m. A much lower
energy input could not melt the powder completely and resulted in the lack of fusion.
In contrast, a much higher energy input aggravated the evaporation and led to a high
porosity owing to the gas entrapment. Nevertheless, when P was more than 120 W, too
much evaporation occurred, and a high densification could not be obtained. Therefore, a
relatively low V was necessary for the LPBF of pure Zn, not only to provide enough energy
to melt the powder, but also to suppress the intense evaporation. Figure 12 also shows
the optimal laser energy input for the LPBF of TC4 powder for the comparison [41–46].
The orange region indicates that the optimal energy input was 182–960 J/m, which was
considerably larger than that of pure Zn. The combination of high P and V or low P
and low V both led to the achievement of a high densification in the case of TC4, but
the combination of high P and high V did not work in the case of pure Zn. The different
densification behavior between Zn and TC4 is hugely attributed to the different evaporation
tendency. The evaporation of Zn is so prominent that it is difficult to maintain sufficient
melting and minimum evaporation at the same time when high P and high V are used.
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5. Conclusions

Addressing the evaporation and its resulting problems during the LPBF of Zn and
its alloys is a critical issue. To this end, the effect of evaporation on the LPBF process
was numerically simulated and verified by performing experiments during the LPBF of
pure Zn:

(1) The interaction between the scanning laser and metals was numerically modeled,
taking the evaporation into consideration of the conservation of energy, momentum, and
mass. The influence of the laser energy input and material properties on the evaporation
rate was numerically evaluated. The increase in the laser energy input intensified the
evaporation, and a higher evaporation led to deeper penetration, a stronger evaporation
fume, and more mass loss.

(2) The effect of the shielding gas flow on the evaporation fume was predicted, which
provided a powerful tool for the optimal design of a customized gas circulation system.
The optimized shielding gas flow efficiently removed the evaporation fume and guaranteed
stable melting during the LPBF of pure Zn.

(3) With an adequate laser energy input and an optimal shielding gas flow, pure Zn
samples subjected to the LPBF exhibited a high densification. The effect of evaporation
on the formation quality of pure Zn was analyzed and compared with that of the TC4
alloy, which helped better understanding of the LPBF processing technologies of Zn and
its alloys for the future biodegradable applications.
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Abbreviations

cp specific heat
Tm melting point
Tb boiling point
g gravity
Hb latent heat of evaporation
ϕ thermal expansion coefficient
me element mass
η laser absorptivity
P0 atmospheric pressure
P laser power
R gas constant
h effective depth
k surface curvature
r radius of laser irradiation
Γ surface tens-on coefficient
Hm latent heat of fusion
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